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§1. Introduction.

Let M be an n-dimensional connected differentiable manifold and g a Rieman-
nian metric tensor field on M. We denote by (M, g) a Riemannian manifold
with the metric tensor field g. Let there be given two metric tensor fields g
and g* on M. If g* is conformal to g, that is, if there exists a function p on
M such that g*=e®*g, then we call such a change of metric tensor field g—g*
a conformal change of metric. In particular, if p=constant then the conformal
change of metric is said to be homothetic and if =0 then the conformal change
of metric is said to be isometric.

Let (M, g) and (M, g’) be two Riemannian manifolds and f:M—M a dif-
feomorphism. Then g*=/*g’ is a Riemannian metric tensor field on M. When
g* is conformal to g, that is, when there exists a function p on M such that
g¥=e"g, we call f:(M, g2)—(M’, g’) a conformal transformation. In particular,
if p=constant then f is called a homothetic transformation or a homothety and
if p=0 then f is called an isometric transformation or an isometry.

If a vector field v on M satisfies

where L, denotes the Lie derivation with respect to v and ¢ a function on M,
then v is called an infinitesimal conformal transformation. The v is said to be
homothetic or isometric according as ¢ is a constant or zero.

Given a Riemannian manifold (M, g), we denote by gj;, {]-hl. , Vi K Ky

and K, respectively, the components of the metric tensor field g, the Christoffel
symbols formed with g;;, the operator of covariant differentiation with respect

to jhi}’ the components of the curvature tensor field, the components of the

Ricci tensor field and the scalar curvature of (M, g), where and in the sequel,
indices 4,1, j, k, --- run over the range {1,2,---,n}. Hereafter we assume that
functions under consideration are always differentiable.

When we consider a conformal change of metric
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gr=e*g,
if £ is a quantity formed with g then we denote by £2* the quantity formed
with g* by the same rule as that £ is formed with g.
Recently, Goldberg and Yano[2] studied non-homothetic conformal changes
of metrics and obtained the following

THEOREM A. Let (M, g) be a compact orientable Riemannian manifold of
dimension n>3 with constant scalar curvature K and admitting a non-homothetic
conformal change of metric g¥=eg such that K*=K. Then if

(1.2) fMu‘"“Gjiu’uldVgO,
where

K
(1.3) G‘”:[{J—Tg‘”

and u=e°, u;=V u, u"=u,g* and dV denotes the volume element of (M, g), then
(M, g) is isometric to a sphere.

Yano and Obata [13] proved following theorems.

THEOREM B. If a compact orientable Riemannian manifold (M, g) of dimen-
ston n>2 admits a non-homothetic conformal change of metric g*¥=e*g such that

j (A0KdV=0,  G*,GH'=u'G,G",

where du=g?W ;¥ ,u, then (M, g) is conformal to a sphere.

THEOREM C. If a compact orientable Riemannian manifold (M, g) of dimen-
sion n>2 and with K=constant admits a non-homothetic conformal change of
metric g*=e®*®g such that

G*jiG*ji:u4GjiGji ,
then (M, g) is isomelric to a sphere.
THEOREM D. If a compact orientable Riemannian manifold (M, g) of dimen-

sion n>2 admits a non-homothetic conformal change of metric g*=e*g such
that

[ AEdV=0,  Z¥nZebitmuiZ, 200,
where

K
14) ijih:Kkjih'—n_(n__-]'.)_(aggji—a,’;gkz) ,

then (M, g) is conformal to a sphere.

THEOREM E. If a compact orientable Riemannian manifold (M, g) of dimen-
sion n>2 and with K=constant admits a non-homothetic conformal change of
metric g*¥=e**g such that

kjih__ .4 kjih
Z*kjihZ* I =Ur Zyjin 25,



CONFORMAL CHANGES OF RIEMANNIAN METRICS 21

then (M, g) is isometric fo a sphere.
THEOREM F. If a compact orientable Riemannian manifold (M, g) of dimen-
sion n>2 admits a non-homothetic conformal change of metric g*¥=e*g such that

[ (duykav=0,

M
W*kjth*kjih:u4ijianjih , a—}—(n-—2)b$0 ,

wheve

(1.5) ijih:azkjih‘l‘b(aﬁGﬂ—5?Gki+ Gkhgjﬂ_G]hgkt) y

a and b being constants, then (M, g) is conformal to a sphere.

