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1 Introduction

Conformal gauge theories have received quite some attention over the years. In particular,

the actions of Weyl gravity and conformal supergravity, together with their corresponding

wave equations, have been studied in great detail [1–11] as natural extensions of ordinary

gravity and supergravity theories. Interest has been also devoted to the corresponding

higher spin generalizations [12–18], not just because of the intriguing role of conformal

symmetry. Flat space higher spin (HS) fields are namely naturally endowed with higher

derivative linearized curvatures [19] that play a key role in conformal gauge theories.1

More recently, conformal HS fields have found interesting applications in the context

of the AdS/CFT correspondence. There, they play the role of sources to the conformal

currents, defined in the free O(N) vector models as well as in generic CFT’s in their free

limit [25–32].

1See [20–24] for some reviews of HS theories.
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Nonetheless, it is important to keep in mind that HS conformal theories are naturally

higher derivative theories and for this reason violate unitarity, just as conformal gravity.

This feature allows them to bypass the Coleman-Mandula theorem as well as other powerful

no-go theorems in flat space.2 On the other hand it has been recently pointed out how

asymptotically AdS solutions of Einstein gravity can be recovered from four derivative

theories by choosing appropriate boundary conditions [34–36]. This provides some key hints

about the role of the latter non-unitary theories in the context of AdS/CFT. Therefore,

these features motivate a closer look at conformal HS theories and their properties.

Free Lagrangians and the corresponding wave equations involving massless Fronsdal

fields and their variants have received considerable interest [37–47]. But the explicit form

of the conformal wave operator for HS fields in curved spaces has not been worked out yet.3

The aim of this paper is to study free conformal higher spins actions and the corresponding

wave operators on generic backgrounds. One of our goals is to discuss the factorization

property of the conformal wave operator for HS fields generalizing previous result for spin

2. We have also been able to fix the conformal wave operator in d = 4 for s = 3 up to

linear order in the Riemann tensor on generic Bach-flat backgrounds. As a byproduct of

our analysis, we obtain the full conformal wave operator on (A)dS backgrounds in any

dimension in a manifestly factorized form. Each factor turns out to be given by a two

derivative operator. Their combined mass spectrum comprises the massless and partially-

massless points plus massive points in higher dimensions [5, 43, 55–61]. This provides

additional evidence for previous conjectures made in [48, 62] and extends them. In addition,

we also identify the Weyl tensor and its derivatives as the obstruction to factorization for

spin s > 2 on generic backgrounds. Furthermore, we rediscover the well known factorization

of the conformal wave operator for spin 2 on Einstein backgrounds [3–6], and extend it to

arbitrary dimensions.

The obstruction to factorization for spin s > 2 can be interpreted as a conformal

reincarnation of the Aragone-Deser obstruction [63] for two derivative HS wave operators.

Indeed, the crucial difference between spin 2 and HS fields is the explicit appearance of

the Weyl tensor within the gauge variation of the generic two derivative operators. On the

contrary, any contribution proportional to the Weyl tensor can be eliminated for spin 1

and 2, making their wave operator factorizable.

Amongst other things we also develop a variant of the HS tractor calculus (see e.g [64]

and references therein), that finds potentially useful applications to conformal HS fields.

We believe that this formalism might provide a useful tool for addressing various problems

with conformal higher spin fields, like for instance the extension of the present analysis to

interactions and to the study of conformal HS algebras.

The organization of the paper is as follows. In section 2 we describe a convenient

formalism that allows us to deal with conformal fields in a simplified way. In section 3

we test the consistency of a factorized conformal wave operator in generic backgrounds

2See e.g. [22] and references therein for a review of various no-go theorems and [33] for a stronger version

of the Coleman-Mandula theorem in flat space.
3See [48] for some discussion of higher derivative theories in flat space, [49, 50] for some earlier discussion

on conformal operators and [51–54] for selected math literature.
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studying the obstructions to factorization. In section 4 we give the spin 3 conformal wave

operator on Bach-flat backgrounds up to linear order in the Riemann tensor. In section 5

we summarize our results and conclude. We have put additional material that includes a

discussion about gauge fixing and some lower-spin examples in the appendices. Lastly, we

have attached a Mathematica notebook containing independent checks as an ancillary file.

2 Conformal higher spin fields

Conformal higher spin fields [8, 13] can be defined at the linear level by demanding the

following gauge invariance properties

δξ ϕµ1···µs = ∇(µ1
ξµ2···µs), (2.1a)

δα ϕµ1···µs = g(µ1µ2
αµ3···µs). (2.1b)

No trace constraints on fields or gauge parameters are imposed. The above generalizes the

linearized gauge invariance and rescaling invariance of conformal gravity. Indeed, for spin

2 equation (2.1b) describes linear dilatations (scale transformations). For higher spins, on

top of the above transformations, one would in principle also need to consider also proper

HS scale transformations of the form ϕµ1···µs → Ωϕµ1···µs . But for the purpose of this paper

it will not be necessary to impose this beforehand. Irrespectively, the wave operators we

find turn out to be automatically invariant under these scale transformations.

We will now switch to an operator notation where fields are represented by generat-

ing functions,

ϕµ1···µs(x) → ϕ(x, u) =
1

s!
ϕµ1···µs(x)e

µ1

a1
(x)ua1 · · · e µs

as (x)uas . (2.2)

Here we have introduced a constant auxiliary tangent variable ua. See appendix A for

all our notational conventions and a brief introduction to the operator formalism. In the

operator notation the gauge invariance properties (2.1) take the form

δξϕ(x, u) = u · ∇ξ(x, u), (2.3a)

δαϕ(x, u) = u2α(x, u). (2.3b)

From this it follows that a conformal field can be regarded as an equivalence class of

standard massless higher spin fields defined on the cone u2 ∼ 0. This observation allows us

to use so-called Thomas-D derivatives ∂̂u in the auxiliary variable u. Again, see appendix A

for more information.

We now summarize our results. We find the following manifestly factorized form of

the spin s conformal wave operator in (A)dSd:

O(s) =

d
2−2+s
∏

i=1

[

− d− 4 + 2s

i(d− 3− i+ 2s)
u · ∇∇ · ∂̂u + Λ[(i− s+ 1)(i− s− d+ 2)− s]

]

, (2.4)
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Similarly, the factorized spin 2 conformal wave operator on any Einstein background can

be expressed as

O(2) =

d
2
∏

i=1

[

− d

i(d+ 1− i)
u · ∇∇ · ∂̂u + Λ[(i− 1)(i− d)− 2] +Wµνρσu

µuρ∂̂uν ∂̂uρ

]

.

