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We shall assume, throughout this paper, that Riemannian manifolds are
connected and of dimension $>2$ , their metrics are positive-definite, and mani-
folds and diffeomorphisms are of differentiability class $C^{\infty}$ .

Let $M$ and $M^{*}$ be Riemannian manifolds with metric tensor $g$ and $g^{*}$

respectively, and $f$ a diffeomorphism of $M$ onto $M^{*}$ . If the induced metric
$f^{*}g^{*}$ of $g^{*}$ by $f$ is related to $g$ by

$f^{*}g^{*}=\rho^{-2}g$ ,

then $f$ is called a conformal diffeomorphism of $M$ onto $M^{*}$ , where $\rho$ is a posi-
tively valued scalar field on $M$. If the scalar field $\rho$ satisfies the equation

$\nabla\nabla\rho=\phi g$ ,

$\nabla$ indicating covariant differentiation and $\phi$ being a scalar field, then the
diffeomorphism $f$ is called a concircular one, which carries Riemannian circles
of $M$ to those of $M^{*}$ . If $\rho$ is a constant or equal to 1, then $f$ is said to be
homothetic or isometric, respectively.

THEOREM 1. Let $M$ and $M^{*}$ be complete Riemannian manifolds with par-
allel Ricci tensor. If there is a non-isometric conformal diffeomorphism $f$ of
$M$ onto $M^{*}$ , then $f$ is homothetic or both the manifolds $M$ and $M^{*}$ are isometric
to the sphere.

THEOREM 2. Let $M$ be a complete Riemannian manifold with parallel Ricci
tensor. If $M$ admits a non-isometric conformal transformation $f$, then occurs
one of the following two cases:

(1) $f$ is homothetic and $M$ is $a$ Euclidean space, $or$

(2) $M$ is isometric to the sphere.
The first and principal part of Theorem 1 was proved by N. Tanaka [6]

by a group-theoretic method under some additional conditions on Ricci ten-
sors of $M$ and $M^{*}$ . Then T. Nagano [5] dealt with the cases excepted by
Tanaka, showed that $f$ is properly conformal only in the case where both $M$

and $M^{*}$ are Einstein manifolds of positive curvature, and completed Theorem
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1 as stated above by use of a famous theorem due to K. Yano and T.
Nagano [11]:

THEOREM A. If a complete Einstein manifold $M$ admits a global one-para-
meter group of non-homothetic conformal transformations, then $M$ is isometric
to the sphere.

A generalization of Theorem A to a conformal diffeomorphism is stated
as follows:

THEOREM B. Let $M$ and $M^{*}$ be complete Einstein manifolds. If there is
a non-homothetic conformal diffeomorphism of $M$ onto $M^{*}$ , then both $M$ and
$M^{*}$ are isometric to the sphere.

While T. Nagano stated this fact on the way of the reduction of Theorem
1 to Theorem $A$ , an immediate proof was given by S. Ishihara and Y. Tashiro
[2] and Y. Tashiro [7] since a conformal diffeomorphism between Einstein
manifolds is concircular, cf. $[8, 9]$ .

As a generalization of Theorem 1 or $A$ , the present authors [10] have
recently proved the following.

THEOREM C. If a complete and reducible Riemannian manifold admits a
global one-parameter group of non-isometric conformal transformations, then
the group is homothetic and the manifold is $a$ Euclidean space.

It has remained open, however, to give an alternative proof of Theorem
1 by tensor calculus. The purpose of the present paper is to prove Theorem
1 by an elementary method similar to that employed in [10].

\S 1. Let $f$ be a conformal diffeomorphism of $M$ into $M^{*}$ , and denote the
metric tensors $g$ and $f^{*}g^{*}$ by components $g_{\mu\lambda}$ and $g_{\mu\lambda}^{*}$ . Then they are related
by the equation

(1.1) $g_{\mu\lambda}^{*}=\rho^{-2}g_{\mu\lambda}$ .