THEOREM G. If a compact orientable Riemanman manifold (M, g) of dimen-
sion n>2 and with K=constant admits a non-homothetic conformal change of
metric g*=e**g such that

W*kjth*kjih:u4ijthkjih , a—i—(n——Z)biO ,

then (M, g) is isomelric to a sphere.
THEOREM H. If a compact orientable Riemannian manifold (M, g) of dimen-
sion n=2 admits a non-homothetic conformal change of metric g*¥=e**g such that

K*=K, LuK=0, jMu-"HG,.iquV;o,

where Lg, denotes the Lie derivation with respect to a vector field u=g™V u,
then (M, g) is isometric to a sphere.

THEOREM 1. If a compact orientable Riemannian manifold (M, g) of dimen-
sion n>2 admits a non-homothetic conformal change of metric g*=e**g such that

K*:K, LduK:() y G*jiG*ji:GjiGﬁ s
then (M, g) is isomelric to a sphere.
(See also Barbance [1].)

THEOREM J. If a compact orientable Riemannian manifold (M, g) of dimen-
sion n>2 admits a non-homothetic conformal change of metric g*=e*g such that

K*=K, Ly K=0, Z¥yn Z¥=Z 0 ZH
then (M, g) is isomelric to a sphere,
(See also Hsiung and Liu [3].)

THEOREM K. If a compact orientable Riemannian manifold (M, g) of dimen-
sion n>2 admits a non-homothetic conformal change of metric g*=e**g such that

K*=K, L, K=0,
I/V‘*kjth*kjih.__ I/ijthkﬂh B a—f—(?’l"2>b$0 )

then (M, g) is isometric to a sphere.
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(See also Hsiung and Liu [3].)
Yano and Sawaki [14] proved following theorems.

THEOREM L. If a compact orientable Riemannian manifold (M, g) of dimen-
sion n>2 admits a non-homothetic conformal change of metric g*=e**g such that

LyuwK=0, L K*=0,
qujiGjiz {(u— 1)g0+1} G*jiG*)i s

where p is a real number such that p<4 and ¢ a non-negative function on M,
then (M, g) is isometric to a sphere.

THEOREM M. If a compact orientable Riemannian manifold (M, g) of dimen-
sion n>2 admits a non-homothetic conformal change of metric g*=e**g such that

LduK:O; LduK*ZO y
uPijihzkjih____ {(u—l)go—l—l} Z*kjihZ*kjih ,

where p and ¢ are the same as in Theorem L, then (M, g) is isomelric to a

sphere.
THEOREM N. If a compact orientable Riemannian manifold (M, g) of dimen-
sion n>2 admits a non-homothetic conformal change of metric g*=e**g such that

LduK:(), LduK*ZO,
WPW g WH = {(u—Do+1} Wy W a+(n—2)b#0,

where p and ¢ are the same as in Theovem L, then (M, g) 1s 1sometric to a
sphere.

The purpose of the present paper is to prove generalizations of Theorems
A~N.
In the sequel, we need the following two theorems.

THEOREM O (Tashiro [8]). If a compact Riemannian manifold (M, g) of
dimension n=2 admits a non-constant function w on M such that

VjV,u—%AugﬁZO,
then (M, g) is conformal to a sphere in an (n+1)-dimensional Euclidean space.

(See also Ishihara [4], Ishihara and Tashiro [5].)

THEOREM P (Yano and Obata [13]). If a complete Riemannian manifold
(M, g) of dimension n=2 admits a non-constant function w on M such that

V,-Vlu—%dugﬁzo, LduK:O,

then (M, g) is isometric to a sphere in an (n-1)-dimensional Euclidean space.
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§2. Preliminaries.

We consider a conformal change of metric

CAY g*;=eg;; .
First of all, we have
A* h
22) {j i} ={]. i}'+5? 0i+0tp;—850"
where

e=V.,p, p'=p.g™",
from which
2.3 K*kjih=Kkjih—5£Pji+5? pki_pkhgji+pjhgkz ,
where
1 i
Pji:Vjpi_pjpi—l"_z—ptptgjiy p/=pu8",
and consequently

(2.4 K*;=K;;—(n—2)p;;—p.' 8
and

(2.5) e K*=K—2(n—1)p,
where

pz‘=4p+—"{—2mp‘ , do=g''V,p;.

