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Abstract. A vector fleld on a Riemannian manifold is called conformal Killing if it gen-
erates one-parameter group of conformal transformation. The class of conformal Killing
symmetric tensor flelds of an arbitrary rank is a natural generalization of the class of
conformal Killing vector flelds, and appears in difierent geometric and physical prob-
lems. We prove the statement: A trace-free conformal Killing tensor fleld is identically
zero if it vanishes on some hypersurface. This statement is a basis of the theorem on
decomposition of a symmetric tensor fleld on a compact manifold with boundary to a
sum of three flelds of special types. We also establish triviality of the space of trace-free
conformal Killing tensor flelds on some closed manifolds.

1. Introduction

Conformal transformation of a Riemannian manifold (M; g) is a difieomorphism ’ :
M ! M such that ’⁄g = ‚g for some positive function ‚ on M . A vector fleld u on M is
called conformal Killing if it generates one parameter transformation group of conformal
mappings. In local coordinates, a conformal Killing vector fleld satisfles the equation

1

2
(riuj + rjui) = vgij (1.1)

for some scalar function v (depending on u). Here riuj denote the covariant derivatives
of the fleld u.

The notion of conformal Killing tensor flelds is a generalization of the notion of confor-
mal Killing vector flelds to the case of higher rank tensors, and the equation that deflnes
the flrst class of flelds generalizes equation (1.1).

Given a Riemannian manifold (M; g), let C1(Sm¿ 0
M) be the space of smooth symmetric

covariant tensor fleld of rank m on M . The flrst order difierential operator

d = ¾r : C1(Sm¡1¿ 0
M) ! C1(Sm¿ 0

M);

is called the inner derivative. Here r denotes the covariant derivative, and ¾ is the
symmetrization. The divergence

– : C1(Sm¿ 0
M) ! C1(Sm¡1¿ 0

M)

is deflned in local coordinates by (–u)i1:::im¡1 = gjkrjuki1:::im¡1 . The operators d and ¡–
are dual to each other with respect to the natural L2-product on the space of symmetric
tensor flelds (see Section 3). We denote by

i : C1(Sm¿ 0
M) ! C1(Sm+2¿ 0

M)

the following algebraic operator of symmetric multiplication by the metric tensor: iu =
¾(g › u), and the adjoint of i is denoted by j : C1(Sm+2¿ 0

M) ! C1(Sm¿ 0
M). In local

coordinates, (ju)i1:::im = gjkujki1:::im . The tensor fleld ju is called the trace of the fleld u.
A symmetric tensor fleld u is called trace-free if its trace is identically equal to zero:

ju = 0: (1.2)
1
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A Killing tensor fleld is a symmetric tensor fleld u satisfying du = 0. A conformal
Killing tensor fleld is a symmetric tensor fleld u satisfying the equation

du = iv (1.3)

for some v. Equation (1.3) is a natural generalization of (1.1).
Conformal Killing vector (covector) flelds are the classic object of the Riemannian

geometry. Conformal Killing symmetric tensor flelds of higher rank naturally appear in
various problems of physics and geometry (see [21, 7, 8, 13, 20, 6, 1]). There are also
many papers where antisymmetric conformal Killing tensor flelds are studied (conformal
Killing forms) because of their role in Gravitation Theory and in the Maxwell equations
(see [18, 10] and the references there).

It should be observed that (in some sense) there are \too many" conformal Killing
flelds of rank m ‚ 2. Indeed, if v is any fleld of rank m ¡ 2 then the fleld u = iv satisfles
the equation du = i(dv) because the operators i and d commute. For this reason, it
makes sense to study the trace-free conformal Killing flelds, i.e., conformal Killing flelds u
satisfying equation (1.2). In some papers (for example, see [6, 1]), equation (1.2) is
included into the deflnition of a conformal Killing tensor fleld, but we prefer to speak on
the trace-free conformal Killing flelds in this case.

Eliminating v from equation (1.3), we get pdu = 0, where p is an algebraic operator
deflned in Section 3 below. As is shown in Theorem 5.1 below, the operator –pd is elliptic
on the bundle of trace-free tensor flelds. Therefore, the equation –pdu = 0 implies the
following statement: a trace-free conformal Killing fleld is smooth. Hereafter in the paper,
the term \smooth" always means \C1-smooth".