We denote the Christoffel symbol, the curvature tensor, the Ricci tensor and

the scalar curvature of $g$ by $\{_{\mu^{\kappa}\lambda}\},$
$K_{\nu\mu\lambda^{\kappa}},$ $K_{\mu\lambda}$ and $\kappa$ respectively, where the

scalar curvature $\kappa$ is defined by

(1.2) $\kappa=\frac{1}{n(n-1)}K_{\mu\lambda}g^{\mu\lambda}$ ,

and indicate the corresponding quantities of $g^{*}$ by asterisking. Then we
obtain the transformation formulas

(1.3) $\{_{\mu^{\kappa}\lambda}\}^{*}=\{_{\mu^{\kappa}\lambda}\}-\frac{1}{\rho}(\delta_{\mu}^{\kappa}\rho_{\lambda}+\delta_{\lambda}^{\kappa}\rho_{\mu}-g_{\mu\lambda}\rho^{\kappa})$ ,
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(1.4) $K_{\nu\mu\lambda^{\kappa}}^{*}=K_{\nu\mu\lambda^{\kappa}}+\frac{1}{\rho}(\delta_{\nu}^{\kappa}\nabla_{\mu}\rho_{\lambda}-\delta_{\mu}^{\kappa}\nabla_{\nu}\rho_{\lambda}+g_{\mu\lambda}\nabla_{\nu}\rho^{\kappa}-g_{\nu\lambda}\nabla_{\mu}\rho^{\kappa})$

$-\frac{1}{\rho^{2}}\rho_{\omega}\rho^{\omega}(\delta_{\nu}^{\kappa}g_{\mu\lambda}-\delta_{\mu}^{\kappa}g_{\nu\lambda})$ ,

\langle 1.5) $K_{\mu\lambda}^{*}=K_{\mu\lambda}+\frac{1}{\rho}(n-2)\nabla_{\mu}\rho_{\lambda}+\frac{1}{\rho}g_{\mu\lambda}\nabla_{\kappa}\rho^{\kappa}-\frac{1}{\rho^{2}}(n-1)\rho_{\kappa}\rho^{\kappa}g_{\mu\lambda}$ ,

\langle 1.6) $\kappa^{*}=\rho^{2}\kappa+\frac{2}{n}\rho\nabla_{\kappa}\rho^{\kappa}-\rho_{\kappa}\rho^{\kappa}$ ,

where we have put $\rho_{\lambda}=\nabla_{\lambda}\rho$ .
We have from (1.6)

$\nabla_{\kappa}\rho^{\kappa}=\frac{n}{2\rho}(\kappa^{*}-\rho^{2}\kappa+\rho_{\kappa}\rho^{\kappa})$ .

Substituting this into (1.5) and putting

\langle 1.7) $L_{\mu\lambda}=K_{\mu\lambda}-\frac{n}{2}\kappa g_{\mu\lambda}$ and $L_{\mu\lambda}^{*}=K_{\mu\lambda}^{*}\frac{n}{2}\kappa^{*}g_{\mu\lambda}^{*}$ ,

we obtain the equation

$((1.8)$ $L_{\mu\lambda}^{*}=L_{\mu\lambda}+\frac{1}{\rho}(n-2)\nabla_{\mu}\rho_{\lambda}-\frac{1}{2\rho^{2}}(n-2)g_{\mu\lambda}\rho_{\kappa}\rho^{\kappa}$ .