(2.5)

The conformal wave operator for higher spins does not factorize on generic Einstein spaces,

as we shall demonstrate in the next section.

3 Factorization of conformal wave operators

In this section we study the obstructions for a factorized conformal wave operator to be

gauge invariant on generic backgrounds. Our soon to be disproved assumption is that the

conformal wave operator factorizes into two-derivative operators on any Bach-flat back-

ground, or generalizations thereof in d > 4. The existence of a conformal wave operator

on Bach-flat backgrounds can be argued on the basis of the following two observations.

Firstly, an Aragone and Deser type of obstruction [63] cannot arise since the conformal

coupling with gravity has the same number of derivatives as the kinetic term at any order

in the spin s field. In particular any coupling of the type s−s−2− . . .−2 involving n spin

two fields and two spin s fields must involve 2s+d−4 derivatives. This type of obstruction

appears for two derivative operators like the Fronsdal operator because the corresponding

gravitational couplings are higher derivative [33, 65, 66].

Secondly, any possible tadpoles (i.e. vertices linear in the higher spin field) can be

removed. In principle one might be forced to add them, but they can always be integrated

by parts into a non-linear equation for the metric. In d = 4 this equation will involve

the Bach tensor, although in general it will become a higher derivative condition for the

metric containing 2s+ d− 4 derivatives. For this reason it will be compatible with, if not

equivalent to, the conformal gravity equations of motion.

We will come back to constructing a conformal invariant operators on generic back-

grounds in section 4. But first we will concentrate on an Ansatz that is explicitly factorized,

with the aim of identifying the obstruction to its gauge invariance. The non-existence of a

factorized solution in general will not imply the non-existence of the full operator. In fact,

we expect to the full operator to exist for any spin on generic conformal manifolds for the

reason mentioned above.

3.1 Ansatz

A (2s+ d− 4)-derivative factorized Ansatz for the conformal spin s wave operator can be

written as

O(s) =

d
2−2+s
∏

i=1

Fi, (3.1)

where Fi is the most general Ansatz for a two derivative operator:

Fi = +αiu · ∇∇ · ∂̂u + βiΛ + γiR
Λ
µνρσu

µuρ∂̂uν ∂̂uσ + δiR
Λ
µνu

µ∂̂uν + σiR
Λ. (3.2)
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Here we have defined RΛ
µνρσ = Rµνρσ − Λ(gµρgνσ − gνρgµσ), and similarly for the Ricci

tensor (see also appendix A). On Einstein backgrounds this simplifies to

FE
i = +αiu · ∇∇ · ∂̂u + βiΛ + γiWµνρσu

µuρ∂̂uν ∂̂uσ , (3.3)

where Wµνρσ is the Weyl tensor.

For the purpose of enforcing gauge invariance of the full operator it is useful to compute

the gauge transformation of the generic two-derivative operator Fi. It reads

Fu · ∇ = u · ∇
[

(1 + α) +α

(

1− 2

h

)

u · ∇∇ · ∂̂u

+ Λ
{

β + u · ∂̂u + 1 + (αu · ∂̂u + 1)(u · ∂̂u + d− 2)
}

]

− α
(

u · ∇RΛ
µνρσ

)

uµuρ∂̂uν ∂̂uσ + (γ − α)RΛ
µνρσu · ∇uµuρ∂̂uν ∂̂uσ

+ 2(γ − 1)RΛ
µνρσu

µ∇νuρ∂̂uσ + (1 + α)
(

u · ∇RΛ
µν

)

uµ∂̂uν

+ (α+ δ) RΛ
µνu · ∇uµ∂̂uν + (1 + δ)RΛ

µνu
µ∇ν − uµuν

(

∇ · ∂̂uRΛ
µν

)

− 2
h−2(γ + δ)RΛ

µνu
µuν∇ · ∂̂u + σRΛu · ∇. (3.4)

First of all, the structure of the gauge variation illustrates an important difference between

spin-2 and higher spins. This is due to the appearance of terms proportional to the full

Riemann tensor and its derivatives, for instance

(

u · ∇RΛ
µνρσ

)

uµuρ∂̂uν ∂̂uσ . (3.5)

This term, being cubic in the auxiliary variable u, appears only for spin s ≥ 3. This is

actually a reincarnation of the same feature pointed out by Aragone and Deser [63] in the

context of Fronsdal fields.

The above gauge variation can be used to recursively compute the gauge variation of

the factorized Ansatz (3.1). Using the notation

Fiu · ∇ = u · ∇F̃i + Xi, (3.6)

we get

(F1 · · · Fn)u · ∇ = u · ∇
(

F̃1 · · · F̃n

)

+ X (n), (3.7)

where X (n) is recursively defined as

X (n) = X1F̃2 · · · F̃n + F1X (n−1) =
n
∑

k=1

F1 · · · Fk−1Xk F̃k+1 · · · F̃n. (3.8)

It is then straightforward to see that gauge invariance for the spin s wave operator implies

the condition

u · ∇
(

F̃d
2−2+s

· · · F̃1

)

+ X
(

d
2−2+s

)

= 0. (3.9)
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3.2 Arbitrary spins on AdS backgrounds

The coefficients α and β enter the Riemann-independent part of the Ansatz (3.2). Hence,

in order to fix them it is sufficient to look at the zeroth order in the RΛ tensors. This

corresponds to the case of (A)dS, which we are going to consider in detail in this section.

The equation (3.9) will simplify and will admit an iterative structure, which is crucial for

factorization.