The deflnition of a (trace-free) conformal Killing fleld is invariant with respect to a
conformal change of the metric in the following sense. If u 2 C1(Sm¿ 0

M) is a (trace-free)
conformal Killing fleld with respect to a Riemannian metric g then ‚mu is a (trace-free)
conformal Killing fleld with respect to the metric ‚g for any smooth positive function ‚
on M .

As well known, the space of conformal Killing vector flelds on M has a flnite dimension
if n = dim M ‚ 3. In the two-dimensional case, the space can be of inflnite dimension.
Nevertheless, in every dimension, a conformal Killing vector fleld is uniquely determined
by its C1-jet at any point. The following theorem is a generalization of the latter fact.

Theorem 1.1. Let (M; g) be a connected n-dimensional Riemannian manifold; with n ‚
3. If a trace-free conformal Killing symmetric fleld u of rank m ‚ 0 satisfles the conditions

u(x0) = 0; ru(x0) = 0; : : : ; rlu(x0) = 0 (1.4)

at some point x0 2 M , where l = l(m) • 6m depends only on m, then u · 0. In
particular, the dimension of the space of trace-free conformal Killing flelds of rank m
is flnite. If n = 2 then the flrst statement is true if (1.4) is replaced by the following
condition: All the derivatives of the fleld u vanish at the point x0.

The theorem was flrst proved in [14], with l(m) = 6m. The results of [6, 1] provide
the exact value l(m) = 2m (in the case of m = 2, see also [21]). Arguments of [6, 1]
are based on delicate facts of representation theory and the theory of overdetermined
systems. At the same time, the proof given in [14] is quite elementary although it does
not allow to obtain the exact value of l(m). For reader’s convenience, we reproduce the
latter proof in Sections 9 and 11. For n ‚ 3, the scheme of the proof is as follows. Being
written in local coordinates, (1.2) and (1.3) constitute a linear homogeneous system of
equations in components of the flelds u and v, and their flrst order partial derivatives.
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We difierentiate these equations l times and show that the resulting system can be solved
with respect to all partial derivatives of the highest order l + 1. This means that the
components of the tensors u(t) = u

¡
x(t)

¢
and v(t) = v

¡
x(t)

¢
satisfy a homogeneous

linear system of ordinary difierential equations of order l + 1 along every smooth curve
x = x(t). Together with homogeneous initial conditions (1.4), this yields the required
result. In the two-dimensional case, the proof consists of reducing system (1.2){(1.3) to
the Cauchy-Riemann equations.

Corollary 1.2. Let (M; g) be a connected Riemannian manifold of dimension n ‚ 3. If
tensor flelds u 2 C1(Sm¿ 0

M) and v 2 C1(Sm¡1¿ 0
M) (m ‚ 0) satisfy equation (1.3) and

initial conditions (1.4) with the same l = l(m) as in Theorem 1:1 then there exists a fleld
w 2 C1(Sm¡2¿ 0

M) such that u = iw and v = dw. For n = 2, the statement is true
if (1.4) is replaced by the following condition: All the derivatives of the fleld u vanish at
the point x0.

Theorem 1.1 implies Corollary 1.2 by an algebraic trick presented in Section 3. Theorem
1.1 is also used in the proof of the following proposition.

Theorem 1.3. Let (M; g) be a connected Riemannian manifold of dimension at least 2,
and let ? 6= ¡ ‰ M be a smooth hypersurface. In particular; ¡ may be a relatively open
subset of the boundary @M . If a trace-free conformal Killing fleld u vanishes on ¡ then
u · 0.

In the case of m = 1 and ¡ = @M , Theorem 1.3 follows from [12, Proposition 3.3].
The authors are indebted to the anonymous referee for veriflcation of the following

fact: Theorem 1.3 is not valid if, in the condition u
flfl
¡

= 0, the hypersurface ¡ is replaced
by a submanifold of dimension less than dim M ¡ 1. We quote: \The dimension of the
space of trace-free conformal Killing flelds of rank 2 on R3 which vanish on a straight line,
equals 10, i.e., in some sense, Theorem 1.3 is the best possible result."