Differentiating covariantly this equation with respect to $\{\mu^{\kappa}\lambda\}^{*}$ and substitut-
ing (1.3), we obtain the equation

$\nabla_{\nu}^{*}L_{\mu\lambda}^{*}=\nabla_{\nu}L_{\mu\lambda}+\frac{1}{2\rho^{2}}(n-2)[\nabla_{\nu}\nabla_{\mu}\nabla_{\lambda}\rho^{2}-g_{\mu\lambda}\nabla_{\nu}(\rho_{\kappa}\rho^{\kappa})$

\langle 1.9) $-g_{\nu\lambda}\nabla_{\mu}(\rho_{\kappa}\rho^{\kappa})-g_{\nu\mu}\nabla_{\lambda}(\rho_{\kappa}\rho^{\kappa})$] $+\frac{1}{2\rho^{2}}[2L_{\mu\lambda}\nabla_{\nu}\rho^{2}$

$+L_{\nu\mu}\nabla_{\lambda}\rho^{2}+L_{\nu\lambda}\nabla_{\mu}\rho^{2}-(g_{\nu\lambda}L_{\mu\kappa}+g_{\nu\mu}L_{\lambda\kappa})\nabla^{\kappa}\rho^{2}]$ .
Now we assume that the Ricci tensors $K_{\mu\lambda}$ and $K_{\mu\lambda}^{*}$ are parallel, $\nabla_{\nu}K_{\mu\lambda}$

$=\nabla_{\nu}^{*}K_{\mu\lambda}^{*}=0$ . Then the scalar curvatures $\kappa$ and $\kappa^{*}$ are constants and the
tensors $L_{\mu\lambda}$ and $L_{\mu\lambda}^{*}$ are also parallel. Hence the scalar field $\rho$ satisfies the
differential equation

$\nabla_{\nu}\nabla_{\mu}\nabla_{\lambda}\rho^{2}=g_{\mu\lambda}\nabla_{\nu}(\rho_{\kappa}\rho^{\kappa})+g_{\nu\lambda}\nabla_{\mu}(\rho_{\kappa}\rho^{\kappa})+g_{\nu\mu}\nabla_{\lambda}(\rho_{r}\rho^{\kappa})$

\langle 1.10) $-\frac{1}{n-2}[2L_{\mu\lambda}\nabla_{\nu}\rho^{2}+L_{\nu\lambda}\nabla_{\mu}\rho^{2}+L_{\nu\mu}\nabla_{\lambda}\rho^{2}$

$-(g_{\nu\lambda}L_{\mu\kappa}+g_{\nu\mu}L_{\lambda\kappa})\nabla^{\kappa}\rho^{2}]$ .
Applying Ricci’s formula to (1.10) itself and its covariant derivative, we have
the equations

(1.11) $K_{\nu\mu\lambda^{\kappa}}\rho_{\kappa}=\frac{1}{n-2}[L_{\mu\lambda}\rho_{\nu}-L_{\nu\lambda}\rho_{\mu}+(g_{\mu\lambda}L_{\nu\kappa}-g_{\nu\lambda}L_{\mu\kappa})\rho^{\kappa}]$ ,
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$K_{\omega\nu\mu^{\kappa}}\nabla_{\lambda}\nabla_{\kappa}\rho^{2}+K_{\omega\nu\lambda^{\kappa}}\nabla_{\mu}\nabla_{\kappa}\rho^{2}=g_{\omega\lambda}\nabla_{\nu}\nabla_{\mu}(\rho_{\kappa}\rho^{\kappa})-g_{\nu\lambda}\nabla_{\omega}\nabla_{\mu}(\rho_{\kappa}\rho^{\kappa})$

$+g_{\omega\mu}\nabla_{\nu}\nabla_{\lambda}(\rho_{\kappa}\rho^{\kappa})-g_{\nu\mu}\nabla_{\omega}\nabla_{\lambda}(\rho_{\kappa}\rho^{\kappa})$

(1.12) $-\frac{1}{n-2}[L_{\omega\lambda}\nabla_{\nu}\nabla_{\mu}\rho^{2}-L_{\nu\lambda}\nabla_{\omega}\nabla_{\mu}\rho^{2}+L_{\omega\mu}\nabla_{\nu}\nabla_{\lambda}\rho^{2}$

$-L_{\nu\mu}\nabla_{\omega}\nabla_{\lambda}\rho^{2}+(g_{\nu\lambda}L_{\mu\kappa}+g_{\nu\mu}L_{\lambda\kappa})\nabla_{\omega}\nabla^{\kappa}\rho^{2}$

$-(g_{\omega\lambda}L_{\mu\kappa}+g_{\omega\mu}L_{\lambda\iota})\nabla_{\nu}\nabla^{\kappa}\rho^{2}]$ .