At zeroth order in Riemann tensors we have Xi ∼ 0, and end up with the following

equation for the ith factor in the Ansatz:

(

∇ · ∂̂u
)i−1

[

(1 + αi) +αi

(

1− 2

h

)

u · ∇∇ · ∂̂u

+ Λ
(

βi + u · ∂̂u + 1 + (αiu · ∂̂u + 1)(u · ∂̂u + d− 2)
)

]

∼
(

∇ · ∂̂u
)i

. (3.10)

This recursively ensures that all terms proportional to
(

∇ · ∂̂u
)i−1

vanish. In principle we

should also impose that no higher divergence is generated, but this condition turns out to

be automatically satisfied if the number of derivatives is chosen to be 2s+ d− 4. We will

now fix all α’s and β’s by solving linear equations. We begin with observing that

(

∇ · ∂̂u
)k

F̃i =
(

∇ · ∂̂u
)k−i [

ai +biu · ∇∇ · ∂̂u + ciΛ
]

(∇ · ∂̂u)i +O
(

RΛ
)

, (3.11)

where the coefficients satisfy the following recursion relations:

aj = aj−1 + bj−1, (3.12a)

bj = bj−1

(

1− 1
d
2 − 2 + s− j

)

, (3.12b)

cj = cj−1 + bj−1(s− j − 1)(s− j + d− 3) + aj−1

(

2(s− j) + d− 3
)

. (3.12c)

These recursion relations have boundary conditions

a0 = 1 + αi, (3.13a)

b0 = αi

(

1− 1
d
2 − 2 + s

)

, (3.13b)

c0 = βi + s+ (αi(s− 1) + 1)(s+ d− 3). (3.13c)

The solution to the first two recursion relations reads:

aj = 1 + αi

[

1 + j

(

1− 1 + j

d− 4 + 2s

)]

, (3.14a)

bj = αi

(

1− 1 + j
d
2 − 2 + s

)

. (3.14b)

We do not write the solution for ci since it is rather cumbersome and enters only inter-

mediate steps of the computation. We can now enforce gauge invariance by recursively

– 6 –
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demanding that terms proportional to a divergence vanish in the gauge variation. We end

up with

ai−1(αi) = 0, (3.15a)

ci−1(αi, βi) = 0. (3.15b)

The solution to these equations reads

αi = − 1

1 + (i− 1)
(

1− i
d−4+2s

) , (3.16a)

βi = (i− s+ 1)(i− s− d+ 2)− s. (3.16b)

And so the conformal wave operator on (A)dS takes the form

O(s) =

d
2
−2+s
∏

i=1

[

− d− 4 + 2s

i(d− 3− i+ 2s)
u · ∇∇ · ∂̂u + Λ

(

(i− s+ 1)(i− s− d+ 2)− s
)

]

.

(3.17)

Finally, the action which has O(s)ϕ(s) = 0 as an equation of motion reads

S(s) =
1

2

∫

ddx
√
−g e∂̂u1 ·∂̂u2ϕ(s)(u1)O(s)ϕ(s)(u2)

∣

∣

∣

∣

ui=0

. (3.18)

This reproduces the correct equations of motion because the operator O is automatically

self-adjoint up to total derivatives.

It is worth pointing out that the coefficients β precisely match the masses associated

with the partially massless points for spin s, plus some discrete massive points in d > 4.

This is in agreement with previous conjectures on conformal HS wave operators [48, 62].

This implies in turn that the part of the conformal operator that is not proportional to

divergences or traces has the form

O ∼
d
2
−3+s
∏

i=0

[

+Λ
(

(i− s+ 2)(i− s− d− 3)− s
)

]

. (3.19)

In appendix C we show that terms involving divergences can be set to zero by choosing a

convenient gauge.

Before concluding this section it is important to comment that strictly speaking the

above discussion is sufficient to determine the full conformal spin s operator on (A)dS only

in d = 4, where the number of derivatives required by scale invariance is 2s. In higher even

dimensions the first s factors have to be the same as above but the next d
2 − 2 factors are

not constrained by gauge invariance and one would need to analyze conformal invariance

more closely. Notice that conformal invariance,

δgµν = Ω(x)2gµν , (3.20)

is not easy to prove due to the generically complicated transformation properties of covari-

ant derivatives. However, the condition of gauge invariance at the operator level,

O(s) u · ∇ = 0, (3.21)

– 7 –
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is strong enough to completely fix the wave operator in any dimension. Loosely speaking,

operator gauge invariance means that the kernel of O(s) u ·∇ is enlarged from the HS gauge

parameters ξ to arbitrary homogeneous functions of u.4 Moreover, we have also checked

in appendix C that the factorization Ansatz does not play any role and one can arrive at

analogous results starting from a more general Ansatz. One can then argue, and check with

examples (see appendix D), that the stronger gauge invariance condition (3.21), implies

conformal invariance when the operator Os is defined on the equivalence classes (A.8). In

d = 4 the crucial simplification is that the operator gauge invariance and the usual gauge

invariance conditions coincide.

From a group-theoretical perspective the operator gauge invariance implies also that

the pattern of masses follows a very simple relation,

E = d+ s− 3− i for 0 ≤ i ≤ d

2
− 3 + s. (3.22)

This is nothing but the continuation of the pattern of the (partially-)massless points,

0 ≤ i ≤ s−1, to massive points. Furthermore, it is what is expected from the decomposition

of a representation of the conformal algebra with respect to the (A)dS subalgebra [62]. It is

remarkable that the above requirements can be recast in terms of a usual gauge invariance

condition extended to the operator level. For these reasons, it might provide a useful tool

to control conformal invariance (3.20).

So far we have been able to completely fix the conformal wave operator on (A)dS.

In the following we will analyze the same problem in generic backgrounds. We shall first

consider the spin-2 case in more detail, and then address the higher spin problem.

3.3 Spin 2 on generic backgrounds

The spin 2 case is special with respect to its higher spin cousins because the commutation

relations (A.14) simplify. In particular, terms of order u3 or ∂̂3
u in the conformal operator

as well as terms of order ∂̂2
u in gauge variation drop out. The gauge variation of a single

F (3.4) simplifies to

Fu · ∇ = u · ∇
[

(1 + α) +α

(

1− 2

h

)

u · ∇∇ · ∂̂u

+ Λ
(

β + u · ∂̂u + 1 + (αu · ∂̂u + 1)(u · ∂̂u + d− 2)
)

]

+ 2(γ − 1)RΛ
µνρσu

µ∇νuρ∂̂uσ + (1 + α)
(

u · ∇RΛ
µν

)

uµ∂̂uν

+ (α+ δ) RΛ
µνu · ∇uµ∂̂uν − uµuν

(

∇ · ∂̂uRΛ
µν

)

+ (1 + δ)RΛ
µνu

µ∇ν

− 2

h− 2
(γ + δ)RΛ

µνu
µuν∇ · ∂̂u + σRΛu · ∇. (3.23a)

This enables us to eliminate all instances of the Riemann tensor by simply choosing γ = 1.