From (2.3), (2.4) and (2.5) and the definitions of G, Z,;;* and W,;", we have

2.6) G*;;=G;i—(n—2)V,0,—p;00)+ L

;2 (do—pep")811

2.7 Z*kjih:ijih—ag(Vjpi—pjpi)+5‘,; (Vkpi“PkPi)
_(Vkph—'Pkph)gji+<Vjph—PjPh)gkz
+-2-(dp— 0"\~ 810)

and

(2.8) W*kjih: ijih+ {a+(n—2)b}{_555(’71‘10;‘—‘0;'}01)'*'5? (Vkpi—Pkpi)
“‘(Vkph—PkPh)gji+(Vjph—Pjph)gki

(4o~ .0 Ohg 3 21)}

If we put
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2.9) u=e*, u,=Vu,
then we have
{2.10) Viay=—ulV ;0,—p;p:)
and
(2.11) du=—u(do—p.0% ,
and consequently
2.12) K*=u*K+2(n—1Dudu—n(n—"uut,
(2.13) G*;;=G;+(n—2)P;;,
(2.14) Z* it =Zyyi"+ Quyi”
and
(2.15) Wi =W +{a+(n—2)0} Quyi*
where
(2.16) Py=u (P ju———Augy)
(2.17) Q" =0}P;;— 8" Pyt Py g;— P, gy,
and
Pr=P, g™,

From (2.16) and (2.17), we obtain
(2.18) Py Pri=u{ (7 )W u,)——=—(du)?}
and
(2.19) Q1jin Q@Y *=4(n—2) P, P
respectively.

We also have, from (2.13), (2.14) and (2.15),
(2.20) G* ;G i=u*{G;;,GT'+2(n—2)G ;, PT* - (n—2)*P,;, P7*}
2.21) Z¥ n Z¥H =y 7 ZR 18G4 PP - 4(n—2) P P77}
and
(2.22) W 4 sin W= g [ W n WL 8{a+(n—2)b} *G j, PT*

+4(n—2){a+(n—2)b}*P;;P'']

respectively. For the expression G,;P’* in (2.20), (2.21) and (2.22), we have, from
(2.16),
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(223) Gjini:u~1GjiV‘7ul y

where V7=g#l .

§3. Lemmas.

LemMMA 1 (Lichnerowicz [6], Satd [71, Yano {9, 111). For a vector field v*
on a compact orientable Riemannian manifold (M, g), we have

3.1 fM(gf"VjViv"+KI’LU’—}—n—;zV’LVtv‘)v,.,dV
X(Vjvi—}-Vivj—%stsgﬁ)dV:O .
Proof. By a straightforward computation, we have
Vi{<l7"v"—!—l7h v’—%Vtvtg“L)vh}
:—(g”VjViv"—l-Kl"v’—i———n;z VhViU’>v,,
+~%—(VJU’+ViUJ~—Z—Vtv’gji>
2 p s
X (Vjvi—l—Viv]——ﬁ—st gn) ,

and consequently, integrating over M, we have (3.1).

REMARK. If a vector field v" defines an infinitesimal conformal transform-

ation, then we have
L.g;:=208;:,
that is,
2
Vjvi“f—ViU]‘_TVtUtgﬁ:O .

From this, we can deduce
(3.2) g7 o I R =0,
Formula (3.1) shows that this is not only necessary but also sufficient in order

that the vector field v* defines an infinitesimal conformal transformation in a
compact orientable Riemannian manifold.

LEMMA 2 (Yano [10]). For a function u on a compact orientable Riemannian
manifold (M, g), we have
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(3.3) fM<g“'V,~Viu”+K,"u‘—i——?i;—zV"Au)uth
+2fM(V’ul——i—Aug”><Vjui——}L—Aug,i)dV-:O

and

(3.9 § {77 at Krutyun— 2 (duyav

—I—ZIM(V’u’—%Augﬁ)(Vjui——%—Augﬂ)dV:O ,

where w,=V u, ut=u,g" and du=g?"V ¥ u.

Proof. Putting v"=u" in (3.1) and using F'u*=F"w’, we obtain (3.3). (3.4)
follows from (3.3) because of

{ T duyupdv=— f (duyrdv.

LEMMA 3 (Yano [10]). For a function u on a Riemannian manifold (M, g),
we have

8.5) Vrdu=giV ¥V u*— K u*,
that is,
(3.6 gV ¥ ur=F"du+K,"u*.

Proof. We have
Vh(Au)=Vh<gji7juz>:gji7hyjut
=g ¥ wui— Knzituy)
=gV ¥ u,—Ktu,,
from which (3.5) follows.

LEMMA 4. For a function u on a compact orientable Riemannian manifold
(M, g), we have

3.7 fﬂ([(ﬁu"u’-}— n;l u"V,,Au)dV

+fM<l7’ui—~i—Augﬁ)<l7jui—%Aug,-,-)deO
and

(38) § {Kuwrw =22 awy}av

—{-fM(V’uL———%—Aug”XVjui——%Augﬁ)d V=0.
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Proof. Substituting (3.6) into (3.3), we have (3.7), and substituting (3.6) into
(34), we have (3.8).