We first prove the following.
LEMMA 1. Let $M$ and $M^{*}$ be Riemannian manifolds with parallel $Ricci^{-}$

tensor and $f$ be a non-homothetic conformal diffeomorphism of $M$ to $M^{*}$ . If,
in addition, $M$ is simply connected, complete and reducible, then the manifold $\cdot$

$M$ is the Pythagorean product $M_{1}\times M_{2}$ of two Einstein manifolds $M_{1}$ and $M_{2\succ}$

the scalar curvatures $k_{1}$ and $k_{2}$ of which have one of the following properties:
1) $k_{1}+k_{2}=0$ and $k_{1}\neq 0$ , and consequently $k_{2}\neq 0$ ,
2) one of the manifolds, say $M_{2}$ , is one-dimensional and $k_{1}\neq 0$ ,
3) $k_{1}=k_{2}=0$ , and $M$ itself is an Einstein manifold of zero curvature.
PROOF. By virtue of de Rham’s well known decomposition theorem, the $\cdot$

manifold $M$ is a Pythagorean product

$M=M_{1}\times M_{2}\times\cdots\times M_{r\prime}$

where $M_{1},$ $M_{2},$ $\cdots$ $M_{r}$ are irreducible complete Riemannian manifolds and
called parts of M. Suppose that the dimension of each part $M_{s}$ is $n_{\epsilon}(s=1_{t}$

2, $r$). Let $(x^{i_{1}}, x^{i_{2}}, x^{t_{r}})$ be a local coordinate system in a neighborhood
of a point such that $(x^{i_{S}})$ is a local coordinate system of each part $M_{s}$ , and

$g_{j_{S}i_{\partial}}$ components of the metric tensor of $M_{s}$ . In such a separate coordinate
system, the matrix $(g_{\mu\lambda})$ of components of the metric tensor $g$ is expressed
as the direct sum of the matrices $(g_{j_{\epsilon}i_{l}})$ of components of the metrics of
the parts, and the Christoffel symbol, the curvature tensor and the Ricci
tensor have pure components only.

Since the Ricci tensor is parallel, we have

(1.13) $\nabla_{k_{i}}K_{j_{\epsilon}i_{\$}}=0$ ($s=1,2,$ $\cdots$ , r)

on each part $M_{s}$ . The irreducibility of each part implies that each part $M_{\iota}$

is an Einstein manifold, that is,

(1.14) $K_{j_{l}i_{i}}=(n_{s}-1)k_{s}g_{j_{\epsilon}t_{S}}$ ($s=1,2,$ $\cdots$ , r) ,

where $k_{s}$ is the constant scalar curvature of $M_{s}$ . By our definition, the scalar
curvatures $\kappa$ and $k_{s}$ satisfy the relation

(1.15) $n_{1}(n_{1}-1)k_{1}+$ $+n_{r}(n_{r}-1)k_{r}=n(n-1)\kappa$ .
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The components of $L_{\mu\lambda}$ on $M_{s}$ are equal to

$\partial\langle 1.16)$ $L_{Js^{i}s}=[(n_{s}-1)k_{s}\frac{n}{2}\kappa]g_{j_{s}i_{S}}$ .