Corollary 1.4. Let (M; g) and ¡ satisfy the hypotheses of Theorem 1:3: If tensor flelds
u 2 C1(Sm¿ 0

M) and v 2 C1(Sm¡1¿ 0
M) satisfy the equation du = iv and the condition

u
flfl
¡

= 0 then there exists a fleld w 2 C1(Sm¡2¿ 0
M) such that u = iw, v = dw, and

w
flfl
¡

= 0.

The following deflnition was introduced in [16, x 3]. A Riemannian manifold with
boundary is called conformally rigid if there is no nonzero conformal Killing vector fleld
that vanishes on the boundary. Theorem 1:3 implies conformal rigidity of an arbitrary
connected Riemannian manifold with nonempty boundary. For such a compact mani-
fold (M; g), Theorem 3.3 of [16] can be formulated as follows: Every rank 2 symmetric
tensor fleld f on M can be uniquely represented in the form

fij =
1

2
(rivj + rjvi) + ‚gij + ~fij; vj@M = 0; tr ~f = 0; – ~f = 0:

We generalize this result to higher rank tensor flelds. Given a compact M , let Hk(Sm¿ 0
M)

denote the Hilbert space of symmetric tensor flelds of rank m whose components are locally
square integrable together with their partial derivatives up to order k in an arbitrary
coordinate system.

Theorem 1.5. Let (M; g) be a compact connected Riemannian manifold with nonempty
boundary. Every symmetric tensor fleld f 2 Hk(Sm¿ 0

M) (m ‚ 0, k ‚ 1) can be uniquely
represented in the form

f = dv + i‚ + ~f; (1.5)
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where v 2 Hk+1(Sm¡1¿ 0
M) satisfles the conditions

jv = 0; vj@M = 0; (1.6)

‚ 2 Hk(Sm¡2¿ 0
M), and ~f 2 Hk(Sm¿ 0

M) satisfles the conditions

– ~f = 0; j ~f = 0: (1.7)

The summands in (1.5) continuously depend on f , i.e.; the stability estimates

kvkHk+1 • CkfkHk ; k‚kHk • CkfkHk ; k ~fkHk • CkfkHk (1.8)

hold with some constant C independent of f .

In General Relativity, conformal Killing tensor flelds appear as polynomial flrst integrals
of the equation for null geodesics [8]. Our interest in the conformal Killing tensor flelds
is motivated by the following question from Integral Geometry.

Given a Riemannian manifold (M; g), let

›M = f(x; ») j x 2 M; » 2 TxM; j»j2 = gij(x)»i»j = 1g
denote the unit sphere bundle, and let H : C1(›M) ! C1(›M) be the difierentiation
along the geodesic °ow. In local coordinates,

H = »i @

@xi
¡ ¡i

jk(x)»j»k @

@»i
; (1.9)

where ¡i
jk are the Christofiel symbols. As is seen from (1.9), if the function U(x; »)

polynomially depends on » then HU is also a polynomial in ». More precisely, for u 2
C1(Sm¡1¿ 0

M),
H(ui1:::im¡1(x)»i1 : : : »im¡1) = (du)i1:::im(x)»i1 : : : »im : (1.10)

The question on validity of the converse statement is very important: Is it true that
every solution to the boundary value problem

HU = vi1:::im(x)»i1 : : : »im on ›M; (1.11)

U j@(›M) = 0 (1.12)

is a homogeneous polynomial of degree m ¡ 1 in »? The question is equivalent to the
problem of inversion of the ray transform (see [15, Ch. 1] for a detailed discussion). The
question is open in the general case and the positive answer is obtained only under certain
curvature conditions.