LEMMA 5. If a compact orientable Riemanman manifold (M, g) of dimension
n=2 admits a conformal change of metric g*=e®g, then, for any veal number
p, we have

(3.9 fMu”“Gnu’u‘dV
+(p+n—2) Mu”‘z(Vjuz)u’u’dV-l—?lﬁ— [ LK —wLaK)dy

T 2pn_l(—:__12) Mup_lututhV+L,up+1PﬁPﬂdV=0r

@10) [ wKaudv
M

_ P"l‘Z‘—z fMup‘l(Au)ZdV (p‘l)(lz"i”n_z) yMup‘zututAudV
gl Loy

+f uPHP PV =0
and

(3.11) fMup“Kjiu’u’dV
—l—-‘iZ—I—Z—MZJMu”‘IuiVi(Au)d V+ %n__—ll—)—fMup"utu‘KdV
——275(’;—_11) J Lo K* =P Lo KOdV+[ uPtPPidy=0.
In particular, if p=—n-+2 then
(3.12) fMu"”“Gjiu]u’dV
e (0 LK~ L K)AV+ [ w P PRV =0,

and if p=1 then

1 n—1 4 —_
(3.13) jMKﬁufu dv—= jM(Au)ZdVJrjMuZPﬁPJdV_o
and

(3.14) [ K v+l T (duaV+| wPPrdv=0.
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Proof. We first have

V= uVruhy=0p—Du? 2V ruuu, +uf 'V ju, )V rub)+uf~ul Vo
=(p—Du?*Vu u u, +u? > u,)(Tub)
Ful K rutuP Vi (du)
where we have used (3.6), that is,
VVw=KM'4+Vidu,
and consequently, integrating over M, we have
(3.15) j WO )T AV +(p-1) j TV
+fMu1"1Kj,-uJu’dV

+ j w?=y Vi du)dV=0.
M
Similarly, computing ¥ ;(u?*u*4u) and integrating over M, we have
(3.16)

(p—l)j u”‘zututdudV—}—f wP(du)dV
M M
+ f w? = (Au)dV=0.
M
By using (2.18), (3.15) and (3.16), we get

(3.17) fMup“PﬂPf"dV:fﬂup‘I(Vjul)(Vfui)dV—%fMup‘l(Au)zdV

=—(p— l)f P2 (Vouyu u,d V——JMup‘lKﬁu’uldV
M

+—1)%1—fMup'2u,u‘AudV——n—;LfMup‘luiVi(Au)d V.
On the other hand, from (2.12), we have
. 1 1R n o ¢
(3.18) Au——~2(n_1) (urK*—uK)+ o U uut,
from which

619 F(duy=——-t

3= <u_2uiK*+uiK)+_2(nl—1) (w WV, K*—ul ;K)
—%u'zuiu,u‘—l—nu*(ﬁut)u‘ .
Substituting (3.18) and (3.19) into (3.17) and using

K
Kji:Gji’i’“n‘gﬂ ,
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we have (3.9).
Substituting

w? P uut K*=2(n— D u?uu du—n(n—1DuP >(uu®)+u?uut K
which can be obtained from (3.18) into
f u”“u"Vi(Au)dV:nj uP 2V ju)wutdV
M M
_-—Z(nl—l) fMup"3u,u‘K*dV————2<n1_l) fMup“lutu‘KdV
+Tnl—T) j M(up—zLduK*—uPLduK)dV—%j S uutdV
which follows from (3.19), we have
| T (dwydv

:nf up'2(l7ju1)u’u’dV—f u? Put dudV
M M

- fMu""lututhV-l—-z—(n——l_D—f P LK Lo )V,
and consequently, by using
(3.20) j‘ up‘luiVi(Au)dV:—(;b—l)f u"‘2ututdudV—f u? Y du)*dV
M M M
which is equivalent to (3.16), we obtain

(3.21) JMup'z(Vjul)uJu’de—%&jMup‘zutu‘AudV

| v s weuady
1y 0 LK =P L KOV

Substituting (3.20) and (3.21) into (3.17), we get (3.10). From (3.16) and (3.20),
we have (3.11) immediately.

