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Abstract. We extend the well-known results about the process of confluence for the
Gauss hypergeometric differential equation to the case of general hypergeometric systems.
We see that the process of confluence comes from the geometry of the set of regular
elements of the Lie algebra of complex general linear group. As a consequence, we give
a geometric and group-theoretic view on the process of confluence for classical special
functions.

1. Introduction

Inspired by the works of Aomoto [1] and Gel’fand et al. [7, 8, 9], we introduced in [16],

for any given partition λ of n, the general hypergeometric functions of type λ defined

on the space Z of r × n complex matrices of rank r, where r and n are positive integers

with r < n. They are defined as solutions of the system of partial differential equations

on Z called the general hypergeometric system of type λ. Outside the singular locus of

the system, its solution has the integral representation, which is the “Radon transform”

of the character of the universal covering group of the maximal abelian subgroup Hλ of

GL(n, C) (see Subsection 2.2). In the case where the partition of n is λ = (1, . . . , 1),

our hypergeometric function coincides with the general hypergeometric function due to

Aomoto and Gel’fand ([1, 7]), which is a generalization of Gauss hypergeometric function,

whose system of partial differential equations has only regular singularities. In the case

where λ = (n), the general hypergeometric function has already been defined and studied

in [9] and it gives a generalization of the classical Airy function Ai(x). It is well known

[11] that the Airy function has the integral representation

Ai(x) =
1

2πi

∫

∆

ext−t3/3 dt,

where the path of integration ∆ starts from ∞ in a sector in which integrand is expo-

nentially recessive and goes to ∞ in another recessive sector (cf. [15]). This integral can

be viewed as a simple example of an oscillatory integral whose phase function xt − t3/3

is a deformation of the simple singularity −t3/3 of A2-type (cf. [3]). The differential

equation which characterizes Ai(x) as its solution has only one singular point x = ∞ of

irregular type, unlike the case of the Gauss hypergeometric differential equation. For the

partitions λ 6= (1, . . . , 1), (n), our functions provide generalizations of special functions

of one variable such as Kummer’s confluent hypergeometric function, the Bessel func-

tion and the Hermite-Weber function. In fact, the special functions, Gauss, Kummer,
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Bessel, Hermite-Weber and Airy are obtained as the general hypergeometric functions for

r = 2, n = 4 in the cases where the partitions of 4 are (1, 1, 1, 1), (2, 1, 1), (2, 2), (3, 1) and

(4), respectively. See [2, 4, 10, 11] for the classical special functions mentioned above,

and see also [10, 19] for a relation with the nonlinear integrable systems such as Painlevé

equations and Garnier systems.

For the differential equations of these special functions, a kind of limit process, called

the confluence of singularities, is known, and it enables us to obtain one special differential

equation from another one as illustrated in the following diagram.

Bessel

↗ ↘
Gauss −→Kummer Airy(1.1)

↘ ↗
Hermite

For example, the process of confluence “Gauss → Kummer” is described as follows (cf.

[2]). The Gauss hypergeometric differential equation is

(1.2) x(1 − x)u′′ + {c − (a + b + 1)x}u′ − abu = 0, ′ = d/dx.

This equation, considered in P1, has three regular singular points of x = 0, 1,∞. For the

equation (1.2), we make the change of variable and parameters

(1.3) x = εξ, b = 1/ε.

Then the equation for (ξ, u) is

(1.4) ξ(1 − εξ)
d2u

dξ2
+ (c − ε(a + ε−1 + 1)ξ)

du

dξ
− au = 0.

We see that the coefficients of d2u/dξ2, du/dξ and u depend holomorphically on ε at

ε = 0. Taking the limit ε → 0 in the equation (1.4), we obtain the Kummer’s confluent

hypergeometric equation

(1.5) ξ
d2u

dξ2
+ (c − ξ)

du

dξ
− au = 0.

Notice that by the change of variable (1.3) the singular points x = 0, 1,∞ of (1.2) turn

into the singular points ξ = 0, 1/ε,∞ of (1.4), respectively, and that, as ε tends to 0, the

singular points ξ = 1/ε and ξ = ∞ approach to each other and are amalgamated into

the irregular singular point ξ = ∞ of (1.5). The name “confluence of singularities” comes

from this phenomenon.

It is natural to ask if one can extend the “process of confluence” to the general hy-

pergeometric system and if one can understand the geometrical meaning of the above

classically known process for the Gauss differential equation.

So the objective of this paper is summarized as follows:
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• To construct explicitly the limit process by which all the general hypergeometric

system for various partition λ 6= (1, . . . , 1) can be obtained from the system of

type λ = (1, . . . , 1). We call this limit process the process of confluence.

• To clarify a relation between the geometry of stratification for the set of regular

elements of the Lie algebra gl(n; C) and the process of confluence for the general

hypergeometric system.

Indeed, our construction will give directly the process of confluence of singular points

of the Gauss hypergeometric equation to Kummer’s confluent hypergeometric equation

([17]).

In order to realize our purpose, we need to enlarge slightly the class of systems of

hypergeometric type given in [16] so that we can consider the systems associated with

centralizers of regular elements of gl(n, C), not only the systems associated with the Lie

algebra hλ (see Definition 2.1).

This paper is organized as follows. In Section 2 we give the definition of the general

hypergeometric systems on Z, each of which is determined by the centralizer hb of a

regular element b ∈ gl(n, C) and a weight α of hb. We also recall results on the integral

representation of its solutions. In Section 3 we recall results on a stratification in the

set B of regular elements of gl(n, C) and describe explicitly the relation of adherence

among the strata of B and the properties of each stratum. In Section 4, we give key

lemmas, which will be proved in the last section. We study in Section 5 the relation of

adherence among the centralizers hb (b ∈ B) in an explicit way. This explicit construction

yields a process of confluence among the general hypergeometric systems (Theorem 5.3).

Thus we see that the process of confluence among our systems is nothing but the explicit

realization of the relation of adherence among the strata of regular elements of gl(n, C)

and among the maximal abelian Lie subalgebras which are defined as the centralizers

of regular elements. In Section 6, we shall show that the process of confluence for the

general hypergeometric systems also provides the confluence on the level of integrands

of the integral representations. In Section 8, we discuss the process of confluence for

the special differential equations in (1.1) and for Appell’s hypergeometric system (F1) in

detail in the framework of general hypergeometric systems using Theorem 5.3. Parts of

the results of this paper have been announced in [17].

We thank the referee for valuable comments for the improvement of this paper. We

thank also Professors M. Noumi and T. Sasaki for helpful discussion with them. The

first author thanks Professor F. Pham and the members of Université de Nice for their

hospitality during his stay in Nice. A part of this paper was written in Nice.

2. General hypergeometric systems

In this section, we reformulate general hypergeometric systems for centralizers of regular

elements of gl(n, C) and their weights.

2.1. Hypergeometric systems. Let b ∈ gl(n, C) be a regular element, namely, the

dimension of its centralizer {X ∈ gl(n, C) | [b, X] := bX − Xb = 0} is equal to n, the
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rank of gl(n, C). If b has l distinct eigenvalues b(0), . . . , b(l−1) of multiplicities λ0, . . . , λl−1

with λ0 ≥ λ1 ≥ · · · ≥ λl−1 and λ0 + · · · + λl−1 = n, then it is expressed as

(2.1) b = (Ad gb)
(
(b(0)Iλ0 + Λλ0) ⊕ · · · ⊕ (b(l−1)Iλl−1

+ Λλl−1
)
)

for some gb ∈ GL(n, C) and its centralizer, denoted by hb, is given as

hb = (Ad gb) (j(λ0) ⊕ · · · ⊕ j(λl−1)) .

Here, for any positive integer m, Im denotes the identity matrix of size m, Λm = (δi+1,j)0≤i,j<m

is the shift matrix of size m and

j(m) =

{ ∑

0≤i<m

xiΛ
i
m

∣∣∣ xi ∈ C

}
.

We consider the sequence λ := (λ0, . . . , λl−1) as a partition of n and denote by Yn the set

of partitions of n. For λ = (λ0, . . . , λl−1) ∈ Yn, we call l the length of λ and denote it by

`(λ). Let B be the set of regular elements of gl(n, C) and Bλ, for λ = (λ0, . . . , λl−1) ∈ Yn,

the subset of B whose element has l distinct eigenvalues of multiplicities λ0, . . . , λl−1.

Then

(2.2) B =
⊔

λ∈Yn

Bλ (disjoint union).

If we use the notation

(2.3) hλ := j(λ0) ⊕ · · · ⊕ j(λl−1),

then we have

hb = (Ad gb)hλ.

Note that hλ = hb when gb = In.

Now let r and n be positive integers with r < n and Z the set of r×n complex matrices

of rank r. We denote by z = (zij)0≤i<r,0≤j<n the coordinates of Z, and by ∂z = (∂ij) the

matrix whose (i, j) entry is the partial derivation ∂ij := ∂/∂zij.

Let h∗
b be the dual space of hb and 〈· , ·〉 the canonical bilinear pairing h∗

b × hb → C.

Definition 2.1. For a regular element b of gl(n, C) and α ∈ h∗
b satisfying the condition

(2.4) 〈α, In〉 = −r,

the following system of partial differential equations

(2.5)





LXu := {Tr(zX t∂z) − 〈α,X〉}u = 0, X ∈ hb,

MY u := Tr(Y z t∂z + Y )u = 0, Y ∈ gl(r, C),

¤ii′,jj′u := {∂ij∂i′j′ − ∂ij′∂i′j}u = 0, 0 ≤ i, i′ < r, 0 ≤ j, j′ < n

is called the general hypergeometric system associated with (α, hb) (GHG system for short).