This very simple observation is sufficient to ensure that the factorized Ansatz works on any

Einstein background.

4Enlarging the domain of formal generating functions to distributions has also been done in [67].
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However, it should be clear from the argument itself that this simplification is non-

generic. For completeness and to underline the non-generic nature, let us analyze the

factorization of the conformal spin 2 operator on general backgrounds more closely. Taking

the solution (3.16) for α’s and β’s obtained in the previous section into account, the gauge-

invariance condition reads in d = 4

X1F̃2 + F1X2 = 0. (3.24)

Here we have

Xi =+ (1 + αi)
(

u · ∇RΛ
µν

)

uµ∂̂uν + 2(γi − 1)RΛ
µνρσu

µ∇νuρ∂̂uσ

+ (αi + δi)R
Λ
µνu · ∇uµ∂̂uν + (1 + δi)R

Λ
µνu

µ∇ν − uµuν
(

∇ · ∂̂uRΛ
µν

)

− 2

h− 2
(γi + δi)R

Λ
µνu

µuν∇ · ∂̂u + σiR
Λu · ∇ (3.25)

F1 = −u · ∇∇ · ∂̂u − 2Λ (3.26)

F̃2 =
1

3
−1

3
u · ∇∇ · ∂̂u − Λ. (3.27)

The terms linear in RΛ
µνρσ without any divergence are

2RΛ
µνρσu

µ∇νuρ∂̂uσ

[

(γ1 − 1)

(

1

3
−Λ

)

+ (γ2 − 1)( −2Λ)

]

. (3.28)

It is easy to see that the only solution to gauge invariance is γi = 1, which eliminates any

instance of the Riemann tensor in the gauge variation. In order to study the obstructions

related to RΛ
µν it is useful to first concentrate on the terms that do not involve any derivative

of RΛ
µν . Thus for the moment we will set ∇αRµν ∼ 0 and, as a consequence of the Bianchi

identity, RΛ ∼ 0 (i.e. the non-constant part of the Ricci scalar vanishes). Dropping terms

proportional to divergences for simplicity, we get the following gauge variation:

O(2)u · ∇ ∼+
[

(δ1 + 1)RΛ
µνu

µ∇ν + (δ1 − 1)RΛ
µνu · ∇uµ∂̂uν

]

[

1

3
−Λ

]

− 1

6
(δ1 + 1)RΛ

µνu
µuν∇ · ∂̂u

+ [ −2Λ]
[

(1 + δ2)R
Λ
µνu

µ∇ν + (α2 + δ2)R
Λ
µνu · ∇uµ∂̂uν

]

− u · ∇∇ · ∂̂u
[

(1 + δ2)R
Λ
µνu

µ∇ν + (α2 + δ2)R
Λ
µνu · ∇uµ∂̂uν

]

. (3.29)

Keeping only terms of the order (RΛ)2 and commuting all boxes until they act on the gauge

parameter while dropping divergences, we obtain:

− 1

6
(δ1 + 1)RΛ

µνu
µuνRΛ

µν∇µ∂̂uν

(1 + δ2)
[

− 2RΛ
µαR

Λα
νρσu

µ∇νuρ∂̂uσ +RΛ
µαR

Λα
νu

µ∇ν
]

+ (α2 + δ2)
[

− 2RΛ
µνραR

Λα
σu

µ∇νuρ∂̂uσ +RΛ
µνu

µ∇νRΛ
ρσu

ρ∂̂uσ

]

− (α2 + δ2)u · ∇RΛ
µβR

Λβ
νu

µ∂̂uν . (3.30)
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This cannot be set to zero by tuning the free coefficients, which impliesRΛ
µν is an obstruction

to factorization in the spin two case. This concludes the proof that factorization of the

spin-2 conformal wave operator is possible only on Einstein backgrounds. As we have seen

above its form is remarkably simple and can be written as

O(2) =
(

−u · ∇∇ · ∂̂u − 2Λ +Wµνρσu
µuρ∂̂uν ∂̂uσ

)

×
(

−2

3
u · ∇∇ · ∂̂u − 4Λ +Wµνρσu

µuρ∂̂uν ∂̂uσ

)

. (3.31)

On more general conformal manifolds factorization is not possible.

The above discussion generalizes readily to any dimension, upon which we get the

following manifestly factorized form of the spin 2 conformal wave operator:

O(2) =

d
2
∏

i=1

[

− d

i(d+ 1− i)
u · ∇∇ · ∂̂u + Λ[(i− 1)(i− d)− 2] +Wµνρσu

µuρ∂̂uν ∂̂uσ

]

,

(3.32)

Before concluding this section, let us point out that the above result is the unique

operator that factorizes, and it reduces to our previous result (2.4) upon restricting to

(A)dS backgrounds. If the factorization requirement is dropped more conformal operators

can be found, e.g. by linearizing the conformal invariant densities of [68–71]. However, all

but one of these densities vanish when linearized on (A)dS backgrounds as they consist of

more than two Weyl tensors. See also section D.2 for an example of this for d = 6.

We will now proceed to the higher spin cases. Due to the generic nature of the ob-

structions we found for spin 2, we will restrict our attention to Einstein manifolds in

what follows.

3.4 Higher spins on Einstein backgrounds

We will now consider arbitrary spins on Einstein backgrounds, and consequently set RΛ
µν

to zero. Upon doing so, the commutation relations simplify drastically and the gauge

variation of a single F , equation (3.4), becomes

Fu · ∇ = u · ∇
[

(1 + α) +α

(

1− 2

h

)

u · ∇∇ · ∂̂u

+Λ
(

β + u · ∂̂u + 1 + (αu · ∂̂u + 1)(u · ∂̂u + d− 2)
)]

− α(u · ∇Wµνρσ)u
µuρ∂̂uν ∂̂uσ + (γ − α)Wµνρσu · ∇uµuρ∂̂uν ∂̂uσ

+ 2(γ − 1)Wµνρσu
µ∇νuρ∂̂uσ . (3.33)

To analyze if the Weyl tensor is an obstruction it is useful to drop all of its derivatives

and set

∇αWµνρσ ∼ 0, (3.34a)

[∇β ,∇α]Wµνρσ ∼ 0. (3.34b)
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We can then rewrite equation (3.33) as

Fu · ∇ ∼ u · ∇
[

(1 + α) +α

(

1− 2

h

)

u · ∇∇ · ∂̂u (3.35)

+ Λ(β + u · ∂̂u + 1 + (αu · ∂̂u + 1)(u · ∂̂u + d− 2))

+(γ − α)Wµνρσu
µuρ∂̂uν ∂̂uσ

]

+ 2(γ − 1)Wµνρσu
µ∇νuρ∂̂uσ .