LEMMA 6. If a compact orientable Riemannian manifold (M, g) admits a
conformal change of metric g*=e*g, then, for any real number p,

(3.22) fM(uP"SG*jiG*ji_upHGjiGﬁ)dV
+2(7L—2)Z7J‘ up—lGjiuJu’dV—FMf uPL KdV
M n n

—(n—2)* urtPPidV=0.
M
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In particular, if p=—n+2 then
(B23) [ @GR GH —uG,GAY
~2(n=2 wiG v+ BT yorep, kay
u Ji n " du
~(n=2)f _uPPdV=0,
and if p=0 then
(3.24) fﬂ(u—m*ﬁc*ﬁ—ueﬂcﬂ)dV
=D L KdV—(n—27[ uPPdV=0.
n M M
Proof. Using (2.20) and (2.23), we have
(3.25) fM(up'3G*ﬁG*“—u”“GﬁGﬁ)dV
=2n—2)[ wG, W udV+(n—2)*f urtiP, PV,
M M
On the other hand, calculating V’(u”G;u*) and using

V]Gji:%z—ViK,

we have

VPG uty=pu? G uiut + n2—7—12 wPuV K+u?GyV i,

and consequently, integrating over M, we have

(326) [ wGntaV=—p urG VLo 2 [ w7 Kav
M

Substituting this into (3.25), we have (3.22) to be proved.

LEMMA 7. If a compact orientable Riemannian manifold (M, g) of dimension
n=2 admils a conformal change of metric g*¥=e* g, then

(327) fM(u—n-lG*jiG*ji_u—n+sGﬁGﬁ)dV
+ﬂ_—2)2‘f uunLd“K*dV-’_(n—z)zf u_n+3PjinidV=0 .
n o ¥

Proof. Adding (3.12) X2(n—2)* and (3.23), we have (3.27).

LEMMA 8. If a compact orientable Riemannian manifold (M, g) of dimension
n=2 admits a conformal change of metric g*=e®g, then, for any real number P,
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(3.28) fM(up'gZ*kjihZ*"f””—u”“ZW,lZ””")dV
+8p[ wriGuwuwav+ A2 ( ypL, Kav
" Ji n o du
—4(n—2)[ urrP,PIAV=0.
M
In particular, if p=—n-+2 then
(3.29) J @z g 2 2 Y
—8(n— -n gy dn=2) ¢ .
8(n 2)f TG d VS j " Lok dV
—4<n—2)j u=" P, PV =0,
M
and if p=0 then
(3.30) [ @ 2 a2 Zy i 2 AV
4(n—2 .
+ =D ([ KaV—an—2)f uPPrav=0.
Proof. Using (2.21) and (2.23), we have
(3.31) [ @2 2R 2,0, 2 AV
—s8f WG wdV—4(n—2) f WP PIAV=0.

Substituting (3.26) into (3.31), we have (3.28).

LEMMA 9. If a compact orientable Riemannian manifold (M, g) of dimension
n=2 admits a conformal change of metric g*=e*’g, then

(3.32) [ iz 2 ZH Y
M
4 An=2) [ w Lo AV +A(n—2)[ P PraV=0.
n M M

Proof. (3.32) follows from (3.12) and (3.29).

LEmMA 10. If a compact orientable Riemannian manifold (M, g) of dimen-
sion n=2 admits a conformal change of metric g*=e®°g, then, for any real
number P,

(3.33) J @ W AR WY

+8{at+(n—2)b}pf uGiwdV
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+-4<Ln—i>{a+(n—2)b}2f WL KdV
M
—4(n—2){a+(n—2)b}*[ u*iPy PidV=0.
M
In particular, if p=—n-+2 then
(3.34) J‘M<u—n_1W*kjth*kjih—u_n+3ijthkjih)dV
—8(n—2){a+(n—z)b}2j u G uudV
M
+ 0D (o200} wtLg,KdV
M
—4(n—2){a+(n—2)b}2f umP, PV =0,
M
and if p=0 then
(3.35) [ T W WV WAV
+ A2 (2002 LKV
M
—4(n—2){a+(n—2)b}*| JUPsPI V=0,
Proof. Using (2.22) and (2.23), we have
(3.36) fM(up_SW* ryin W —y PRI, WY
—8{a+(n—2)0}[ wG,Frrdv
M
—4(n—2){a+(n—2)b}2f uPHIP, PtV =0
M

Substituting (3.26) into (3.36), we have (3.33).