Let C[zij, ∂ij (0 ≤ i < r, 0 ≤ j < n)] be the Weyl algebra and I(α; hb) its left ideal

generated by LX (X ∈ hb), MY (Y ∈ gl(r, C)) and ¤ii′,jj′ (0 ≤ i, i′ < r, 0 ≤ j, j′ < n). We

often identify the system with the left ideal I(α; hb).
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Remark 2.1. (2.4) is a compatibility condition of the system. Indeed, if X = In and

Y = Ir in (2.5), the equations LXu = 0 and MY u = 0 coincide with each other and then

〈α, In〉 = −Tr(Ir) = −r.

Remark 2.2. The equations LXu = 0 and MY u = 0 imply that a solution u(z) of (2.5)

satisfies

u(z exp(tX)) = u(z)χb(α; exp(tX)), X ∈ hb,

u(gz) = det(g−1)u(z), g ∈ GL(r, C),

where χb(α; ·) is that defined in (2.8). The third equations ¤ii′,jj′u = 0 of (2.5) are those

of ultrahyperbolic type used in characterizing the range of Radon transform, see [6], [12]

and [13].

Remark 2.3. The system (2.5) is a holonomic system on an Zariski open set of Z. The

dimension of the solution space at a generic point of Z is conjectured to be
(

n−2
r−1

)
. This is

true for the system with b of type λ = (1, . . . , 1), (n) and any r ≥ 2. It is also true in the

cases r = 2 with b of any type λ.

2.2. Integral representation. The GHG system I(α; hb) for b ∈ B and α ∈ h∗
b has

solutions given by definite integrals whose integrand is expressed in terms of a character

χb(α; ·) of the simply connected Lie group H̃b of the Lie algebra hb, where the character

is determined by the following commutative diagram:

H̃b
χb(α;·)−−−−→ C×

log

y
xexp

hb
α−−−→ C

We give here explicit expressions of the character and the integrand.

For any b ∈ Bλ given by (2.1) for some gb ∈ GL(n, C), we define Hb, a maximal abelian

subgroup of GL(n, C), by

Hb = (Ad gb) (J(λ0) × · · · × J(λl−1)) ,

where J(m), for any positive integer m, is the matrix group

J(m) =

{
h =

∑

0≤i<m

hiΛ
i
m

∣∣∣ hi ∈ C, h0 6= 0

}
⊂ GL(m, C),

called the Jordan group of size m. Then Hb is a Lie group of hb and its universal covering

group coincides with H̃b. Corresponding to (2.3), we use the notation

Hλ := J(λ0) × · · · × J(λl−1).

Then

Hb = (Ad gb)Hλ

and Hb = Hλ when gb = In.



6 HIRONOBU KIMURA AND KYOICHI TAKANO

Let us obtain an explicit expression of the character χb(α; ·). Suppose first gb = In. In

this case, we also denote χb(α; ·) by χλ(α; ·). Since H̃λ is a direct product of J̃(λk), 0 ≤
k < `(λ), we suppose further λ = (n).

Here we introduce functions θi(z), i ≥ 0, of infinitely many variables z = (z0, z1, . . . )

with zi ∈ C, i ≥ 0, z0 6= 0, defined by

(2.6)
∑

i≥0

θi(z)ti = log(
∑

i≥0

zit
i) = log(z0) + log(1 +

∑

i≥1

(zi/z0)t
i)

as formal power series of t, where log 1 = 0. Notice that θ0(z) = log z0 and each θi(z), i ≥
1, is a weighted homogeneous polynomial of z1/z0, . . . , zi/z0 of weight i, where the weight

of zk/z0 is defined to be k.

Now let h =
∑

0≤i<n hiΛ
i
n ∈ J̃(n) and α ∈ h∗

(n). Then we have

log h = log

( ∑

0≤i<n

hiΛ
i
n

)
= (log h0)In + log

(
In +

∑

1≤i<n

(hi/h0)Λ
i
n

)

= (log h0)In +
∑

1≤i<n

θi(h0, . . . , hi)Λ
i
n,

because Λi
n = 0 for any i ≥ n. Hence, setting

(2.7) αi := 〈α, Λi
n〉, 0 ≤ i < n,

we obtain

χ(n)(α; h) = exp (〈α, log h〉) = exp

(
〈α,

∑

0≤i<n

θi(h0, . . . , hi)Λ
i
n〉

)

= exp

( ∑

0≤i<n

αiθi(h0, . . . , hi)

)
= hα0

0 exp

( ∑

1≤i<n

αiθi(h0, . . . , hi)

)
.

Therefore the character of H̃λ for any λ = (λ0, . . . , λl−1) ∈ Yn and α ∈ h∗
λ is given as

χλ(α; h) =
∏

0≤k<l

χ(λk)(α
(k); h(k)), h ∈ H̃λ,

where α(k) := α|j(λk) and h(k) ∈ J̃(λk) is the k-th component of h.

For a general b ∈ Bλ where gb 6= In, we have since hb = (Ad gb)hλ and Hb = (Ad gb)Hλ,

(2.8) χb(α; h) = χλ((Ad gb)
∗α; (Ad gb)

−1h), h ∈ H̃b,

where (Ad gb)
∗ : h∗

b → h∗
λ is the dual of the isomorphism Ad gb : hλ → hb.

In order to give an integrand of integral representations for solutions of the GHG

system I(α; hb) (b ∈ Bλ), we introduce an injective mapping ιb from Hb to the space of n

dimensional row vectors: ιb : Hb → Cn. In the case of gb = In, ιλ := ιb is defined by

ιλ(h) = (h
(0)
0 , . . . , h

(0)
λ0−1, . . . , h

(l−1)
0 , . . . , h

(l−1)
λl−1−1)

for h = ⊕0≤k<l

∑
0≤i<λk

h
(k)
i Λi

λk
∈ Hλ. For a general b ∈ Bλ where gb 6= In, it is defined

by

ιb = R−1
gb

◦ ιλ ◦ (Ad gb)
−1,
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where Rgb
denotes the right multiplication operator by gb. Notice that ιb(Hb) = (

∏
0≤k<l(C××

Cλk−1))g−1
b . This mapping can be lifted to a biholomorphic mapping from H̃b to the uni-

versal covering space of (
∏

0≤k<l(C× × Cλk−1))g−1
b , which is also denoted by the same

symbol ιb. In the same way, we define a bijective mapping denoted also by ιb:

ιb : hb → Cn =

( ⊕

0≤k<l

Cλk

)
g−1

b .

Notice that for any row vector s = (s0, . . . , sn−1) ∈ Cn and h ∈ H̃b, it holds that

ι−1
b (sh) = ι−1

b (s)h.

From this and the fact that χb(α; ·) is a character, we obtain

χb(α; ι−1
b (tzh)) = χb(α; ι−1

b (tz)) · χb(α; h), h ∈ H̃b.

Let τ be the (r − 1)-form in r dimensional complex affine space defined by

τ =
∑

0≤i<r

(−1)itidt0 ∧ · · · ∧ d̂ti ∧ · · · ∧ dtr−1,

then the (r − 1)-form χb(α; ι−1
b (tz)) · τ is invariant under the homothety t 7→ ct (c ∈ C×)

by virtue of (2.4), and hence it defines a multivalued complex analytic (r− 1)-form on an

open submanifold of r − 1 dimensional complex projective space. This χb(α; ι−1
b (tz)) · τ

is the integrand of integral representations for the system I(α; hb), namely integrals

u(z) = Φb(α; z) :=

∫

∆(z)

χb(α; ι−1
b (tz)) · τ

for various twisted cycles ∆(z) give solutions of the system I(α; hb).

3. Stratification of regular elements and confluence of GHG systems

In the following part of this paper, we study confluence process of GHG systems and

integral representations of solutions of the systems. In this section, we give an outline.

3.1. Stratification of regular elements. We first define a relation in partitions of n.

Definition 3.1. We say that µ ∈ Yn is adjacent to λ ∈ Yn and write as λ → µ if

(1) `(µ) = `(λ) − 1, where `(·) denotes the length of a partition,

(2) there exist 0 ≤ j < `(µ), 0 ≤ j2 < j1 < `(λ) with µj = λj1 + λj2 such that

{µk}0≤k<`(µ),k 6=j = {λk}0≤k<`(λ),k 6=j1,j2 as set.
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For example, the adjacent relations among the elements of Y4 are given by

(2, 2)

↗ ↘
(1, 1, 1, 1) −→(2, 1, 1) (4).

↘ ↗
(3, 1)

Compare the diagram with that of classical hypergeometric and confluent hypergeometric

equations in Section 1.

Now recall B and Bλ and the decomposition (2.2) of B. We notice a well-known fact

that (2.2) defines a stratification of B in the sense that each Bλ is a complex manifold of

dimension n2 − n + `(λ) and

(3.1) B̄λ =
⊔

µ≤λ

Bµ,

where B̄λ is the closure of Bλ in B with respect to the usual topology of B and µ ≤ λ

means that there is a sequence λ′, λ′′, . . . of partitions of n with λ → λ′ → λ′′ → · · · → µ.

3.2. Outline of confluence process of GHG systems. Let µ ∈ Yn be adjacent to

λ ∈ Yn. Then, for any b ∈ Bµ, (3.1) says that there exists a sequence of points in Bλ

which converges to b.