The gauge variation of the factorized Ansatz becomes

δO(s) = u · ∇F̃1 · · · F̃ d
2
−2+s +

d
2
−2+s
∑

k=1

F1 · · · Fk−1XkF̃k+1 · · · F̃ d
2
−2+s, (3.36)

where

F̃i = (1 + αi) +αi

(

1− 2

h

)

u · ∇∇ · ∂̂u

+ Λ
(

βi + u · ∂̂u + 1 + (αiu · ∂̂u + 1)(u · ∂̂u + d− 2)
)

+ (γi − αi)Wµνρσu
µuρ∂̂uν ∂̂uσ (3.37a)

Fi = +αiu · ∇∇ · ∂̂u + βiΛ + γiWµνρσu
µuρ∂̂uν ∂̂uσ (3.37b)

Xk = 2(γk − 1)Wµνρσu
µ∇νuρ∂̂uσ . (3.37c)

We can now concentrate on terms involving the Weyl tensor via the combination

(

Wµνρσu
µuρ∂̂uν ∂̂uσ

)m

. (3.38)

These include terms proportional to powers of the Weyl tensor and the gauge parameter ξ,

W α1 β1

µ1 ν1
W

α2 β2

α1 β1
· · ·W ρ1 σ1

αm βm
ξρ1σ1..., (3.39)

and are non vanishing upon setting the derivatives of the Weyl tensor to zero. Moreover,

they can arise only from the first contribution to the gauge variation. For this reason they

need to vanish identically, so we are forced to impose the following condition:

γi = αi, ∀ i. (3.40)

Notice that we have used the defining properties of the α’s and β’s in eq. (3.11) to simplify

the terms involving divergences. However, when we now shift our attention to terms that

involve the Weyl tensor via the combination

(

Wµνρσu
µuρ∂̂uν ∂̂uσ

)m−1
Wµνρσu

µ∇νuρ∂̂uσ , (3.41)
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we see that they do not vanish for covariantly constant Weyl tensors. Thus gauge invariance

also requires

γi = 1, ∀ i. (3.42)

The above clash of the gauge invariance condition identifies these particular Weyl tensor

combinations, and hence generically the Weyl tensor, as the generic obstruction to fac-

torization for the spin s conformal wave operator on Einstein backgrounds. Moreover, we

can also identify the first derivative of the Weyl tensor as an independent obstruction to

factorization. This can be seen from (3.33) by looking at the contributions proportional to

α(u · ∇Wµνρσu
µuρ∂̂uν ∂̂uσ), since none of the α’s is vanishing.

We have performed various independent checks of the above computations explicitly

with the help of Mathematica. We have attached the corresponding notebook to this

paper where the explicit spin 3 wave operator has been constructed up linear order in the

Riemann tensor. In the next section we briefly summarize the contents of the notebook.

4 Spin 3 wave operator on Bach-flat backgrounds

With the help of Mathematica we have worked out the explicit form of the unique spin 3

conformal wave operator in d = 4 up to linear terms in the Riemann tensor on Bach-flat

backgrounds. We have done this by simply listing all possible contractions and constructing

a gauge invariant Ansatz out of those. As expected from our arguments in section 3, we

did not find any obstruction.

Furthermore, we also confirmed the invariance of the wave operator under Weyl rescal-

ings of the metric (3.20). Remarkably, this turned out to be automatically the case after

imposing gauge invariance under (2.1).

Even at linear order in Riemann tensors, the wave operator is rather unwieldy, con-

sisting of roughly 200 terms. Its full form can be found in the attached notebook. Here we

present the wave operator on Ricci flat backgrounds. It reads:

O(3)
µνρ(ϕ) =− 21

10
∇µτRναρβ∇σ

σϕ̂
ταβ − 7

10
∇ναRρστβ∇στ ϕ̂µ

αβ +
182

25
∇στRναρβ∇στ ϕ̂µ

αβ

− 49

25
∇µνRρατβ∇στ ϕ̂σ

αβ − 49

25
∇µτRναρβ∇στ ϕ̂σ

αβ − 7∇µαRντρβ∇στ ϕ̂σ
αβ

− 259

25
∇µ

σϕ̂ταβ∇τσRναρβ − 84

25
∇µ

σϕ̂ταβ∇ταRνσρβ +
721

50
∇στ ϕ̂µ

αβ∇ατRνσρβ

− 161

50
∇στ ϕ̂µ

αβ∇αβRνσρτ −
21

5
∇µ

σϕ̂σ
τα∇β

βRντρα +
252

25
∇στ ϕ̂µσ

α∇β
βRντρα

− 35

2
∇στ ϕ̂µν

α∇β
βRρστα +

343

50
∇µ

σϕ̂ν
τα∇β

βRρτσα − 7

5
∇τRρασβ∇µν

σϕ̂ταβ

+
7

50
∇σϕ̂ταβ∇µντRρασβ − 42

5
∇τRναρβ∇µ

σ
σϕ̂

ταβ +
161

50
∇ρRσατβ∇µ

στ ϕ̂ν
αβ

+
399

50
∇τRρασβ∇µ

στ ϕ̂ν
αβ +

441

50
∇αRρστβ∇µ

στ ϕ̂ν
αβ − 7∇νRρασβ∇µ

στ ϕ̂τ
αβ

− 42

5
∇σRναρβ∇µ

στ ϕ̂τ
αβ − 49

5
∇αRνσρβ∇µ

στ ϕ̂τ
αβ − 203

50
∇σϕ̂ταβ∇µτσRναρβ

− 21

10
∇σϕ̂ταβ∇µταRνσρβ − 42

25
∇σϕ̂σ

τα∇µ
β
βRντρα +

98

25
∇σϕ̂µ

τα∇ν
β
βRρτσα
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− 112

25
∇µϕ̂

στα∇σ
β
βRντρα +

77

25
∇σϕ̂µ

τα∇σ
β
βRντρα +

42

5
∇σRναρβ∇στ

τ ϕ̂µ
αβ

+
56

5
∇αRνσρβ∇στ

τ ϕ̂µ
αβ − 98

5
∇αRρστβ∇σταϕ̂µν

β +
399

50
∇νRρστβ∇σταϕ̂µα

β

+
721

50
∇τRνσρβ∇σταϕ̂µα

β − 161

50
∇βRνσρτ∇σταϕ̂µα

β − 7∇µRνσρβ∇σταϕ̂τα
β

+
154

25
∇σϕ̂µ

τα∇τ
β
βRνσρα − 36

5
ϕ̂στα∇µσ

β
βRντρα − 42

5
Rµ

στα∇νρτ
βϕ̂σαβ

+
84

5
Rµ

στα∇νστ
βϕ̂ραβ +

56

5
Rµ

στα∇ντ
β
βϕ̂ρσα − 42

5
Rµ

σ
ν
τ∇ρσ

αβϕ̂ταβ

− 42

5
Rµ

σ
ν
τ∇ρ

αβ
βϕ̂στα − 98

5
Rµ

στα∇στ
β
βϕ̂νρα +

56

5
Rµ

σ
ν
τ∇σ

αβ
βϕ̂ρτα

+
21

5
Rµ

σ
ν
τ∇α

α
β
βϕ̂ρστ −

2

5
∇µνρ

σταϕ̂στα +
12

5
∇µν

στα
αϕ̂ρστ

− 3∇µ
στ

τ
α
αϕ̂νρσ +∇σ

σ
τ
τ
α
αϕ̂µνρ +O(R2), (4.1)

where ∇µ1···µn = ∇(µ1
· · · ∇µn) and ϕ̂µνρ = ϕµνρ − 1

2g(µνϕρ)σ
σ.

5 Conclusions

In this paper we have studied conformal wave operators for HS fields on general back-

grounds. We have found a manifestly factorized form for them in (A)dS, and for spin 2

on arbitrary Einstein backgrounds. The whole analysis has been carried out in arbitrary

dimensions. The main result of this paper is the explicit form of the wave operator on

(A)dS backgrounds, together with the identification of the obstruction to factorization on

more general backgrounds.

The results of this paper confirm previous conjecture about conformal HS wave opera-

tors on (A)dS backgrounds [48, 62]. On the other hand the identification of the obstruction

to factorization for spin s > 2 HS wave operators on more general backgrounds lead us to

reconsider modifications of this conjecture. Specifically, the computation of the c-coefficient

of the Weyl anomaly done in [62], which assumes factorization on Ricci-flat backgrounds,

should be reconsidered.

We expect the variant of the Tractor formalism exploited in this paper to be a key tool

for further analysis of conformal HS theories on generic backgrounds. We plan to come

back to these issues in future publications. The full form of the conformal wave operator

on generic backgrounds is still missing, and so far we have been able to fix it only up to

linear order in the Riemann tensor for spin 3.

Before concluding let us mention once again that the operator gauge invariance condi-

tion turns to be very powerful to control conformal invariance in any dimension. Therefore,

we conjecture the existence of a solution to the latter stronger operator condition on general

backgrounds. This feature can be also interpreted by saying that operator gauge invari-

ance of the corresponding wave operator is equivalent to its conformal invariance. Since in

our setting we only require linear Weyl symmetry on top of gauge symmetry, this obser-

vation shares possible similarities with analogous statements in the context of CFT (see

e.g. [72–74]).
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It will also be interesting to address questions about interactions and gauge algebra

deformations with the variant of the tractor calculus introduced here. We leave this as well

as other interesting questions related to conformal HS fields for future research.

Note added

During the final stages of preparation of the present article the paper [75] by R. Metsaev

appeared. Although using different techniques, it contains some results that are in overlap

with the results presented in section 3.2. While we use an explicitly higher derivative

formalism, [75] exploits an ordinary derivative formulation by introducing auxiliary fields.

The results of [75] are equivalent to the factorization of the conformal operator in (A)dS

background that we recover in a different way.
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A Notation and conventions

In this appendix we give a brief introduction to the techniques and conventions we used to

deal with conformal HS fields.

We mainly rely on an operator formalism where index contraction and symmetrization

of indices are realized in terms of auxiliary variables. This allows us to translate tensor

operations in terms of operator calculus, resulting in simplified manipulations (see e.g. [78]

for further details).

After replacing symmetric tensors by polynomials in the auxiliary variable ua as in

equation (2.2), it is possible to define the action of the covariant derivative as a differential

operator on both x and u:

∇̃µ → ∇µ = ∇̃µ − 1

2
ω a
µ bL

b
a = ∇̃µ − ω a

µ bu
b∂ua , (A.1a)

[∇µ,∇ν ] = Λ(uµ∂uν − uν∂uµ) +RΛ
µνρσ(x)u

ρ∂uσ , (A.1b)

where above and henceforth commutator equations will be assumed to hold on scalar func-

tions of u with no naked tensorial index. Here ∇̃µ is the standard covariant derivative

acting on naked tensorial indices, ω is the spin-connection and L b
a are the Lorentz genera-

tors. We have expressed the latter in terms of differential operators upon introducing the

derivative ∂ua , which is defined by:

∂uaub = δba. La
b = ua∂ub − ub∂ua . (A.2)
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We have also expressed the commutator of covariant derivatives in terms of RΛ
µνρσ. This is

simply the Riemann tensor minus its constant trace part:

RΛ
µνρσ = Rµνρσ − Λ(gµρgνσ − gνρgµσ), (A.3)

This conveniently parametrizes the difference between constant curvature metrics and more

general ones.