LEMMA 11. If a compact orientable Riemannian manifold (M, g) of dimen-
ston n=2 admits a conformal change of metric g*=e% g, then

(3.37) j (u"""lW*kﬁhW*k”h—u""+3Wkﬁhijih)dV
M
+£(ﬂ_—2){a+(n—2)b}zf w L K*dV
n "
+4(n—2){a+(n—2)b}* j PPV =0,

Proof. (3.37) follows from (3.12) and (3.34).
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LEMMA 12. Suppose that a Riemannian manifold (M, g) of dimension n=2
admits a conformal change of metric g*=e*’g and f and f* are non-negatwe
Sfunctions on M such that

(3.38) wPf={u'+u =1}t f*,

where p is a real number such that p<4, q and r non-negatwe numbers and ¢ a
non-negative function on M. Then

(3.39) (A ) — (i —uf)=0.
Proof. We have
(W A ) — (S F—uf)
= (1w ) (fr—utf)
= (1w (U R wP f Ut Rt f— )
=u " 1—u"(A—u) f*—u Pl —u" H(1—u'"?)f
- (-t
We can easily prove that
A—um)(1-u9z0, (—w"H1—u?20, (1—w31-u)Z0,

and consequently that (3.39) holds.

§4. Propositions.

PROPOSITION 1. If a compact Riemannian manifold (M, g) of dimension
n=2 admits a non-constant function u on M, then

1) 7 )P u)z (e,

equality holding if and only if (M,g) is conformal to a sphere. If moreover
L4 K=0 or K=constant, then the equality holds i1f and only 1f (M, g) is 1someiric
to a sphere.

Proof. (4.1) is equivalent to
1 2 1 it
(V]-u,———n«dugﬁ)(Vfu —WAug’ )go,
and consequently equality in (4.1) holds if and only if
Vju,-———}[dugﬁZO,

that is, by Theorem O, if and only if (M, g) is conformal to a sphere. The
latter part of this proposition follows from Theorem P.
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PROPOSITION 2. If a compact orientable Riemannian manifold (M, g) of
dimension n=2 admits a non-constant function w on M such that

(4.2) K,hw+"—;£7mu=o ,

then (M, g) is conformal to a spheve. If moreover L, K=0 or K=constant, then
(M, g) is isometric to a sphere.

Proof. From (3.5), we have
g ur—K u—V*du=0.
Adding (4.2)X2 and this relation, we have
gir ¥y ut+ Kthui—l—ﬁ;——zV rAu=0.

Thus, by the Remark to Lemma 1, we see that the vector field u® on M defines
an infinitesimal conformal transformation and consequently that

1

Thus, by Theorem O, (M, g) is conformal to a sphere. The latter part of the
proposition follows from Theorem P.

PrROPOSITION 3. If a compact orientable Riemannian manifold (M, g) of
dimension n=2 admits a non-homothetic conformal change of metric g¥=e* g
such that

thu’+~——n;1 Vrdu=0,

then (M, g) is conformal to a sphere. If moreover L., K=0 or K=constant, then
(M, g) is isometric to a sphevre.

Proof. This is an immediate consequence of Proposition 2. But, an another
proof is as follows. From (3.14) and (4.2), we have P;;=0, that is,

1

and consequently, by Theorem O, (M, g) is conformal to a sphere. The latter
part of the proposition follows from Theorem P.

PrROPOSITION 4. If a compact orientable Riemannian manifold (M, g) of
dimension n=2 admits a non-constant function w on M such that

(43) { MKjiu’u’dVg—n—;—l { (duyav,

then (M, g) is conformal to a sphere. If moreover L, K=0 or K=constant, then
(M, g) is isomelric to a sphere.
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Proof. From (3.8) and (4.3), we have
1

and consequently, by Theorem O, (M, g) is conformal to a sphere. The latter
part of the proposition follows from Theorem P.

PROPOSITION 5. If a compact orientable Riemannian wmanifold (M, g) of
dimension n=2 admits a non-homothetic conformal change of metric g*=e’g
such that

. n—1
j Jawrdvzs { (duydv,

then (M, g) is conformal to a sphere. If moreover L., K=0 or K=constant, then
(M, g) is isometric to a sphere.

Proof. This is an immediate consequence of Proposition above. But, we
can give an another proof. From (3.13) and the above relation, we find P;;=0,
that is,

1

and consequently, by Theorem O, (M, g) is conformal to a sphere. The latter
part of the proposition follows from Theorem P.

(For Propositions 2~5, see Yano and Hiramatu [12].)