We will realize this limit process by constructing a family of mappings σε (ε 6= 0)

from Bµ to Bλ so that σε(b) is holomorphic in ε and limε→0 σε(b) = b for any b ∈ Bµ.

Notice that, for fixed b ∈ Bµ, ε 7→ σε(b) defines a complex analytic curve in Bλ which

tends to b as ε → 0. We will next construct a Lie algebra isomorphism Ψε from hb to

hσε(b) for b ∈ Bµ. Let Ψ∗
ε be the dual isomorphism of Ψε and consider GHG system

I((Ψ∗
ε)

−1(α); hσε(b)) of type λ for any α ∈ h∗
b with 〈α, In〉 = −r. It will be proved that the

system I((Ψ∗
ε)

−1(α); hσε(b)) converges to the system I(α; hb) and integrands of integral

representations of solutions of the system I((Ψ∗
ε)

−1(α); hσε(b)) converge to those of the

system I(α; hb) as ε → 0. We note that the process reduces to the classical one in each

case of r = 2, n = 4.

3.3. A fibration structure of each stratum of B. In this subsection, we give a fibra-

tion of each stratum of B in order to understand more clearly the mapping σε : Bµ → Bλ,

which will be given in Section 5.

Let Y be a copy of Cn and F : B → Y a mapping which sends b ∈ B to F (b) =

(F1(b), . . . , Fn(b)) ∈ Y, where

det(sI − b) = sn − F1(b)s
n−1 + · · · + (−1)nFn(b).

For λ = (λ0, . . . , λ`(λ)−1) ∈ Yn, set Fλ := F |Bλ
and

Yλ := F (Bλ).
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We can verify that Yλ is an l dimensional complex submanifold of Y and hence the

decomposition Y = tλYλ gives a stratification of Y . For y ∈ Yλ, let a(0)(y), . . . , a(`(λ)−1)(y)

be the distinct roots of

tn − y1t
n−1 + y2t

n−2 + · · · + (−1)nyn = 0

of multiplicities λ0, . . . , λ`(λ)−1 and set

(3.2) sλ(y) :=
⊕

0≤k<`(λ)

(a(k)(y)Iλk
+ Λλk

).

Then sλ(y) is in F−1
λ (y) and the fiber F−1

λ (y) is the G-orbit O(sλ(y)) of sλ(y) with respect

to the adjoint action of G := GL(n, C) on gl(n, C) and hence

F−1
λ (y) = O(sλ(y)) ' G/Hλ.

It is easy to see that the mapping Fλ := F |Bλ
: Bλ → Yλ defines a locally trivial complex

analytic fibration and we can take a holomorphic local section of the form (3.2).

4. Key lemmmas

In this section, we give lemmas which will play an essential role in constructing the

mapping σε : Bµ → Bλ and the Lie algebra isomorphism Ψε : hb → hσε(b) for b ∈ Bµ.

We first consider a simple case. Let p and q be positive integers. We introduce a matrix

g(ε) ∈ GL(p + q, C) depending holomorphically on ε ∈ C× given by

(4.1) g(ε) =

(
Ip G12(ε)

0 G22(ε)

)
,

where the p × q matrix G12 = G12(ε) and q × q matrix G22 = G22(ε) are defined by

(4.2)

(
G12

G22

)
= Dp+q(ε)




(
0
0

) (
0
1

)
. . .

(
0

q−1

)
(
1
0

) (
1
1

)
. . .

(
1

q−1

)
...

...
. . .

...(
p+q−1

0

) (
p+q−1

1

)
. . .

(
p+q−1

q−1

)


 Dq(ε

−1),

Dm(ε) (for any positive integer m) denoting diag(1, ε, ε2, . . . , εm−1) and
(

i
j

)
denoting the

binomial coefficient which is equal to 0 if i < j by the usual convention. We remark that

det g(ε) = εpq and then g(ε) is nonsingular if ε 6= 0.

Now, for any X =
∑

0≤i<p+q xiΛ
i
p+q ∈ h(p+q), we define X(ε) ∈ (Ad g(ε))h(p,q) as follows:

(4.3)

(y0(ε), . . . , yp+q−1(ε)) := (x0, . . . , xp+q−1)g(ε),

Y (ε) :=

( ∑

0≤i<p

yi(ε)Λ
i
p

)
⊕

( ∑

p≤i<p+q

yi(ε)Λ
i−p
q

)
∈ h(p,q),

X(ε) := (Ad g(ε))Y (ε).

By using the notation introduced in Section 2, we can express it as

X(ε) = ((Ad g(ε)) ◦ ι−1
(p,q) ◦ Rg(ε) ◦ ι(p+q))(X).

Then we have
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Lemma 4.1 (Key lemma 1). For any X ∈ h(p+q), X(ε) ∈ (Ad g(ε))h(p,q) is holomorphic

in ε in a neighborhood of ε = 0 and

lim
ε→0

X(ε) = X.

The proof of this lemma will be given in Section 7.

We next give a lemma of more general form, which is an immediate consequence of

Lemma 4.1. Let µ ∈ Yn is adjacent to λ ∈ Yn with µj = λj1 + λj2 for some 0 ≤ j <

`(µ), 0 ≤ j2 < j1 < `(λ). Then we have a permutation ρ of the set {0, 1, . . . , l − 1}
(l := `(λ)) defined by

(λρ(0), . . . , λρ(l−1)) = (µ0, . . . , µj−1, λj1 , λj2 , µj+1, . . . , µl−2).

Let gρ ∈ GL(n, C) be a permutation matrix determined by

(s(ρ(0)), . . . , s(ρ(l−1)))gρ = (s(0), . . . , s(l−1))

for any row vector (s(0), . . . , s(l−1)) ∈ Cn, where s(k) = (s
(k)
0 , . . . , s

(k)
λk−1) ∈ Cλk , 0 ≤ k < l.

We define a matrix gλ→µ(ε) ∈ GL(n, C) by

(4.4) gλ→µ(ε) = (Iµ0+···+µj−1
⊕ g(j)(ε) ⊕ Iµj+1+···+µl−2

)gρ,

where g(j)(ε) ∈ GL(µj; C) is the matrix determined by (4.1) and (4.2) with p = λj1 and

q = λj2 . For X ∈ hµ, we define X(ε) by

X(ε) = ((Ad gλ→µ(ε)) ◦ ι−1
λ ◦ Rgλ→µ(ε) ◦ ιµ)(X).

Then we have

Lemma 4.2 (Key lemma 2). For any X ∈ hµ, X(ε) is holomorphic in ε in a neighborhood

of ε = 0 and satisfies

lim
ε→0

X(ε) = X.

Proof. Suppose X = ⊕0≤k<l−1X
(k) with X(k) ∈ j(µk). We can verify that

X(ε) = ⊕0≤k≤j−1X
(k) ⊕ ((Ad g(j)(ε)) ◦ ι−1

(λj1
,λj2

) ◦ Rg(j)(ε) ◦ ι(µj))(X
(j)) ⊕j+1≤k<l−1 X(k).

Then the lemma follows from Lemma 4.1. ¤

5. Confluence of GHG systems

5.1. Convergence of regular elements and Lie algebras.

Theorem 5.1 (Convergence of regular elements). Suppose that λ → µ, λ, µ ∈ Yn,

namely, µ is adjacent to λ. Given b ∈ Bµ with b ∈ (Ad gb)hµ, let

σε(b) := ((Ad gbgλ→µ(ε)) ◦ ι−1
λ ◦ Rgλ→µ(ε) ◦ ιµ ◦ (Ad gb)

−1)(b),

then σε(b) is an element of Bλ ∩ (Ad gbgλ→µ(ε))hλ for any fixed ε with 0 < |ε| << 1,

holomorphic in ε in a neighborhood of ε = 0 and satisfies

(5.1) lim
ε→0

σε(b) = b.
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Proof. Let µj = λj1 + λj2 for 0 ≤ j < `(µ), 0 ≤ j2 < j1 < `(λ), and let b(0), . . . , b(`(µ)−1) be

`(µ) distinct eigenvalues of b of multiplicities µ0, . . . , µ`(µ)−1. Then we have

c := (Ad gb)
−1(b) = ⊕0≤k<`(µ)(b

(k)Iµk
+ Λµk

).

Set l = `(λ) and

(b
(0)
0 (ε), . . . , b

(0)
λ0−1(ε), . . . , b

(l−1)
0 (ε), . . . , b

(l−1)
λl−1−1(ε)) := (Rgλ→µ(ε) ◦ ιµ)(c).

Then we see that

b
(k)
0 (ε) = b(k), b

(k)
1 (ε) = 1, b

(k)
i (ε) = 0, 2 ≤ i < λk, 0 ≤ k < l, k 6= j1, j2,

b
(j1)
0 (ε) = b(j), b

(j1)
1 (ε) = 1, b

(j1)
i (ε) = 0, 2 ≤ i < λj1 ,

b
(j2)
0 (ε) = b(j) + ε, b

(j2)
1 (ε) = 1, b

(j2)
i (ε) = 0, 2 ≤ i < λj2 .