Putting $\lambda=i_{s},$ $\mu=j_{s}$ and $\nu=h_{t}(s\neq t)$ in (1.11), we have

$\iota(1.17)$ $L_{j_{s}i_{s}}\rho_{h_{t}}+g_{js^{i_{S}}}L_{h_{i}k_{t}}\rho^{k_{t}}=0$

and, substituting (1.16),

$’\langle 1.18)$ $[(n_{s}-1)k_{s}+(n_{t}-1)k_{t}-n\kappa]g_{js^{i}s}\rho_{h_{t}}=0$ .
Since $\rho$ is supposed not to be a constant, there exists a point $P$ where the
gradient vector $\rho_{\lambda}$ does not vanish and so does not the restriction of $\rho_{\lambda}$ on
some part, say $\rho_{h_{1}}$ on $M_{1}(P)$ , through $P$. Therefore we have the relations

(1.19) $(n_{1}-1)k_{1}+(n_{S}-1)k_{s}=n\kappa$ $(s=2, r)$ ,

from which it follows that

$k(1.20)$ $(n_{2}-1)k_{2}=$ $=(n_{r}-1)k_{r}$ .
Hence the product $M_{2}\times\cdots\times M_{r}$ is an Einstein manifold.

Putting together the product $M_{2}\times\cdots\times M_{r}$ into a manifold, we may
assume from the biginning that $M$ is the Pythagorean product $M_{1}\times M_{2}$ of two
Einstein manifolds $M_{1}$ and $M_{2}$ . Then, similarly to (1.15) and (1.19), the scalar
curvatures $k_{1}$ and $k_{2}$ satisfy the relations

$\nu(1.21)$ $ n_{1}(n_{1}-1)k_{1}+n_{2}(n_{2}-1)k_{2}=n(n-1)\kappa$

and
$\ovalbox{\tt\small REJECT}(1.22)$ $(n_{1}-1)k_{1}+(n_{2}-1)k_{2}=n\kappa$ .
It follows from these equations that

(1.23) $(n_{1}-1)(n_{2}-1)(k_{1}+k_{2})=0$ .
Therefore, if neither $M_{1}$ nor $M_{2}$ are one-dimensional, we have

(1.24) $k_{1}+k_{2}=0$ .
If $k_{1}=0$ and consequently $k_{2}=0$ , or if $k_{1}=0$ and $M_{z}$ is one-dimensional,

then the manifold $M$ itself is an Einstein one of zero scalar curvature. Q.E.D.

\S 2. We shall derive the differential equations which the scalar field $\rho$

satisfies in the cases 1) and 2) of Lemma 1. For brevity, let $(x^{i}, x^{p})$ be a
..separate local coordinate system of $M=M_{1}\times M_{2}(i,$ $j,$ $k=1,$ $\cdots$

$n_{1}$ ; $p,$ $q=n_{1}+1$ ,
$\rightarrow\cdot\cdot$ $n$) and write $k$ for the non-zero constant scalar curvature $k_{1}$ of $M_{1}$ .

Eliminating $k_{2}$ from (1.21) and (1.22), we have the relation
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(2.1) $n\kappa=(2n_{1}-n)k$ .
The components $L_{ji}$ of $L_{\mu\lambda}$ belonging to $M_{1}$ given by (1.16) are then equal to

(2.2) $L_{ji}=\frac{n-2}{2}kg_{ji}$ .
Since

$(n_{2}-1)k_{2}=n\kappa-(n_{1}-1)k$

$=[(2n_{1}-n)-(n_{1}-1)]k$

$=(n_{1}-n+1)k$

by (1.22) and (2.1), the components $L_{qp}$ belonging to $M_{2}$ are equal to

(2.3) $L_{qp}=-\frac{n-2}{2}kg_{qp}$

including the case $n_{2}=1$ .
Putting the indices $\lambda=i,$ $\mu=i,$ $\nu=k$ and $\omega=p$ in the equation (1.12), we $\cdot$

have

(2.4) $\nabla_{p}\nabla_{i}(\rho_{\kappa}\rho^{\kappa})=0$ ,

and, putting $\lambda=i,$ $\mu=p,$ $\nu=j$ and $\omega=q$ ,

(2.5) $g_{ji}\nabla_{q}\nabla_{p}(\rho_{\kappa}\rho^{\kappa}-k\rho^{2})=g_{qp}\nabla_{j}\nabla_{i}(\rho_{\kappa}\rho^{\kappa}+k\rho^{2})$ .
From the equation (2.4), we may put