In what follows we shall work only with the contracted auxiliary variable uµ = e
µ
a (x)ua

and the associated derivative ∂uµ = eaµ(x)∂ua . The latter commutes with the covariant

derivative on generic backgrounds as a consequence of the vielbein postulate:

[∇µ, u
ν ] = 0, [∂uµ ,∇ν ] = 0. (A.4)

The operators box, symmetrized gradient, divergence, trace, symmetrized metric, and spin

can then be represented respectively by the following operators:

box: , divergence: ∇ · ∂u, sym. metric: u2,

sym. gradient: u · ∇, trace: ∂2
u, spin: u · ∂u. (A.5)

They satisfy the following operator algebra:

[ , u · ∇] = Λ
[

u · ∇(2u · ∂u + d− 1)− 2u2∇ · ∂u
]

(A.6a)

+ 2RΛ
µνρσ∇µuνuρ∂uσ − (∇σR

Λ
νρ −∇ρR

Λ
νσ)u

νuρ∂uσ +RΛ
νρu

ν∇ρ,

[∇ · ∂u, ] = Λ
[

(2u · ∂u + d− 1)∇ · ∂u − 2u · ∇∂2
u

]

(A.6b)

− 2RΛ
µνρσ∇µuρ∂uσ∂uν +RΛ

µν∇µ∂uσ + (∇µRΛ
µσ)∂uσ

− (∇σR
Λ
νρ −∇ρR

Λ
νσ)u

ρ∂uσ∂uν

[∇ · ∂u, u · ∇] = +Λ
[

u · ∂u(u · ∂u + d− 2)− u2∂2
u

]

+RΛ
µνρσu

νuρ∂uµ∂uσ +RΛ
µνu

µ∂uν , (A.6c)

[∇ · ∂u, u2] = 2u · ∇, (A.6d)

[∂2
u, u · ∇] = 2∇ · ∂u, (A.6e)

[∂2
u, u

2] = 2(d+ 2u · ∂u). (A.6f)

On Einstein backgrounds these commutation relations simplify due to the identity RΛ
µνρσ =

Wµνρσ, where Wµνρσ is the Weyl tensor. The main difficulty is however the fact that the

operator algebra does not close and requires the inclusion of Riemann tensors and their

derivatives of arbitrary order. The algebra closes only if one restricts it to its spin s sector.

In the case of conformal higher spin fields one needs to work with fields defined on

equivalence classes,

ϕµ1···µs ∼ ϕµ1···µs + g(µ1µ2
αµ3···µs), (A.7)

or in terms of the auxiliary variables:

ϕ ∼ ϕ+ u2α. (A.8)
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In order to work on such equivalence classes it is quite useful to exploit a variant of the Trac-

tor calculus (see e.g. [64] and references therein) in which one replaces ordinary derivative

operators ∂u with Thomas-D derivatives:

∂̂uµ = ∂uµ − 1

h
uµ∂

2
u. (A.9)

Here we have defined h as

h = d− 2 + 2u · ∂u. (A.10)

Thomas-D derivatives have the useful property to be automatically defined on the above

equivalence classes, since

∂̂uµu2 = u2
(

∂uµ − 1

h− 4
uµ∂

2
u

)

∼ 0. (A.11)

In this way the operator algebra simplifies since we can consistently set u2 ∼ 0, and we

end up with only four operators: , u · ∇, ∇ · ∂̂u, and u · ∂̂u. Notice that

∂̂2
u = u2(∂2

u)
2 ∼ 0. (A.12)

Further using the commutation relation

[∂̂uµ , uν ] = gµν −
2

h
uµ∂̂uµ , (A.13)

we end up with the following operator algebra:

[∇µ,∇ν ] = Λ(uµ∂̂uν − uν ∂̂uµ) +RΛ
µνρσ(x)u

ρ∂̂uσ , (A.14a)

[ , u · ∇] = Λu · ∇(2u · ∂̂u + d− 1) (A.14b)

− 2RΛ
µνρσu

µ∇νuρ∂̂uσ − uνuρ(∇ · ∂̂uRΛ
νρ) + (u · ∇RΛ

νσ)u
ν ∂̂uσ +RΛ

µνu
µ∇ν ,

[∇ · ∂̂u, ] = Λ(2u · ∂̂u + d− 1)∇ · ∂̂u (A.14c)

− 2RΛ
µνρσ∇µuρ∂̂uν ∂̂uσ +RΛ

µν∇µ∂̂uν + (∇µRΛ
µσ)∂̂uσ

+ uρ∂̂uν (∇ · ∂̂uRΛ
νρ)− (u · ∇RΛ

νσ)∂̂uν ∂̂uσ ,

[∇ · ∂̂u, u · ∇] = −2

h
u · ∇∇ · ∂̂u + Λu · ∂̂u(u · ∂̂u + d− 2) (A.14d)

−RΛ
µνρσu

µuρ∂̂uν ∂̂uσ +RΛ
µνu

µ∂̂uν .

This operator algebra is defined on equivalence classes (A.8), and again closes only if one

also includes derivatives of the Riemann tensor and their commutators recursively.

B Spin s wave operator in standard tensor notation

It is not too difficult to present the generic recursive structure of the two derivative opera-

tors entering the (A)dS solution in terms of standard tensor notation. One can then define
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the following recursion relation

ϕ
(i−1)
µ(s) = P ν(s)

µ(s)

{

[

−Λ[(i− s+ 1)(i− s− d+ 2)− s
]

ϕ
(i)
ν(s)

− d− 4 + 2s

i(d− 3− i+ 2s)

[

s∇ν∇αϕ
(i)
αν(s−1) +

s(s− 1)

d− 4 + 2s
∇ν∇νϕ

(i)α
αν(s−2)

]

}

, (B.1)

where eliminating the auxiliary variable acting with the operator (∂̂uµ)
s, we are left with

the spin s traceless projector P ν(s)
µ(s) . Above, we have conveniently defined new fields

ϕ
(i−1)
µ(s) with ϕ

(0)
µ(s) = O(s)

µ(s) and ϕ
( d
2
−2+s)

µ(s) = ϕµ(s) of weight shifting by two units at each

step. One then ends up with the conformal operator written in standard tensor notation

upon substituting the corresponding fields above till expressing ϕ
(0)
µ(s) in terms of ϕµ(s).

C Wave operator in non factorized form

In this appendix we will rewrite the factorized wave operator for a conformal spin s field

on (A)dS backgrounds in a more standard form from which one can read off the analogue

of the de Donder tensor for conformal higher spins.

We start by writing an Ansatz of the type:

O(s) =

s+ d
2
−2

∑

i=0

γi(u · ∇)iBs+ d
2
−2−i(∇ · ∂̂u)i (C.1)

=

s+ d
2
−2

∑

i=0

γi(u · ∇)i





s+ d
2
−2−i
∏

j=1

( +βi,jΛ)



 (∇ · ∂̂u)i.