Hence (ι−1
λ ◦Rgλ→µ(ε)◦ιµ)(c) is of Jordan’s normal form with l distinct eigenvalues b(k) (k 6=

j1, j2), b(j), b(j) +ε of multiplicities λk (k 6= j1, j2), λj1 , λj2 for 0 < |ε| << 1, which implies

σε(b) ∈ Bλ. The property σε(b) ∈ (Ad gbgλ→µ(ε))hλ follows from its definition. The

equation (5.1) is derived from b = (Ad gb)c and

lim
ε→0

((Ad gλ→µ(ε)) ◦ ι−1
λ ◦ Rgλ→µ(ε) ◦ ιµ)(c) = c,

which is verified by Lemma 4.2. ¤

Theorem 5.2 (Convergence of Lie algebras). Let b ∈ Bµ and σε(b) be those given in

Theorem 5.1, and let λ → µ. For any X ∈ hb, define Ψε(X) by

Ψε(X) := ((Ad gbgλ→µ(ε)) ◦ ι−1
λ ◦ Rgλ→µ(ε) ◦ ιµ ◦ (Ad gb)

−1)(X).

Then Ψε is a Lie algebra isomorphism from hb to hσε(b) satisfying

(5.2) lim
ε→0

Ψε(X) = X, X ∈ hb.

Proof. As in the proof of Theorem 5.1, we can verify that Ψε(X) ∈ (Ad gbgλ→µ(ε))hλ,

which imples Ψε(X) ∈ hσε(b) and (5.2). Since Ψε is a linear isomorphism and both hb and

hσε(b) are abelian, it is a Lie algebra isomorphism. ¤
It would be better to explain how we understand the construction of σε(b) in Theo-

rem 5.1 in the picture of fibration structure Fλ : Bλ → Yλ for the stratum Bλ of the

stratification of B explained in Section 3.

Let us restrict ourselves to the case where λ = (p, q), µ = (n) = (p + q) and b ∈ hµ is of

Jordan’s normal form

b = b(1)In + Λn.

First we formed

bε := (ι−1
λ ◦ Rgλ→µ(ε) ◦ ιµ)(b) = (b(1)Ip + Λp) ⊕ ((b(1) + ε)Iq + Λq).

For any ε 6= 0, bε is a regular element belonging to Bλ. Let y0 = F (b) ∈ Yµ and yε =

F (bε) ∈ Yλ (ε 6= 0). Then yε defines a holomorphic curve ε 7→ yε in Yλ which tends to

y0 ∈ Yµ as ε → 0. But bε, which is a lift of the curve yε and defines a holomorphic curve in

Bλ, tends not to the regular element b but to a subregular element (b(1)Ip+Λp)⊕(b(1)Iq+Λq)
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y0

Yλ

σε(b)

b

Bµ

bε

yε

Yµ

Figure 1. Curve σε

as ε → 0. So we move bε in the fiber F−1(yε) by twisting it by the action Ad gλ→µ(ε). This

process defines a desired holomorphic curve ε 7→ σε(b) in Bλ, which is a lift of holomorphic

curve ε 7→ yε in Yλ and satisfies (5.1) (see Fig.1).

Theorem 5.2 says that the same limit process works well not only for a regular element

b ∈ Bµ but also for any elements of Lie algebra hb obtained as a centralizer of regular

element b ∈ Bµ.

5.2. Conflucence of GHG systems. Let Ψ∗
ε : h∗

σε(b)
→ h∗

b be the dual isomorphism of

Ψε : hb → hσε(b). Then we have the following theorem, which is the first main assertion

of this paper.

Theorem 5.3 (Confluence of GHG systems). Suppose µ ∈ Yn is adjacent to λ ∈ Yn.

Given a GHG system I(α; hb) for b ∈ Bµ and α ∈ h∗
b with 〈α, In〉 = −r, consider the

GHG system I(α(ε); hλ), where

α(ε) = ((Ad gbgλ→µ(ε))∗ ◦ (Ψ∗
ε)

−1)(α) ∈ h∗
λ.

Then the change of variables

z = wgbgλ→µ(ε)

transforms the system I(α(ε); hλ) in z to I((Ψ∗
ε)

−1(α); hσε(b)) in w, namely,

(R(gbgλ→µ(ε))−1)∗ I(α(ε); hλ) = I((Ψ∗
ε)

−1(α); hσε(b))
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and

lim
ε→0

I((Ψ∗
ε)

−1(α); hσb(ε)) = I(α; hb)

in the sense that a set of generators of the ideal I(α; hb) are obtained as limits of a set of

generators of I((Ψ∗
ε)

−1(α); hσb(ε)) as ε → 0.

Remark 5.1. In the case where r = 2, n = 4, λ = (1, 1, 1, 1) and µ = (2, 1, 1), the theorem

with gb = I4 reduces to the confluence process from Gauss to Kummmer explained in

the introduction. Indeed, the system I(β; hλ) with β ∈ h∗
λ, 〈β, In〉 = −2, the change of

variables and parameters z = wgλ→µ(ε), β = α(ε), the system I((Ψ∗
ε)

−1(α); hσε(b)), and

the system I(α; hb) reduce to (1.2), (1.3), (1.4), and (1.5), respectively (see also Section

8).

In order to prove the first part of Theorem 5.3, we first show the following lemma.

Lemma 5.1. Let b ∈ Bλ and α ∈ h∗
b with 〈α, In〉 = −r. Then, for any g ∈ GL(n, C), the

change of variables z = wg transforms the system I(α; hb) in z to the system I((Ad g−1)∗(α); h(Ad g)b)

in w, namely,

(Rg−1)∗ I(α; hb) = I((Ad g−1)∗(α); h(Ad g)b).

Proof of Lemma 5.1. Recalling that ∂z and ∂w are the matrices whose (i, j) entry is ∂/∂zij

and ∂/∂wij, respectively, we have

t∂z = g−1 t∂w.

Therefore the mapping Rg−1 takes the generators LX (X ∈ hb), MY (Y ∈ gl(r, C)) and

¤ii′,jj′ of the ideal I(hb ; α) to

(Rg−1)∗LX = Tr(wgXg−1 t∂w) − 〈α,X〉
= Tr(w((Ad g)X) t∂w) − 〈(Ad g−1)∗α, (Ad g)X〉,

(Rg−1)∗MY = Tr(Y wgg−1 t∂w + Y ) = Tr(Y wt∂w + Y ),

and

(5.3) (Rg−1)∗¤ii′,jj′ =
∑

k,k′

(
(g−1)jk(g

−1)j′k′ − (g−1)jk′(g−1)j′k

)
∂w,ik∂w,i′k′ .

Hence it is sufficient to show that the elements (Rg−1)∗¤ii′,jj′ (0 ≤ i, i′ < r, 0 ≤ j, j′ < n)

generate the same ideal of the Weyl algebra on Z as

¤w,ii′,jj′ = ∂w,ij∂w,i′j′ − ∂w,ij′∂w,i′j, 0 ≤ i, i′ < r, 0 ≤ j, j′ < n.

Take arbitrary indices a, a′(a 6= a′). Multiplying both sides on (5.3) by gajga′j′ and sum-

ming them up with respect to j, j′, we have
∑

j,j′

gajga′j′(Rg−1)∗¤ii′,jj′ =
∑

k,k′

(
δakδa′k′ − δak′δa′k

)
∂w,ik∂w,i′k′

= ∂w,ia∂w,i′a′ − ∂w,ia′∂w,i′a = ¤w,ii′,aa′ .
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¤
Proof of Theorem 5.3. Since the first half of the theorem is obtained by Lemma 5.1, we

have only to show the second half.

As generators of the ideal I(α; hb), we take LX (X ∈ hb),MY (Y ∈ gl(r, C)) and

¤ii′,jj′ (0 ≤ i, i′ < r, 0 ≤ j, j′ < n). Since the mapping Ψε : hb → hσε(b) is a Lie algebra

isomorphism, we can choose, as generators of the ideal I((Ψ∗
ε)

−1(α); hσε(b)), the elements

LX(ε) := Tr(zΨε(X)t∂z) − 〈Ψε(X), (Ψ∗
ε)

−1(α)〉, X ∈ hb,

MY , Y ∈ gl(r, C) and ¤ii′,jj′ , 0 ≤ i, i′ < r, 0 ≤ j, j′ < n. Therefore it is sufficient to show

that

lim
ε→0

LX(ε) = LX , X ∈ hb,

and this follows from limε→0 Ψε(X) = X (Theorem 5.2) and the trivial equation

〈(Ψ∗
ε)

−1(α), Ψε(X)〉 = 〈α,X〉.

¤

6. Confluence of integral representations

6.1. Convergence of integrands. In this section, we show that the process of confluence

of GHG systems given in Section 5 can be lifted to the convergence of integrands of integral

representations.

Let λ, µ ∈ Yn such that µ is adjacent to λ. For b ∈ Bµ, we define an isomorphism

ψε : H̃b → H̃σε(b) so that the following diagram commutes

H̃b
ψε−−−→ H̃σε(b)

log

y
ylog

hb
Ψε−−−→ hσε(b),

namely,

ψε(h) = (log)−1(Ψε(log h)), h ∈ H̃σε(b).

We first note

Theorem 6.1 (Convergence of Lie groups). Suppose λ → µ. Then, for any h ∈ H̃b, we

have

lim
ε→0

ψε(h) = h.

Proof. Take X ∈ hb such that X = log h. Then, by Theorem 5.2, we have

lim
ε→0

ψε(h) = lim
ε→0

(log)−1((Ψε(X)) = log−1(X) = h.

¤
Concerning a character χσε(b) of H̃σε(b), we notice the following trivial property.

Theorem 6.2. For any h ∈ H̃b and α ∈ h∗
b , it holds that

χσε(b)((Ψ
∗
ε)

−1(α); ψε(h)) = χb(α; h), 0 < |ε| << 1.
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Proof. Let X = log h ∈ hb. Then we have

χb(α; h) = exp(〈α,X〉), χσε(b)((Ψ
∗
ε)

−1(α); ψε(h)) = exp(〈(Ψ∗
ε)

−1(α), Ψε(X)〉).