(2.6) $\rho_{\kappa}\rho^{\kappa}=\phi_{1}+\phi_{2}$ ,

where the functions $\phi_{1}$ and $\phi_{2}$ respectively depend on $(x^{i})$ and $(x^{p})$ only-
From the equation (2.5), we may put

$\nabla_{j}\nabla_{i}(\rho_{\kappa}\rho^{\kappa}+k\rho^{2})=\psi g_{ji}$ ,
(2.7)

$\nabla_{q}\nabla_{p}(\rho_{\kappa}\rho^{\kappa}-k\rho^{2})=\psi g_{qp}$ ,

where $\psi$ is a function determined as follows. Differentiating covariantly the-
first equation of (2.7) with respect to $x^{p}$ and taking account of (2.1), we have

$k\nabla_{p}\nabla_{j}\nabla_{i}\rho^{2}=(\nabla_{p}\psi)g_{ji}$ .
Comparing this equation with (1.10) for $\lambda=i,$ $\mu=i$ and $\nu=p$ , we obtain

$\nabla_{p}\psi=k\nabla_{p}(\phi_{2}-k\rho^{2})$ ,

and similarly from (1.10) and the second of (2.7)

$\nabla_{i}\psi=-k\nabla_{i}(\phi_{1}+k\rho^{2})$ .
Hence $\psi$ is given in the form

$\psi=-k(\phi_{1}-\phi_{2}+k\rho^{2}+b)$ ,
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$b$ being a constant.
Therefore the equations (2.7) turn to

$\nabla_{j}\nabla_{i}(\phi_{1}+k\rho^{2})=-k(\phi_{1}-\phi_{2}+k\rho^{2}+b)g_{ji}$ ,
(2.8)

$\nabla_{q}\nabla_{p}(\phi_{2}-k\rho^{2})=-k(\phi_{1}-\phi_{2}+k\rho^{2}+b)g_{qp}$ .
These equations show that the function $\phi_{1}-\phi_{2}+k\rho^{2}$ is a special concircular
scalar field on each part. Subtracting the equation (1.10) referred to $M_{1}$ and
$M_{2}$ from the covariant derivatives of the equations (2.8), we see that the
functions $\phi_{1}$ and $\phi_{2}$ satisfy the equations

$\nabla_{k}\nabla_{j}\nabla_{i}\phi_{1}=-k(2g_{ji}\nabla_{k}\phi_{1}+g_{kj}\nabla_{i}\phi_{1}+g_{ki}\nabla_{j}\phi_{1})$ ,
(2.9)

$\nabla_{r}\nabla_{q}\nabla_{p}\phi_{2}=k(2g_{qp}\nabla_{r}\phi_{2}+g_{rq}\nabla_{p}\phi_{2}+g_{\tau p}\nabla_{q}\phi_{2})$ .

\S 3. We shall prove the following simple lemmas, the proof of which we
have not seen.

LEMMA 2. Let $g$ and $g^{*}$ be complete Riemannian metrics on a manifold
$M$, and $C$ a differentiable curve defined on the interval $[0,1$) in M. If the length

of the curve $C$ is bounded with respect to the metric $g$, then so is it with respect
to the metric $g^{*}$ .

PROOF. Denote by $|X|$ and $|X|^{*}$ the lengths of a vector $X$ with respect

to $g$ and $g^{*}$ , respectively. Since the metric $g$ is complete and the curve $C$ is
bounded with respect to $g$, the curve $C$ lies in a compact subset of $M$. If
we make $X$ vary over unit vectors at points in the subset, the length $|X|^{*}$

is bounded. Hence, for any vector $X$ at any point in the subset, we have
the inequality

$|X|^{*}\leqq K|X|$ ,
$K$ being a constant.