A useful trick is then to parameterize the gauge variation of a divergence as:

(∇ · ∂̂u)nu · ∇ =
[

an +bnu · ∇∇ · ∂̂u + Λcn

]

(∇ · ∂̂u)n−1, (C.2)

where the coefficients satisfy the following recursion relations

an = an−1 + bn−1, (C.3a)

bn = bn−1

(

1− 2

d− 2 + 2(s− n)

)

, (C.3b)

cn = cn−1 + bn−1(s− n)(s− n+ d− 2) + an−1(2(s− n) + d− 1), (C.3c)

with

a1 = 1, b1 = − 2

d− 4 + 2s
, c1 = (s− 1)(s+ d− 3), (C.4)

and hence

an = 1− n(n− 1)

d− 4 + 2s
+

(n− 1)(n− 2)

d− 6 + 2s
, (C.5a)

bn = −
d
2 − 2 + s− n

(d2 − 2 + s)(d2 − 3 + s)
, (C.5b)
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while we do not present the solution for cn for brevity. One can now compute the gauge

variation of the operator Ei = γi(u · ∇)iBs+ d
2
−2−i(∇ · ∂̂u)i:

Eiu · ∇ = γiai(u · ∇)i





s+ d
2
−2−i
∏

j=1

( +Λβi,j)



 ( +Λ
ci

ai
)(∇ · ∂̂u)i−1 (C.6)

+ γibi(u · ∇)i+1





s+ d
2
−2−i
∏

j=1

[ +Λ (βi,j + 2(s− i) + d− 3)]



 (∇ · ∂̂u)i.

Therefore, by requiring that the terms proportional to (u · ∇)i+1 in the variation of Ei
cancel the terms proportional to (u · ∇)i+1 in the variation of Ei+1 one gets the following

conditions for the free coefficients γi and βi,j :

γi+1 = − bi

ai+1
γi, (C.7a)

βi,1 =
ci+1

ai+1
− 2(s− i)− d+ 3, (C.7b)

βi,j = βi+1,j−1 − 2(s− i)− d+ 3. (C.7c)

The conditions can be solved to give

γi = (−1)i
∏i−1

n=0 bn
∏i

n=1 an
, γ0 = 1, (C.8a)

βi,1 =
ci+1

ai+1
− 2(s− i)− d+ 3, (C.8b)

βi,j = βi+j−1,1 − (j − 1)[2(s− i) + d− j − 1]. (C.8c)

After plugging in the solution for the coefficients ai, bi and ci we then get

βi,j = (i+ j + 1− s)(i+ j − s− d+ 2)− (j − 1)[2(s− i) + d− j − 1]− s. (C.9)

As before, this matches all partially massless points in d = 4, and also some massive points

in higher dimensions.

The generalized de Donder tensor can be easily extracted from equation (C.1):

D( d
2
−3+s) =

d
2
−2+s
∑

i=1

(u · ∇)i−1Bs+ d
2
−2−i(∇ · ∂̂u)iϕ(s). (C.10)

This tensor has one derivative less than the full equation of motion. From the gauge

invariance condition one can easily extract its gauge variation:

δξD( d
2
−3+s) = −

d
2
−2+s
∏

j=1

(

+(β0,j + 2s+ d− 3)Λ
)

ε(s−1). (C.11)

The right-hand-side can be viewed as a second order equation on an effective gauge pa-

rameter that is of order 2s + d − 6. This linear second order diagonal equation can be

solved throughout spacetime [79] in order to set D( d
2
−3+s) to zero. In this partial gauge,

the equation of motion becomes (3.19).
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D Examples in various dimensions

In this appendix we list some known non-linear conformal actions, and confirm that their

equations of motion reduce to (2.4) upon linearization on (A)dS spaces.

D.1 Spin 1 data

d = 2. The 2 dimensional case is trivial since the spin 1 conformal field does not propagate

and indeed the number of derivatives compatible with conformal symmetry is 0.

d = 4. In four dimensions the Maxwell’s theory is conformally invariant, and its equation

of motion is precisely (C.1) for s = 1 and d = 4.

d = 6. In six dimensions there are a number conformal invariants quadratic in A = ϕ(1).

Yet there is only one that is gauge invariant, not a total derivative, and non-zero on AdS

backgrounds. It reads

I = Fµν

((

−1

2
R

)

δρµδ
σ
ν +Rµ

ρδσν + Cµν
ρσ

)

Fρσ +∇µJ
µ, (D.1)

with Fµν = ∇[µAν]. The Weyl tensor could have been omitted, as F · C · F is confor-

mally invariant on its own. However, including it reproduces Branson’s D4,1 conformal

operator [51] acting on Aµ as the equation of motion:

∇ν
(

∇[µ∇ρFν]ρ + SFµν − 4Sρ
[µFν]ρ

)

= 0, (D.2)

where Sµν is the Schouten tensor and S is its trace. Upon linearizing these equations of

motion on (A)dS we find (2.4) or (C.1) for s = 1 and d = 6 in agreement with the solution

to the operator gauge invariance condition.

D.2 Spin 2 data

d = 2. Two-dimensional conformal gravity is just Einstein gravity, whose linearized

equation of motion on (A)dS can be precisely recast in the form (2.4) or (C.1) for s = 2

and d = 2.

d = 4. The action for four dimensional conformal gravity is

S =

∫

d4x
√
−gCµνρσC

µνρσ, (D.3)

whose linearized equation of motion is exactly (2.4) or (C.1) for s = 2 and d = 4.

d = 6. In six dimensions there are three conformal invariants for gravity, namely [68, 70,

71]

I1 = CµρσνC
µαβνCα

ρσ
β , (D.4a)

I2 = CµνρσC
ρσαβCαβ

µν , (D.4b)

I3 = Cµρσλ

(

δµν +4Rµ
ν −

6

5
δµνR

)

Cνρσλ +∇µJ
µ (D.4c)
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with ∇µJ
µ a total derivative which can be found in [68]. Because the Weyl tensor vanishes

on AdS backgrounds, only the third invariant gives a non-zero quadratic perturbation on

AdS. Upon computing its equations of motion, we find (2.4) or (C.1) for s = 2 and d = 6,

again in agreement with the general result obtained above enforcing the stronger operator

gauge invariance condition.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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