Hence the theorem is derived from 〈(Ψ∗
ε)

−1(α), Ψε(X)〉 = 〈α, X〉. ¤
Now we give the following theorem, which is the latter part of our main assertion of

this paper.

Theorem 6.3 (Convergence of integrands). Suppose that λ → µ, b ∈ Bµ and α ∈ h∗
b .

Then we have

(6.1) lim
ε→0

χσε(b)

(
(Ψ∗

ε)
−1(α); ι−1

σε(b)
(ιb(h))

)
= χb(α; h)

for any h ∈ H̃b, and hence we have

lim
ε→0

χσε(b)

(
(Ψ∗

ε)
−1(α); ι−1

σε(b)
(tz)

)
= χb(α; ι−1

b (tz)).

Remark 6.1. We remark that in Theorem 6.3

χσε(b)

(
(Ψ∗

ε)
−1(α); ι−1

σε(b)
(ιb(h))

)
6= χb(α; h)

for general h ∈ H̃b. This fact does not contradict Theorem 6.2, because ι−1
σε(b)

(ιb(h)) 6=
ψε(h), although

(6.2) ι−1
σε(b)

(ιb(h)) = ψε(h)(In + O(ε)).

We omit the proof of (6.2), since it can be verified by the same argument as in the next

subsection.

6.2. Proof of Theorem 6.3. We first show a lemma which will be used in proving

Theorem 6.3.

Lemma 6.1. Let x = (x0, x1, . . .) and let y(x, t) = (y0(x, t), y1(x, t), . . .) be a sequence of

formal power series of t defined by

yi(x, t) =
∑

k≥0

(
i + k

k

)
xi+kt

k, i ≥ 0.

Then we have

θi(y0(x, t), y1(x, t), . . .) =
∑

k≥0

(
i + k

k

)
θi+k(x0, x1, . . .)t

k, i ≥ 0,

where θi are functions defined by (2.6).

Proof. Denote by f(x, t) the formal power series
∑

k≥0 xkt
k. Then

yi(x, t) = (1/i!)(d/dt)if(x, t).

Therefore, we have

f(y(x, t), s) =
∑

i≥0

(1/i!)(d/dt)if(x, t)si = es(d/dt)f(x, t) = f(x, t + s).

By expanding both sides of log f(y(x, t), s) = log f(x, t + s) into formal power series of s,

and by comparing the coefficients of si, we obtain the desired result. ¤
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Proof of Theorem 6.3. Let µj = λj1 + λj2 for 0 ≤ j < `(µ), 0 ≤ j2 < j1 < `(λ). Since

σε(b) ∈ (Ad gbgλ→µ(ε))hλ, we have

χσε(b)((Ψ
∗
ε)

−1(α); ι−1
σε(b)

(ιb(h)))

= χλ((Ad gbgλ→µ(ε))∗(Ψ∗
ε)

−1(α); (Ad gbgλ→µ(ε))−1ι−1
σε(b)

(ιb(h))).

We can verify that

((Ad gbgλ→µ(ε))∗ ◦ (Ψ∗
ε)

−1)(α) = (fε
−1)∗(Ad gb)

∗(α),

(Ad gbgλ→µ(ε))−1ι−1
σε(b)

(ιb(h)) = ((fε) ◦ (Ad gb)
−1)(h),

where

fε := ι−1
λ ◦ Rgλ→µ(ε) ◦ ιµ.

Notice that by the same letter fε, we express an isomorphism fε : hµ → hλ and a mapping

fε : H̃µ → H̃λ. We have also

χb(α; h) = χµ((Ad gb)
∗(α); (Ad gb)

−1h),

since b ∈ (Ad gb)hµ. Therefore (6.1) is equivalent to

(6.3) lim
ε→0

χλ((f
−1
ε )∗(α); fε(h)) = χλ(α; h)

for any α ∈ h∗
µ and h ∈ H̃µ. Set λ′ := (λj1 , λj2) ∈ Yµj

, µ′ = (µj) ∈ Yµj
, α′ := α|j(µj) and

denote by h′ ∈ J̃(µj) the j-th component of h ∈ H̃µ. We also set f ′
ε := ι−1

λ′ ◦ Rg(j)(ε) ◦ ιµ′ .

Then we can verify

χλ((f
−1
ε )∗(α); fε(h))/χλ(α; h) = χλ′((f ′

ε
−1

)∗(α′); f ′
ε(h

′))/χµ′(α′; h′).

Therefore we have only to prove (6.3) in the case where λ = (p, q) and µ = (p + q) with

p + q = n.

Hereafter we suppose λ = (p, q), µ = (p + q) = (n) and fε = ι−1
λ ◦ Rgλ→µ(ε) ◦ ιµ. For

h =
∑

0≤i<p+q hiΛ
i
p+q, put

fε(h) = (
∑

0≤i<p

h′
i(ε)Λ

i
p) ⊕ (

∑

0≤i<q

h′′
i (ε)Λ

i
q).

We notice that h′
i(ε) = hi, 0 ≤ i < p and

(6.4) h′′
i (ε) =

∑

k≥0

(
i + k

i

)
hi+kε

k, 0 ≤ i < q.

For α ∈ h∗
µ, set

αi :=〈α, Λi
p+q〉, 0 ≤ i < p + q,

α′
i(ε) :=〈(f−1

ε )∗(α), Λi
p ⊕ Oq〉, 0 ≤ i < p,

α′′
i (ε) :=〈(f−1

ε )∗(α), Op ⊕ Λi
q〉, 0 ≤ i < q,

where Oq and Op are zero matrices of size q and p, respectively. We see that

(6.5) (α′
0(ε), . . . , α

′
p(ε), α

′′
0(ε), . . . , α

′′
q (ε))

tgλ→µ(ε) = (α0, . . . , αp+q).
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Therefore we have

(6.6) log χλ((f
−1
ε )∗(α); fε(h)) =

∑

0≤i<p

α′
i(ε)θi(h0, h1, . . .) +

∑

0≤i<q

α′′
i (ε)θi(h

′′
0(ε), h

′′
1(ε), . . .).

From (6.4) and Lemma 6.1, it follows that

(6.7) θi(h
′′
0(ε), h

′′
1(ε), . . .) =

∑

k≥0

(
i + k

k

)
θi+k(h0, h1, . . .)ε

k, 0 ≤ i < q.

Substituting (6.7) into (6.6), we obtain

log χλ =
∑

0≤i<p

(
α′

i(ε) +
∑

0≤k<q

(
i

k

)
α′′

k(ε)ε
i−k

)
θi(h0, h1, . . .)

+
∑

p≤i<p+q

( ∑

0≤k<q

(
i

k

)
α′′

k(ε)ε
i−k

)
θi(h0, h1, . . .) + O(ε).

Here we notice that the relation (6.5) means

α′
i(ε) +

∑

0≤k<q

(
i

k

)
α′′

k(ε)ε
i−k = αi, 0 ≤ i < p,

∑

0≤k<q

(
i

k

)
α′′

k(ε)ε
i−k = αi, p ≤ i < p + q.

Therefore we get

log χλ((f
−1
ε )∗(α); fε(h)) =

∑

0≤i<p+q

αiθi(h0, h1, . . .) + O(ε) = log χµ(α; h) + O(ε).

Thus we have completed the proof of Theorem 6.3. ¤

7. Proof of Lemma 4.1

Denote by A12 the p × q matrix whose (i, j) entry (0 ≤ i < p, 0 ≤ j < q) is
(

i
j

)
and by

A22 the q × q matrix whose (i, j) entry (0 ≤ i, j < q) is
(

p+i
j

)
. Then we have

(7.1) G12 = Dp(ε)A12Dq(ε
−1), G22 = εpDq(ε)A22Dq(ε

−1).

Set

(7.2) Y11 =
∑

0≤i<p

yi(ε)Λ
i
p

(
=

∑

0≤i<p

xiΛ
i
p

)
, Y22 =

∑

p≤i<p+q

yi(ε)Λ
i−p
q .

Then

(Ad g(ε))Y (ε) =

(
Y11 (−Y11G12 + G12Y22)G

−1
22

0 G22Y22G
−1
22

)
.

We first obtain limε→0 G22Y22G
−1
22 . From (4.1), (4.2) and (4.3), we have

Y22 =
∑

p≤i<p+q

yi(ε)Λ
i−p
q =

∑

p≤i<p+q

∑

0≤k<p+q

(
k

i − p

)
xkε

k−i+pΛi−p
q .
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Then, from ε−i+pΛi−p
q = Dq(ε)Λ

i−p
q Dq(ε

−1), it follows that

(7.3) Y22 = Dq(ε)

[ ∑

0≤k<p+q

xkε
k(Iq + Λq)

k

]
Dq(ε

−1).

By (7.1) and (7.3), we have

(7.4) G22Y22G
−1
22 =

∑

0≤k<m

xkε
kDq(ε)A22(Iq + Λq)

kA−1
22 Dq(ε

−1).

Denote by A the q × q matrix whose (i, j) entry (0 ≤ i, j < q) is
(

i
j

)
. Then we notice

that A is a lower triangular matrix with the diagonal entries 1 and its inverse A−1 is the

matrix whose (i, j) entry is (−1)i+j
(

i
j

)
(cf. [5], pp465-466). Notice also that, for any

integer m ≥ 0, we have the identity

(7.5) A(Iq + Λq)
m =

((
i + m

j

))

0≤i,j<q

,

which can be seen by virtue of
(

r
l

)
+

(
r

l−1

)
=

(
r+1

l

)
. In particular, we have

(7.6) A22 = A(Iq + Λq)
p.