On the other hand, the curve $C$ tends to a point $C(1)$ as $t$ tends to 1.
Adding the point $C(1)$ to $C$ , we get the curve $\overline{C}$ which is continuous on the
closed interval $[0,1]$ and differentiable on $[0,1$). If the tangent vector field
of $C$ is denoted by $\dot{C}(t)$ , then the inequality

$|\dot{C}(t)|^{*}\leqq K|\dot{C}(t)|$

is valid in $[0,1$). The integral of the right hand side from $0$ to 1 is con-
vergent, and so is the integral of the left hand side. Hence the length of $\overline{C}$

is finite with respect to $g^{*}$ , and the length of the curve $C$ is bounded with
respect to $g^{*}$ .

LEMMA 3. Let $g$ be a complete metric on a manifold $M$ and $f$ be a diffeo-
morphism of M. Then the induced metric $f^{*}g$ is also complete.

PROOF. Let $C$ be a geodesic with respect to the Riemannian connection
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of the induced metric $f^{*}g$. Then the curve $f(C)$ is a geodesic with respect
to the Riemannian connection of the metric $g$, and has the same arc length
as $C$. Since $g$ is complete, $f(C)$ is extendable for any large value of the arc
length and so is $C$ . Hence the induced metric $f^{*}g$ is complete. Q. E. D.

\S 4. We are now going to give a
PROOF OF THEOREM 1. If, in addition to the assumptions of the theorem,

both $M$ and $M^{*}$ are irreducible, then they are Einstein manifolds. If there
is a non-homothetic conformal diffeomorphism of $M$ onto $M^{*}$ , then $M$ and
$M^{*}$ are isometric to the sphere by virtue of Theorem B. Hence it suffices
for us to show that a conformal diffeomorphism $f$ is homothetic if $M$ or $M^{*}$

is reducible.
We may assume that the manifolds $M$ and $M^{*}$ are simply connected, by

taking the universal covering manifolds if necessary, and $M$ is reducible.
If $f$ is supposed not to be homothetic, then it follows from Lemma 1 that $M$

is the Pythagorean product $M_{1}\times M_{2}$ of Einstein manifolds $M_{1}$ and $M_{2}$ and
occurs one of the following cases:

(I) $k_{1}=k=-c^{2}$ and $k_{2}=-k=c^{2}$ ,

(II) $k_{1}=k=-c^{2}$ and $n_{2}=1$ ,
(III) $n_{1}=1$ and $k_{2}=-k=c^{2}$ ,
(IV) $M$ itself is an Einstein manifold of zero curvature,

where $c$ is a positive constant.
CASE (I). We first suppose that the restriction of the gradient vector

field $\rho_{\lambda}$ on $M_{1}(P)$ through a point $P$ does not identically vanish. Then there
is a geodesic curve $C$ in $M_{1}(P)$ , along which $\rho$ is not constant. Denote by $s$

the arc length of the curve $C$ . Since $M_{1}(P)$ is complete, $C$ is infinitely ex-
tendable.

The first equations of (2.8) and (2.9) reduce along $C$ to the ordinary dif-
ferential equations

$d^{2}$

(4.1) $-d\overline{s}^{2}-(\phi_{1}-c^{2}\rho^{2})=c^{2}(\phi_{1}-c^{2}\rho^{2}+A)$

(4.2) $\frac{d^{s}\phi_{1}}{ds^{3}}=4c^{2}\frac{d\phi_{1}}{ds}$ ,

where we have put $-\phi_{2}(P)+b=A$ . The general solution of (4.2) is written
in the form