Consider the following weaker version of the latter question. Assume a solution U to
the boundary value problem (1.11){(1.12) to depend polynomially on ». Is U a restriction
to ›M of a homogeneous polynomial of degree m ¡ 1? The question is not trivial since
polynomials of difierent degrees can have the same restriction to ›M in view of the
identity gij»

i»j
flfl
›M

= 1. The positive answer to this question can be easily obtained from
Theorem 1.3 even if (1.12) is replaced by the weaker condition

U(x; »)jx2¡ = 0; (1.13)

where ¡ is a relatively open subset of @M . Indeed, assume a solution U(x; ») to the
problem (1.11) and (1.13) to be a homogeneous polynomial in » of degree m + 2k ¡ 1 (the
case of a nonhomogeneous polynomial can be easily reduced to the considered one). This
means the existence of u 2 C1(Sm+2k¡1¿ 0

M) such that

U(x; ») = ui1:::im+2k¡1
(x)»i1 : : : »im+2k¡1 on ›M; uj¡ = 0:

By (1.10), equation (1.11) takes the form

du = ikv: (1.14)
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Applying Corollary 1.4, we flnd w 2 C1(Sm+2k¡3¿ 0
M) such that u = iw and w

flfl
¡

=

0. Equation (1.14) can be written in terms of w as i(dw) = i(ik¡1v). Since i is a
monomorphism, this implies

dw = ik¡1v:

Repeating this argument by induction in k, we flnd the fleld ew 2 C1(Sm¡1¿ 0
M) such

that u = ik ew. This means that U(x; »)
flfl
›M

coincides with the homogeneous polynomial

ewi1:::im¡1(x)»i1 ¢ ¢ ¢ »im¡1 of degree m ¡ 1.

The questions under consideration are also important in the case of closed manifolds
(i.e., compact manifolds with no boundary).

Theorem 1.6. If (M; g) is a closed Riemannian manifold of dimension n ‚ 2 of nonpo-
sitive sectional curvature then every trace-free conformal Killing symmetric tensor fleld
u on M is absolutely parallel, i.e., ru = 0, and every symmetric Killing tensor fleld is
absolutely parallel.

In addition, if M is connected and there is a point x0 2 M such that all sectional cur-
vatures at x0 are negative then there is no nonzero trace-free conformal Killing symmetric
tensor fleld of any rank and every symmetric Killing tensor fleld is of the form cgk for
some constant c.

The classical theorem by Bochner-Yano states: there is no nontrivial conformal Killing
vector fleld on a closed Riemannian manifold of negative Ricci curvature [22, Theorem
2.14]. Theorem 1.6 generalizes the last statement to arbitrary rank tensor flelds, however,
under the stronger hypothesis: The requirement of negative Ricci curvature is replaced
by the requirement of negative sectional curvature.

Theorem 1.7. Let (M; g) be a closed Riemannian manifold of dimension n ‚ 2 without
conjugate points. A vector fleld on M is conformal Killing if and only if it is a Killing
vector fleld. A trace-free tensor fleld of rank 2 is conformal Killing if and only if it is the
trace-free part of some Killing fleld. In addition, if the geodesic °ow has a dense orbit
in ›M then there are neither nontrivial conformal Killing vector flelds nor nontrivial
trace-free conformal Killing flelds of rank 2.

The natural assumption is that, under hypotheses of Theorem 1.7, similar statements
are valid for higher rank tensor flelds. In the case of dim M = 2, this easily follows from
the uniformization theorem, invariance of the deflnition of conformal Killing tensor flelds
with respect to a conformal change of the metric, and from Theorem 1.6.

The following fact is well known: If the geodesic °ow has a dense orbit in ›M then
(regardless of the dimension of M) every symmetric Killing tensor fleld is of the form cgk

with some constant c (see [3]).

The rest of the paper is organized as follows. Section 2 contains preliminaries from
algebra of symmetric tensor flelds. In particular, after deriving a commutation formula
for the operators i and j, we show that the singular decomposition of the operator ji
corresponds to the decomposition of polynomials in spherical harmonics.

In Section 3, we introduce the difierential operators d and – on symmetric tensor flelds,
prove some commutation formulas for these operators, and obtain some useful proposi-
tions. In this section, we derive Corollary 1.2 of Theorem 1.1.

Sections 4 and 5 contain the proofs of Theorems 1.3 and 1.5, respectively. These proofs
are essentially based on Theorem 1.1.
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In Section 6, we give the proofs of Theorems 1.6 and 1.7. It should be mentioned that
this section difiers from the others by the nature of the methods. Namely, here we use
semi-basic tensor flelds and the estimates for a solution to the kinetic equation which are
based on Pestov’s identity. We cannot present all necessary deflnitions here because of
the volume limitation, so we refer the reader to [15, Chapter 3] for details. This does not
concern other sections since they are independent of Section 6.