By (7.6), we have A22(Iq +Λq)
kA−1

22 = A(Iq +Λq)
kA−1. Noticing that both A and A−1 are

lower triangular matrices with diagonal entries are 1, we see that A22(Iq + Λq)
kA−1

22 is the

matrix whose entries of the m-th upper diagonal (m > k) are all zeros and those of the

k-th diagonal are 1. It follows that

G22Y22G
−1
22 =

∑

0≤k<p+q

xk[Λ
k
q + O(ε)] −→

∑

0≤k<q

xkΛ
k
q

as ε → 0.

We next compute limε→0(−Y11G12 + G12Y22)G
−1
22 . By (7.1), (7.2) and (7.3) together

with the relation Λk
pDp(ε) = εkDp(ε)Λ

k
p, we have

(−Y11G12 + G12Y22)G
−1
22(7.7)

=
∑

0≤k<p+q

xkε
k−pDp(ε)[−Λk

pA12 + A12(Iq + Λq)
k]A−1

22 Dq(ε
−1).

Let yk
ij and zk

ij, (0 ≤ i < p, 0 ≤ j < q) be the (i, j) entry of Λk
pA12 and A12(Iq + Λq)

k,

respectively. Then

yk
ij =

{(
i+k
j

)
if i ≤ p − k − 1,

0 if i > p − k − 1,

zk
ij =

(
i + k

j

)
,

which yields

(7.8) −yk
ij + zk

ij =

{
0 if i ≤ p − k − 1,(

i+k
j

)
if i > p − k − 1.
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Then, by (7.6) and (7.8), we have, for k ≤ p,

[−Λk
pA12 + A12(Iq + Λq)

k]A−1
22 =




0 . . . 0
...

...

0 . . . 0(
p
0

)
. . .

(
p

q−1

)
...

...(
p+k−1

0

)
. . .

(
p+k−1

q−1

)




(Iq + Λq)
−pA−1(7.9)

=




0 . . . 0
...

...

0 . . . 0(
0
0

)
. . .

(
0

q−1

)
...

...(
k−1
0

)
. . .

(
k−1
q−1

)




A−1,

and, for k > p,

[−Λk
pA12 + A12(Iq + Λq)

k]A−1
22 = A12(Iq + Λq)

k(Iq + Λq)
−pA−1(7.10)

=




(
0
0

)
. . .

(
0

q−1

)
...

...(
p−1
0

)
. . .

(
p−1
q−1

)


 (Iq + Λq)

k−pA−1.

Now, let wk
ij be the (i, j) entry of [−Λk

pA12 + A12(Iq + Λq)
k]A−1

22 . Then, from (7.9) and

(7.10) together with the identity AA−1 = Iq, it follows that

(7.11) wk
ij =

{
1 if (j + p) − i = k,

0 if (j + p) − i > k.

Denote by Sk the p × q matrix whose (i, j) entry sk
ij (0 ≤ i < p, 0 ≤ j < q) satisfies

sk
ij =

{
1 if (j + p) − i = k,

0 otherwise.

Then, by (7.7) and (7.11), we have

(−Y11G12 + G12Y22)G
−1
22 =

∑

0≤k<p+q

xk[S
k + O(ε)] −→

∑

0≤k<p+q

xkS
k

as ε → 0. Thus we have completed the proof of Lemma 4.1.

8. Examples

We explain the confluences of the Gauss hypergeometric differential equation described

in the diagram (1.1) in Introduction and those of Appell’s hypergeometric system (F1) of

two independent variables in the framework of GHG systems.
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First we notice that the GHG functions u(z) for the system I(α; hb) satisfy

(8.1)

{
u(gz) = det(g−1)u(z), g ∈ GL(r; C),

u(zh) = u(z)χb(α; h), h ∈ H̃b

if the branch of u(z) is appropriately chosen.

We recall ([18]) that the Gauss hypergeometric equation and the confluent family in

the diagram (1.1) in the Introduction are

x(1 − x)u′′ + {c − (a + b + 1)x}u′ − abu = 0,(Gauss)

xu′′ + (c − x)u′ − au = 0,(Kummer)

x2u′′ + xu′ + (x2 − ν2)u = 0,(Bessel)

u′′ − 2xu′ + 2νu = 0,(Hermite-Weber)

u′′ − xu = 0.(Airy)

These equations will be denoted by (G), (K), (B), (H-W) and (A), respectively. The

solutions of these differential equations are expressed by the integrals

u(x) =

∫

C

(1 − xt)−b(1 − t)c−a−1ta−1dt,(G)

u(x) =

∫

C

ext(1 − t)c−a−1ta−1dt,(K)

u(x) =

∫

C

e
x
2 (t− 1

t )t−ν−1dt,(B)

u(x) =

∫

C

e2xt−t2t−ν−1dt,(H-W)

u(x) =

∫

C

ext− 1
3
t3dt,(A)

when the paths of integration C are appropriately chosen.

Looking at these integral representations, we see that the above equations (G), (K),

(B), (H-W) and (A) correspond to the GHG systems associated with the group Hλ with

the Young diagrams of weight 4: λ = (1, 1, 1, 1), (2, 1, 1), (2, 2), (3, 1) and (4), respectively,
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defined on the matrix spaces Xλ given by

X(1,1,1,1) =

{(
1 1 1 0

0 −x −1 1

) ∣∣∣ x 6= 0, 1

}
,

X(2,1,1) =

{(
1 0 1 0

0 x −1 1

) ∣∣∣ x 6= 0

}
,

X(2,2) =

{(
1 0 0 x

0 x 1 0

) ∣∣∣ x 6= 0

}
,

X(3,1) =

{(
1 0 0 0

0 1
√

2x 1

)}
,

X(4) =

{(
1 0 0 0

0 1 0 x

)}

with the parameters αλ ∈ h∗
λ (expressed using the basis of hλ as in (2.7)):

α(1,1,1,1) = (b − c,−b, a − 1, c − a − 1),

α(2,1,1) = (−c, 1, a − 1, c − a − 1),

α(2,2) = (ν − 1, 1,−ν − 1,−1),

α(3,1) = (ν − 1, 0, 1,−ν − 1),

α(4) = (−2, 0, 0, 1).

Sometimes it is preferable to consider the GHG systems on

X ′
(2,2) =

{(
1 0 0 x2/4

0 1 1 0

) ∣∣∣ x 6= 0

}
,

X ′
(3,1) =

{(
1 0 0 0

0 1 x 1

)}
,

in place of those on X(2,2) and X(3,1), respectively. Then the differential equations (B)

and (H-W) change their form to

[(ϑx + ν)2 + x2 − ν2]u = 0, ϑx = xd/dx,(B’)

u′′ − xu′ + νu = 0,(H-W’)

respectively, and the integral representations of the solutions are

u(x) =

∫

C

et−x2

4t t−ν−1dt,(B’)

u(x) =

∫

C

ext− 1
2
t2t−ν−1dt,(H-W’)
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respectively. The equation (B’) is related to (B) in the following way. In the integral

representation for (B), we make a change of integration variable t 7→ s = xt/2. Then we

see that

u(x) =

∫

C

e
x
2 (t− 1

t )t−ν−1dt =
(x

2

)ν
∫

C′
es−x2

4s s−ν−1ds

and the change of unknown u 7→ v defined by u =
(

x
2

)ν
v transforms the equation (B) to

(B’). The equation (H-W’) is obtained from (H-W) by the simple change of independent

variable x 7→ x′ =
√

2x.

8.1. Gauss → Kummer. In the present and following subsections, we denote by x (resp.

ξ) the independent variable of the source equation (resp. target equation) in the process

of confluence. Namely, in the present case, x is the variable of (G) and ξ is the variable

of (K). We denote by x̃ and α̃ the matrix variable and parameters for the source GHG

system corresponding to the source equation, and by w and α those of the target GHG

system. In the present case,

x̃ =

(
1 1 1 0

0 −x −1 1

)
∈ X(1,1,1,1), α̃ = (b − c,−b, a − 1, c − a − 1)

and

w =

(
1 0 1 0

0 ξ −1 1

)
∈ X(2,1,1), α = (−c, 1, a − 1, c − a − 1).

Then the recipe of the confluence given in Theorem 5.3 is to consider the GHG system of

type (1, 1, 1, 1) with the matrix variable z(ε) and the parametes α(ε) defined by

z(ε) = wg(ε) =

(
1 0 1 0

0 εξ −1 1

)
, g(ε) =




1 1

0 ε

1

1


 ,

α(ε) = αtg(ε)−1 =
(
−c − ε−1, ε−1, a − 1, c − a − 1

)
.

Noting that z(ε) is obtained from x̃ by substituting −εξ in x, we have the change of

variable and parameters (1.3), which transform the equation (G) to (1.4) and gives the

Kummer’s equation (K) in the limit ε → 0.