(4.3) $\phi_{1}=A_{1}e^{2c\epsilon}+B_{1}e^{-2cs}+C_{1}$

and consequently the general solution of (4.1) is in the form

\langle 4.4) $\rho^{2}=\frac{1}{c^{2}}A_{1}e^{2cs}+\frac{1}{c^{2}}B_{1}e^{-2cs}+A_{2}e^{cs}+B_{2}e^{-cs}+C_{2}$ ,
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where the coefficients $A_{1},$ $B_{1}$ and so on are integral constants.
By our assumption, at least one of $A_{1},$ $B_{1},$ $A_{2}$ and $B_{2}$ is different from

zero. If, for example, $A_{1}\# 0$ , then $A_{1}$ should be positive because $\rho$ is posi-
tively valued. Put $A_{1}=a^{2}$ and take a value $s_{0}$ so large that the inequality

$\rho>\frac{a}{2c}e^{cs}$

is valid for $s>s_{0}$ . Let $c*$ be the image of $C$ under the conformal diffeomor-
phism, and $S^{*}$ the arc length of $c*$ . Then $s^{*}$ is related to $s$ by the differ-
ential equation

$\frac{ds^{*}}{ds}=\frac{1}{\rho}$ ,

from which we have the inequality

$s^{*}-s_{0}^{*}=\int_{s^{s_{0}}}\frac{1}{\rho}ds<\frac{2}{a}e^{-cs_{0}}$ ,

$s_{0}^{*}$ being the value corresponding to $s_{0}$ . Hence the length of $c*$ is bounded.
This contradicts to Lemma 2 because the length of $C$ is unbounded.

We next assume that the components $\rho_{i}$ identically vanish on $M_{1}(P)$

through any point $P$ and consequently all over $M$. Then $\rho$ is independent
of points of $M_{1}$ , and $\phi_{1}=0$ . We see from the first equation of (2.8) that

(4.5) $\phi_{2}+c^{2}\rho^{2}=b$ .
Since $M_{2}$ is a complete Einstein manifold of positive scalar curvature, it is
compact by Myers’ theorem [4]. Hence $\rho$ takes the minimal value $m$ at a
point of $M_{2}$ , where $\phi_{2}=\rho_{p}\rho^{p}$ vanishes. Thus we see $b=c^{2}m^{2}$ and

(4.6) $\phi_{2}+c^{2}\rho^{2}=c^{2}m^{2}$ .
Since $\phi_{2}\geqq 0$ , it follows from (4.6) that $\phi_{2}$ identically vanishes. Thus $\rho$ should
be a constant, and the diffeomorphism $f$ is homothetic.

CASE (II). In the same way as that in Case (I), $\rho$ is independent of
points of $M_{1}$ . We take the arc length $s$ as coordinate of $M_{2}$ . Then we have

$\phi_{2}=\rho_{p}\rho^{p}=(\frac{d\rho}{ds})^{2}$ ,

and the equation (4.5) reduces to

$(\frac{d\rho}{ds})^{2}+c^{2}\rho^{2}=b$ .
The general solution of this equation is written in the form

$\rho=A\cos(cs+B)$ ,

$A$ and $B$ being constants. Since $\rho$ is negative for some value of $s$ , this is a
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contradiction.
CASE (III). As is seen from the discussion in \S 2, the equation (2.2) is

valid with $k=-k_{2}=c^{2}$ and so are the other equations in this case. There-
fore, by taking $M_{1}$ itself for the geodesic curve $C$, the argument in Case (I)

is also applicable to this case. Q. E. D.
CASE (IV). Applying the above discussions to the inverse diffeomorphism

$f^{-1}$ of $M^{*}$ onto $M$, we may consider only the case where $M$ and $M^{*}$ are
Einstein manifolds and $M$ is of zero curvature. Then the diffeomorphism $f$

is homothetic by virtue of Theorem B. Q. E. D.
PROOF OF THEOREM 2. By means of Lemma 3, the theorem follows im-

mediately from Theorem 1 and the fact that a complete Riemannian manifold
admitting a non-isometric homothetic transformation is isometric to the
Euclidean space [12], see also $[1, 3]$ . Q. E. D.

Okayama University.
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