PROPOSITION 6. If a compact orientable Riemannian manifold (M, g) of
dimension n=2 admits a non-homothetic conformal change of metric g¥=e*’g
such that

-n 1 1 -n -n
(4.4) fMu G dV+ 5 fM(u Lo K¥—u "L, K)dV=0,
then (M, g) 1s conformal to a sphere. If moreover L4, K=0 or K=constant, then
(M, g) 1s isometric to a sphere.
Proof. By using (3.12) and (4.4), we have P;;=0, that is,
Vjut—%dugﬁzo,

and consequently, by Theorem O, (M, g) is conformal to a sphere. We have the
latter part of the proposition by Theorem P.

The latter part of the proposition above is a generalization of Theorems A
and H.

PROPOSITION 7. If a compact orientable Riemannian manifold (M, g) of
dimension n>2 admils a non-homothetic conformal change of metric g*=e®g
such that
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__9\2
(45) [ 6,64 —uG,6av+= 20 1, kav<o,
M n M

then (M, g) is conformal to a sphere. If morveover L, K=0 or K=constant, then
(M, g) is isometric fo a sphere.

Proof. By using (3.24) and (4.5), we have P;;=0, that is,
Vjui—-%dugji:o,

and consequently, by Theorem O, (M, g) is conformal to a sphere. Using
Theoroem P, we can prove the latter part of the proposition.
The first part of Proposition 7 is a generalization of Theorem B because of

j S AwKdV=— f LaKdV,

and the latter part a generalization of Theorem C.

PROPOSITION 8. If a compact orientable Riemannian manifold (M, g) of
dimension n>2 admits a non-homothetic conformal change of metric g*=e®g
such that

o\
48 | @G G ey BB e, Kray 20,
)3 n )4

then (M, g) is conformal to a sphere. If moreover Ly, K=0 or K—=constant, then
(M, g) is isometric to a sphere.

Proof. This follows from (3.27) and Theorems O and P.

PROPOSITION 9. If a compact orientable Riemannian manifold (M, g) of
dimension n>2 admits a non-homothetic conformal change of metric g¥=e*°g
such that

47) (U Z¥ e 2 —u Zy s 20y + KD (L gdy <,
J J
M n ¥

then (M, g) is conformal to a sphere. If moreover L, ,K=0 or K=constant, then
(M, g) is isometric to a sphere.

Proof. This follows from (3.30) and Theorems O and P.

The first part of this proposition is a generalization of Theorem D and the
latter part is a generalization of Theorem E.

PRrROPOSITION 10. If a compact orientable Riemannian manifold (M, g) of
dimension n>2 admits a non-homothetic conformal change of metric g*r=efg
such that

48 [ @rizr g zeiityriz,, 2 gy AZD (g gegyz0,
M M
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then (M, g) is conformal to a sphere. If moreover L, K=0 or K=constant, then
(M, g) is isometric to a sphere.

Proof. This follows from (3.32) and Theorems O and P.

ProOPOSITION 11. If a compact orientable Riemannian manifold (M, g) of
dimension n>2 admits a non-homothetic conformal change of metric g*=e’g
such that

49) J W s Whs o W av
+-4M{d+(n—2)b}2f Lo KdV=0,
n M
a4-(n—2)b+0,

then (M, g) 1s conformal to a sphere. If moreover Lg, K=0 or K=constant, then
(M, g) 1s isometric to a sphere.

Proof. This follows from (3.35) and Theorems O and P.
The first part of Proposition 11 generalizes Theorem F and the latter part
generalizes Theorem G.

ProposITION 12. If @ compact orientable Riemannian manifold (M, g) of
dimension n>2 admits a non-homothetic conformal change of metric g¥=e*g
such that

(4.10) f (W W b Wy W WEAY
M
+ 302 (o (n2)0)f wrLa KAV 20,
n M

a-+(n—2)b+0,

then (M, g) 1s conformal to a sphere. If moreover Lg,K=0 or K=constant, then
(M, g) is isometric to a sphere.

Proof. This follows from (3.37) and Theorems O and P.

PROPOSITION 13. If a compact orientable Riemannian manifold (M, g) of
dimension n>2 admits a non-homothetic conformal change of metric g*=e®*'g
such that

(4.11) UPG ;G = {ut+(u"— 1)} G* ,G*°
and
(412) j (Lo K= Lo K)dV 20,

where p is a real number such that p=<4, q and r non-negative numbers and ¢ a
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non-negative function on M, then (M, g) is conformal to a sphere. If moreover
L, K=0 or K=constant, then (M, g) is isometric to a sphere.