8.2. Kummer → Bessel. We show the confluence from (K) to (B’) instead of (K) →
(B). Let

x̃ =

(
1 0 0 1

0 x 1 −1

)
∈ X(2,1,1), α̃ = (−c, 1, a − 1, c − a − 1)

and

w =

(
1 0 0

(
ξ
2

)2

0 1 1 0

)
∈ X ′

(2,2), α = (ν − 1, 1,−ν − 1,−1)
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be the data for the GHG systems corresponding to (K) and (B’), respectively. Then the

recipe of the confluence is to consider the GHG system of type (2, 1, 1) with

z(ε) = wg(ε) =

(
1 0 0

(
ξ
2

)2
ε

0 1 1 1

)
, g(ε) =




1

0 1

1 1

ε




α(ε) = αtg(ε)−1 =
(
ν − 1, 1,−ν − 1 + ε−1,−ε−1

)

and relate it to the GHG system for (K). Noting

z(ε) =

(
−

(
ξ
2

)2
ε

1

)
x̃(ε)




(
−

(
ξ
2

)2
ε
)−1

(
−

(
ξ
2

)2
ε
)−1

1

−1




with x̃(ε) =

(
1 0 0 1

0 x 1 −1

)
and x = −

(
ξ
2

)2
ε, we see that the GHG functions Φ(α̃; z(ε))

and Φ(α̃; x̃(ε)) are related as Φ(α̃; z(ε)) = −xc−1Φ(α̃; x̃(ε)) by virtue of the formula (8.1).

Therefore we make a change of unknowns u 7→ v by u = x−c+1v to (K) to get

(8.2) [(ϑx − x)(ϑx − c + 1) − ax]v = 0

which corresponds to Φ(α(ε); z(ε)) after the changes of variable x = −
(

ξ
2

)2
ε and of

parameters α̃ = α̃(ε) Thus if we make a change of variable and parameters x = −
(

ξ
2

)2
ε

and α̃ = α̃(ε) for (8.2) and take a limit ε → 0, then we get the equation (B’). Summarizing

the discussion above, we have the following.

Proposition 8.1. For the equation (K), we make a change of variables and parameters

x = −
(

ξ

2

)2

ε, u =

(
−

(
ξ

2

)2

ε

)ν

v

a = −ν + ε−1, c = −ν + 1.

Then the limit ε → 0 gives the confluence (K)→ (B’).

8.3. Kummer → Hermite-Weber. To realize this limit process, it is needed to recover

a parameter in (K), which became invisible in the course of reduction from GHG system to

Kummer’s differential equation. In order to recover it, we make a change of independent

variable x 7→ x′ by x = α1x
′ to (K). Writing x′ as x again, we get the equation

(8.3) u′′ + (c − α1x)u′ − aα1u = 0.

Since the solutions of (8.3) are given by the integral

u =

∫
eα1xt(1 − t)c−a−1ta−1dt,
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it is seen that the equation (8.3) corresponds to the GHG system of type (2, 1, 1) with

(8.4) x̃ =

(
1 0 1 0

0 x −1 1

)
, α̃ = (−c, α1, c − a − 1, a − 1).

Note that the Hermite-Weber equation (H-W’) corresponds to the GHG system of type

(3, 1) with

(8.5) w =

(
1 0 0 0

0 1 ξ 1

)
, α = (ν − 1, 0, 1,−ν − 1).

Then the recipe of the confluence described in Theorem 5.3 guides us to consider the

GHG system of type (2, 1, 1) with

z(ε) = wg(ε) =

(
1 0 1 0

0 1 ε + ε2ξ 1

)
, g(ε) =




1 1

1 ε

ε2

1


 ,

α(ε) = αtg(ε)−1 =
(
ν − 1 − ε−2,−ε−1, ε−2,−ν − 1

)
.(8.6)

Noting

z(ε) =

(
1

−(ε + ε2ξ)

)
x̃(ε)




1

1

1

−(ε + ε2ξ)−1




with

(8.7) x̃(ε) =

(
1 0 1 0

0 x −1 1

)
, x = −(ε + ε2ξ)−1,

we see that the GHG functions Φ(α̃; z(ε)) and Φ(α̃; x̃(ε)) of type (2, 1, 1) are related as

Φ(α̃; z(ε)) = xaΦ(α̃; x̃(ε)) by virtue of the formula (8.1). Hence we make a change of

unknown u 7→ v defined by u = x−av to the equation (8.3) and get

(8.8) [(ϑ − a + c − 1 − α1x)(ϑ − a) − aα1x]v = 0.

We can check that, if we make a change of variable x 7→ ξ defined by (8.7) and a change

of paramters

(8.9) a = −ν, α1 = −ε−1, c = ε−2 − ν + 1

induced from (8.6), then we get the equation (H-W’) in the limit ε → 0. We summarize

the above process as follows.

Proposition 8.2. The change of variables

x = ε−1(ε + ε2ξ)−1, u = (−ε − ε2ξ)−νv

and the change of paramters given by (8.9) for the the Kummer’s equation (K) induces

the confluence to the Hermite-Weber equation (H-W’) as ε → 0.
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8.4. Bessel → Airy. To apply the framework of confluence for GHG system to this

case, we must recover a parameter in the equation (B’) which disappeared in the course

of reduction of GHG system of type (2,2) to the equation (B’). Explicitly, we introduce a

parameter α1 in (B’) so that we can treat the integrals

(8.10)

∫
eα1t−α1

x2

4t t−ν−1dt

instead of those for (B’). To derive the differential equation for (8.10) from (B’), we make

a change of variable x 7→ x′ = x/α1. Writing again x′ as x, we get

(8.11) [(ϑx + ν)2 + α2
1x

2 − ν2]u = 0.

Viewing the integral representation (8.10) for (B”), we see that (B”) corresponds to the

GHG system with

x̃ =

(
1 0 0 x2

4

0 1 1 0

)
, α̃ = (−ν1 − 1, α1, ν − 1,−α1).

Let w and α be the data for the GHG system corresponding to (A). Then the recipe of

the confluence is to consider the GHG system of type (2, 2) with

z(ε) = wg(ε) =

(
1 0 1 0

0 1 ε − ε3ξ 1 − 3ε2ξ

)
, g(ε) =




1 1

1 ε 1

ε2 2ε

ε3 3ε2


 ,

α(ε) = αtg(ε)−1 = (−2 − 2ε−3, e−2, 2ε−3,−ε−2).

To relate this GHG system to the equation (B”), we decompose z(ε) as

z(ε) =

(
1 X(ε)

1

)
x̃(ε)




1 X(ε)

1

X(ε) X ′(ε)

X(ε)




−1

, x̃(ε) =

(
1 0 0 X ′(ε)

0 1 1 0

)
,

where

X(ε) = (ε − ε3ξ)−1, X ′(ε) =
dX(ε)

dε
= − 1 − 3ε2ξ

(ε − ε3ξ)−2
.

Then we see that the GHG functions Φ(α̃; z(ε)) and Φ(α̃; x̃(ε)) are related as

Φ(α̃; x̃(ε)) = X(ε)−ν−1eα1(X(ε)−X′(ε))Φ(α̃; z(ε))

by virtue of the formula (8.1). So if we make a change of variable, unkown and parameters

x2

4
= X ′(ε) = −(1 − 3ε2ξ)(ε − ε3ξ)−2,

u = X(ε)−2ε−3

eε−2(X(ε)−X′(ε))v,

ν = −1 − 2ε−3, α1 = ε−2

to (B”), then we get the Airy equation (A) by letting ε → 0.
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8.5. Hermite-Weber → Airy. To derive the (A) from (H-W’) by confluence, we must

recover parameters in (H-W’) which disappeared in the course of reduction from the GHG

system of type (3, 1) to (H-W’). To this end we recall that the solutions of (H-W’) has

the integral representation

(8.12) u(x) =

∫
ext− 1

2
t2t−ν−1dt,

which is the GHG function of type (3, 1) corresponding to

(8.13) x̃ =

(
1 0 0 0

0 1 x 1

)
, α̃ = (α0, α1, α2, α3) = (ν − 1, 0, 1,−ν − 1).

We recover the parameters α1, α2 so that we can treat

v(x) =

∫
eα1t+α2(xt− 1

2
t2)t−ν−1dt

instead of (8.12). To derive the equation for v(x) from (H-W’), we make a change of

independent variable x 7→ x′:

(8.14) x = α1α
− 1

2
2 + α

1
2
2 x′

to (H-W) and write again x′ as x, we get

(8.15) u′′ − (α1 + α2x)u′ + να2u = 0.

On the other hand, the Airy equation (A) corresponds to the GHG system of type (4)

with

w =

(
1 0 0 0

0 1 0 −ξ

)
, α = (−2, 0, 0,−1).

Then the recipe of the confluence in Theorem 5.3 tells us to consider the GHG system of

type (3, 1) with

z(ε) = wg(ε) =

(
1 0 0 1

0 1 0 ε − ε3ξ

)
, g(ε) =




1 1

1 ε

1 ε2

ε3


 ,

α(ε) = αtg(ε)−1 =
(
−2 + ε−3, ε−2, ε−1,−ε−3

)
.

To relate the GHG system to the equation (8.15), we decompose z(ε) as

z(ε) =

(
1 x

1

)
x̃(ε)h, h =




1 x x2

1 x

1

x


 , x = (ε − ε3ξ)−1,

where x̃(ε) is the matrix obtained from x̃ in (8.13) by the substitution x = (ε − ε3ξ)−1.

By virtue of the formula (8.1), the GHG functions of type (3, 1) for z(ε) and x̃(ε) are

related as

Φ(α̃; z(ε)) = χ(3,1)(α̃; h−1)Φ(α̃; x̃(ε)) = e−α1x− 1
2
α2x2

x−α3Φ(α̃; x̃(ε))
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Thus we get the change of unknown u 7→ v: u = eα1x+ 1
2
α2x2

xα3v together with x =

(ε−ε3ξ)−1 and α̃ = α(ε) to get the differential equation for the GHG function Φ(α(ε); z̃).