In Section 7, we discuss higher order difierential operators on tensor flelds paying a
particular attention to the principle parts of operators.

In Section 8, we introduce the Laplace operator on symmetric tensor flelds and prove
some commutation formulas for powers of the Laplacian which are needed to prove The-
orem 1.1.

The proof of Theorem 1.1 in the case of dim M ‚ 3 is presented in Section 9.
In Section 10, we derive the equations that relate the Fourier coe–cients of a solution

to the kinetic equation, to the Fourier coe–cients of the right-hand side. We need these
equations to prove Theorem 1.1 in the two-dimensional case. These equations are also
of some independent interest since they constitute the basis of the so-called method of
spherical harmonics for the numerical solution of the kinetic equation and the related
linear transport equation. In the literature on the method of spherical harmonics, several
versions of the equations are presented for difierent particular geometries (see [2]). How-
ever, the invariant form of the equations, as presented in Theorem 10.2, was probably
unknown before.

The flnal Section 11 contains the proof of Theorem 1.1 in the two-dimensional case.

2. Algebra of symmetric tensors

We use the standard terminology of vector bundle theory. For a smooth manifold N , we
denote the algebra of smooth real functions on N by C1(N). If » = (E; …; N) is a smooth
vector bundle and U ‰ N is an open set then C1(»; U) denotes the C1(U)-module of
smooth sections of » over U , and C1

0 (»; U) denotes the submodule of compactly supported
sections. We often reduce the notation C1(»; N) and C1

0 (»; N) to C1(») and C1
0 (»),

respectively. We deal here only with flnite dimensional bundles with just one exception:
Sometimes, we consider a graded vector bundle »⁄ = '1

m=0»m, where each summand »m

has a flnite dimension. Such an object can be thought as a sequence of flnite-dimensional
bundles. If · = '1

m=0·m is another graded bundle and A 2 Hom(»; ·) then Am denotes
the restriction of A to »m. We say A has a degree k if A(»m) ‰ ·m+k.

Let (M; g) be a smooth Riemannian manifold of dimension n ‚ 2. By ¿M = (TM; …; M)
and ¿ 0

M = (T 0M; …; M), we denote the tangent bundle and the cotangent bundle, re-
spectively. We often shorten these notation to ¿ = (T; …; M) and ¿ 0 = (T 0; …; M).
Let ›m¿ 0 = (›mT 0; …; M) be the bundle of real covariant tensors of rank m and let
Sm¿ 0 = (SmT 0; …; M) be its subbundle consisting of the symmetric tensors. There is the
natural projection ¾ 2 Hom(›m¿ 0; Sm¿ 0) acting as follows:

¾(v1 › ¢ ¢ ¢ › vm) =
1

m!

X
…2ƒm

v…(1) › ¢ ¢ ¢ › v…(m); (2.1)

where ƒm is the group of permutations of the set f1; : : : ; mg. Note that S1¿ 0=¿ 0 and
S0¿ 0 = M £ R. It is convenient to assume ›m¿ 0 = Sm¿ 0 = 0 for m < 0. For a point
x 2 M , let Tx, T 0

x, ›mT 0
x, and SmT 0

x be the flbers over x of the corresponding bundles.
For u 2 SmT 0

x and v 2 SlT 0
x, the symmetric product is deflned by uv = ¾(u › v). Thus,

S⁄¿ 0 = '1
m=0Sm¿ 0 becomes a bundle of commutative graded algebras.
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We will extensively use the coordinate representation of tensors. If (x1; : : : ; xn) is a
local coordinate system in the domain U ‰ M then every tensor fleld u 2 C1(›m¿ 0; U)
is uniquely represented in the form

u = ui1:::imdxi1 › ¢ ¢ ¢ › dxim ; (2.2)

where the functions ui1:::im 2 C1(U) are the covariant components of the fleld u in this
coordinate system. In (2.2) and below, we use the Einstein rule: The summation from 1
to n is assumed over an index repeated in the multivariate subscript and superscript of a
monomial. Assuming the choice of a coordinate system to be clear from the context, we
reduce formula (2.2) to

u = (ui1:::im): (2.3)