Proof. Subtracting (3.24) from (3.27), we obtain
(4.13) ~fM{(u‘"'lG"‘jiG*ﬁ—u"”faniG“')——(u'3G*ﬁG”‘ﬂ—uG,-iGJ"')}dV

42 (L g K¥ LK)V
n M

+(n—2>2f (w4 u) P, PitdV=0.
M
By Lemma 12, from (4.11), (4.12) and (4.13), we have P;;=0, that is,

and consequently, by Theorem O, (M, g) is conformal to a sphere. By using
Theorem P, we can prove the latter part of this proposition.
The latter part of Proposition 13 is a generalization of Theorem L.

COROLLARY 1. If a compact orientable Riemannian wmanifold (M, g) of
dimension n>2 admits a non-homothetic conformal change of metrvic g*=e* g
such that

(4.14) G;GI'=G*;,G**
and
J " LaK* Lo K)dV 20,
then (M, g) is conformal to a sphere. If moreover L, K=0 or K=constant, then
(M, g) is isometric to a sphere.

Proof. Putting p=g=r=0 in (4.11), we have (4.14), and consequently this
corollary follows immediately from Proposition 13.
The latter part of this corollary is a generalization of Theorem I.

PROPOSITION 14. If a compact orientable Riemannian manifold (M, g) of
dimension n>2 admits a non-homothetic conformal change of metric g*=e®rg
such that

(4.15) UP Zjin Z = {u (U — D)o} Z% i Z¥4
and

j @ Lo ¥~ Lo )V 20,

where p, q, v and ¢ are the same as in Proposition 13, then (M, g) is conformal
to a sphere. If moreover L, ,K=0 or K=constant, then (M, g) 1s isometric to a
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sphere,

Proof. Subtracting (3.30) from (3.32), we have
(416) J‘M{(u—n—lz*kjihz*kjih_u—n+3ijih2kjih)
_(u_SZ*kjihZ*kjih_‘qujithjih)}dV
1+ D) [ (L K5 Ly KAV
n M
+4(n—2)f @R P PV =0.
Using Lemma 12, (4.12), (4.15) and (4.16), we have P;=0, that is,
Vjui—%*dugjizo,

and consequently, by Theorem O, (M, g) is conformal to a sphere. By using
Theorem P, we can prove the latter part of the proposition.
The latter part of Proposition 14 is a generalization of Theorem M.

COROLLARY 2. If a compact orientable Riemannian wmanifold (M, g) of
dimension n>2 admits a non-homothetic conformal change of metric g*¥=e*g
such that

4.17) T A= 7, 7RI

and
J o Lokt~ Lo KAV 20,
M

then (M, g) is conformal to a sphere. If morveover L., K=0 or K=constant, then
(M, g) 1s 1sometric to a sphere,

Proof. Putting p=¢g=r=0in (4.15), we get (4.17), and consequently Corollary
2 follows immediately from Proposition 14.
The latter part of Corollary 2 generalizes Theorem J.

PROPOSITION 15. If a compact orientable Riemannian manifold (M, g) of
dimension n>2 admits a non-homothetic conformal change of metric g*=e®g
such that

(4.18) WPW i W= {00 (U™ — D)} W s WHR
a+(n—2)b=0

and

j @ La K= Ly YAV 20,
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where p, q, v and ¢ are the same as in Proposition 13, then (M, g) is conformal
{o a sphere. If moreover L, K=0 or K=constant, then (M, g) 1s isometric to a
Sphere.

Proof. Subtracting (3.35) from (3.37), we have
(419) f {(u_n_1W*kjth*kjih_u_n+3ijthkjih)
M
—(uvaw*kij*kjm—uijmWkjm)}dV

+4(Ln_zl{a+<n—z>b} Zwa-”LduK*—LauK)dV

+4(n—2){a+n—2)b}*f @) PPV =0,
By using Lemma 12, from (4.12), (4.18) and (4.19), we have P;;=0, that is,
1
Vjut_—n—Aug_”:O,

and consequently, by Theorem O, (M, g) is conformal to a sphere. By using
Theorem P, we can prove the latter part of Proposition 15.
The latter part of Proposition 15 is a generalization of Theorem N.

COROLLARY 3. If a compact orientable Riemannian manifold (M, g) of
dimension n>2 admits a non-homothetic conformal change of metric g*=e*g
such that

(4.20) W*kﬁhW*k‘ﬂh: ijthkjih y a+(n—2)b§&0
and

J, 0 Lk~ Lo, )V 0,

then (M, g) is conformal to a sphere. If moreover Ly, K=0 or K=constant, then
(M, g) 1s isometric to a sphere.

Proof. Putting p=¢=r=0 in (4.18), we get (4.20), and consequently Corollary
3 follows immediately from Proposition 15.
The latter part of Corollary 3 is a generalization of Theorem K.
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