To summarize, we have the following.

Proposition 8.3. The confluence (H’) → (A) is carried out by the following steps:

(1) the change of independent variable x 7→ x′ defined by (8.14) and that of unknown

u 7→ v defined by

u = eα1x′+ 1
2
α2x′2

x′α3v,

(2) the second change of independent variable and that of parameters:

x′ = (ε − ε3ξ)−1, α1 = ε−2, α2 = ε−1, ν = −1 + ε−3.

(3) to take a limit ε → 0 in the equation obtained by the steps (1) and (2).

8.6. Appell’s F1 and its confluent family. Appell’s hypergeometric function F1 and

its classically known confluent family ([2]) are defined by the power series:

(8.16)





F1(a, b, b′, c; x, y) =
∞∑

m,n=0

(a)m+n(b)m(b′)n

(c)m+nm!n!
xmyn,

Φ1(a, b, c; x, y) =
∞∑

m,n=0

(a)m+n(b)m

(c)m+nm!n!
xmyn = lim

ε→0
F1(a, b,−1/ε, c; x,−εy),

Φ2(b, b
′, c; x, y) =

∞∑

m,n=0

(b)m(b′)n

(c)m+nm!n!
xmyn = lim

ε→0
F1(−1/ε, b, b′, c;−εx,−εy),

Φ3(b, c; x, y) =
∞∑

m,n=0

(b)m

(c)m+nm!n!
xmyn = lim

ε→0
Φ2(b,−1/ε, c; x,−εy),

where (a)m = Γ(a + m)/Γ(a) is the Pochhammer’s symbol. The functions F1, Φ1, Φ2 and

Φ3 satisfy the systems of partial differential equations:
{

x(1 − x)uxx + y(1 − x)uxy + {c − (a + b + 1)x}ux − byuy − abu = 0,

y(1 − y)uyy + x(1 − y)uxy + {c − (a + b′ + 1)y}uy − b′xux − ab′u = 0,
(F1)

{
x(1 − x)uxx + y(1 − x)uxy + {c − (a + b + 1)x}ux − byuy − abu = 0,

yuyy + xuxy + (c − y)uy − xux − au = 0,
(Φ1)

{
xuxx + yuxy + (c − x)ux − bu = 0,

yuyy + xuxy + (c − y)uy − b′u = 0,
(Φ2)

{
xuxx + yuxy + (c − x)ux − bu = 0,

yuyy + xuxy + cuy − u = 0,
(Φ3)

respectively, where the suffix x or y in ux or uy denotes the derivation with respect to x

or y. It is known that the limit processes in (8.16) induce the confluence of the systems

(F1) → (Φ1), (F1) → (Φ2) and (Φ1) → (Φ2). We shall explain that these confluence

processes can be treated in a unified way by Theorem 5.3. To relate the systems (F1),

(Φ1), (Φ2) and (Φ3) to the GHG systems with the Young diagrams of weight 5, we recall
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the integral representations for the solutions, in which we omit the domains of integration

since we don’t need them:

F1 = C1

∫
(1 − yt)−b′ta−1(1 − t)c−a−1(1 − xt)−bdt,

= C2

∫
(1 − xs − yt)−asb−1tb

′−1(1 − s − t)c−b−b′−1dsdt,

Φ1 = C3

∫
eytta−1(1 − t)c−a−1(1 − xt)−bdt,

Φ2 = C4

∫
e−ttb+b′−c(y + t)−b′(x + t)−bdt

= C5

∫
exs+ytsb−1tb

′−1(1 − s − t)c−b−b′−1dsdt,

Φ3 = C6

∫
e−t− y

t tb−c(x + t)−bdt,

where Ck are some constants depending on the parameters a, b, b′ and c. From these 1-

dimensional integral representations, we see that (F1), (Φ1), (Φ2) and (Φ3) are the GHG

systems of type (1, 1, 1, 1, 1), (2, 1, 1, 1), (2, 1, 1, 1) and (2, 2, 1) on the space of matrices:

X(1,1,1,1,1) =

{(
1 1 0 1 1

0 −y 1 −1 −x

) ∣∣∣ xy(x − 1)(y − 1)(x − y) 6= 0

}
,

X(2,1,1,1) =

{(
1 0 0 1 1

0 y 1 −1 −x

) ∣∣∣ xy(x − 1) 6= 0

}
,(8.17)

X ′
(2,1,1,1) =

{(
1 0 0 y x

0 1 1 1 1

) ∣∣∣ xy(x − y) 6= 0

}
,

X(2,2,1) =

{(
1 0 0 y x

0 1 1 0 1

) ∣∣∣ xy 6= 0

}
,

respectively, with parameters αλ:

α(1,1,1,1,1) = (b + b′ − c,−b′, a − 1, c − a − 1,−b),

α(2,1,1,1) = (b − c, 1, a − 1,−b,−b),(8.18)

α′
(2,1,1,1) = (c − 2,−1, b + b′ − c,−b,−b′),

α(2,2,1) = (c − 2,−1, b − c,−1,−b).

Corresponding to 2-dimensional integral representations for F1 and Φ2, we can regard

(F1) and (Φ2) as the GHG systems on the matrix spaces

Y(1,1,1,1,1) =








1 1 0 0 1

0 −x 1 0 −1

0 −y 0 1 −1




∣∣∣ xy(x − 1)(y − 1)(x − y) 6= 0



 ,

Y(2,1,1,1) =








1 0 0 0 1

0 x 1 0 −1

0 y 0 1 −1




∣∣∣ xy(x − y) 6= 0







ON CONFLUENCES OF GENERAL HYPERGEOMETRIC SYSTEMS 29

with the parameters:

α(1,1,1,1,1) = (a − c,−a, b − 1, b′ − 1, c − b − b′ − 1),

α(2,1,1,1) = (−c, 1, b − 1, b′ − 1, c − b − b′ − 1),

respectively.

8.7. Confluence (F1) → (Φ1). In the present and following subsections, we denote by

x, y the independent variables for the system of source (namely (F1) in the present case)

and by ξ, η the independent variables for the system of target (namely (Φ1) in the present

case) in the process of confluence. We also denote by z (resp. w) and α̃ (resp. α) the

matrix variable and parameters for the GHG system corresponding to the source (resp.

target) system. In the case (F1) → (Φ1),

(8.19) z =

(
1 1 0 1 1

0 −y 1 −1 −x

)
, α̃ = (b + b′ − c,−b′, a − 1, c − a − 1,−b)

and

(8.20) w =

(
1 0 0 1 1

0 η 1 −1 −ξ

)
, α = (b − c, 1, a − 1, c − a − 1,−b).

Then the recipe of the confluence given in Theorem 5.3 is to consider the GHG system of

type (1, 1, 1, 1, 1) with

z(ε) = wg(ε) =

(
1 1 0 1 1

0 εη 1 −1 −ξ

)
, g(ε) =




1 1

ε

1

1

1




,

α(ε) = αtg(ε)−1 =
(
b − c − ε−1, ε−1, a − 1, c − a − 1,−b

)
.

Comparing these with (8.19), we get the change of variables and parameters:

x = ξ, y = −εη, b′ = −ε−1

for the system (F1), which induces the confluence (F1) → (Φ1) in the limit ε → 0.

8.8. Confluence (F1) → (Φ2). In this case, it is convenient to use the GHG systems on

the matrix spaces Y(1,1,1,1,1) and Y(2,1,1,1). Let

(8.21) z =




1 1 0 0 1

0 −x 1 0 −1

0 −y 0 1 −1


 , α̃ = (a − c,−a, b − 1, b′ − 1, c − b − b′ − 1)

and

(8.22) w =




1 0 0 0 1

0 ξ 1 0 −1

0 η 0 1 −1


 , α = (−c, 1, b − 1, b′ − 1, c − b − b′ − 1).
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be the matrices and parameters for the systems (F1) and (Φ2), respectively. Then we

apply the recipe of Theorem 5.3: put

z(ε) = wg(ε) =




1 0 0 0 1

0 εξ 1 0 −1

0 εη 0 1 −1


 , g(ε) =




1 1

ε

1

1

1




α(ε) = αtg(ε)−1 =
(
−c − ε−1, ε−1, b − 1, b′ − 1, c − b − b′ − 1

)

and consider the GHG system of type (1, 1, 1, 1, 1) with z(ε) and α(ε). Comparing z(ε)

and α(ε) with z and α in (8.21), we find the desired change of variables and parameters:

x = −εξ, y = −εη, a = −ε−1

for the system (F1), which induces the confluence (F1) → (Φ2) in the limit ε → 0.

8.9. Confluence (Φ2) → (Φ3). Let z ∈ X ′
(2,1,1,1) and α̃ be the matrix and parameters for

(Φ2) and let w ∈ X(2,2,1) and α be those for (Φ3) given in (8.17) and (8.18). Then, as in

the previous case, we consider the GHG system of type (2, 1, 1, 1) with

z(ε) = wg(ε) =

(
1 0 0 εη ξ

0 1 1 1 1

)
, g(ε) =




1

1

1 1

ε

1




,

α(ε) = αtg(ε)−1 =
(
c − 2,−1, b − c + ε−1,−ε−1,−b

)
.

Then putting z = z(ε) and α̃ = α(ε), we have the change of variables and parameters

x = ξ, y = εη, b′ = ε−1,

which induces the confluence (Φ2) → (Φ3) when ε → 0.
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