For x 2 U and u 2 ›mT 0
x, formulas (2.2) and (2.3) also make sense but the components

are real numbers in this case. Contravariant components are deflned by

ui1:::im = gi1j1 : : : gimjmuj1:::jm ;

where (gij) is the inverse matrix to (gij).
A tensor u = (ui1:::im) 2 ›mT 0

x belongs to SmT 0
x if and only if its covariant and (or)

contravariant components are symmetric with respect to all indices. We will also consider
partially symmetric tensors. The partial symmetry of a tensor is denoted by

sym ui1:::ikj1:::jl
: (i1 : : : ik¡1)ik(j1 : : : jl¡1)jl: (2.4)

This means the tensor (ui1:::ikj1:::jl
) is symmetric in each group of indices in parentheses

on the right-hand side of (2.4). Along with the full symmetrization ¾, we will use partial
symmetrization operators that are deflned in coordinates by

¾(i1 : : : im)ui1:::imj1:::jl
=

1

m!

X
…2ƒm

ui…(1):::i…(m)j1:::jl
:

Lemma 2.1. Let m ‚ 1; p ‚ 1; and x 2 M . For every tensor f 2 ›2m+pT 0
x possessing

the symmetry
sym fi1:::imj1:::jpk1:::km : (i1 : : : imj1 : : : jp)(k1 : : : km); (2.5)

there exists a unique solution to the equation

¾(i1 : : : imj1 : : : jp)ui1:::imj1:::jpk1:::km = fi1:::imj1:::jpk1:::km ; (2.6)

possessing the symmetry

sym ui1:::imj1:::jpk1:::km : (i1 : : : im)(j1 : : : jpk1 : : : km): (2.7)

The solution is expressed by the formula

ui1:::imj1:::jpk1:::km = ¾(i1 : : : im)¾(j1 : : : jpk1 : : : km)

£
mX

l=0

(¡1)l

µ
p + l ¡ 1

l

¶µ
m + p

m ¡ l

¶
fi1:::im¡lj1:::jpk1:::kmim¡l+1:::im ; (2.8)

where
¡

k
l

¢
= k!

l!(k¡l)!
are the binomial coe–cients.

Since this is a purely algebraic statement, it su–ces to prove it in the case of M = Rn.
For p = 1, the statement is proved in [15, x 2.4]. For an arbitrary p, the proof is quite
similar. The idea of the proof is as follows. Since the dimension of the space of tensors
possessing symmetry (2.5) is equal to the dimension of the space of tensors possessing
symmetry (2.7), it su–ces to verify the equation obtained by substituting (2.8) into (2.6).
This veriflcation can be done by straightforward calculations that are omitted.
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There is a natural inner product on SmT 0
x deflned in coordinates by

hu; vi = uim:::imvim:::im : (2.9)

We extend the product to S⁄T 0
x = '1

m=0SmT 0
x assuming SmT 0

x and SlT 0
x to be orthogonal

to each other for m 6= l. The product smoothly depends on x. Therefore, S⁄¿ 0 obtains
the structure of a Riemannian vector bundle. So we can introduce the L2-product on
C1

0 (S⁄¿ 0) as follows:

(u; v)L2 =

Z

M

hu(x); v(x)idV (x); (2.10)

where dV is the Riemannian volume form.
For u 2 S⁄T 0

x, let iu : S⁄T 0
x ! S⁄T 0

x be the operator of symmetric multiplication by u,
i.e., iuv = uv, and let ju be the adjoint operator of iu. These operators are expressed by
the formulas

(iuv)i1:::im+l
= ¾(i1 : : : im+l)(ui1:::imvim+1:::im+l

);

(juv)i1:::im¡l
= vi1:::il

uil¡m+1:::il

for u 2 SmT 0
x and v 2 SlT 0

x. The second formula makes sense only for m • l. If m > l
then juv = 0. For u 2 C1(S⁄¿ 0), the operators iu; ju 2 Hom(S⁄¿ 0; S⁄¿ 0) are deflned by
iu(x) = iu(x) and ju(x) = ju(x). The operators ig and jg are of a particular importance in
the present article, so we distinguish them by introducing the notation i = ig and j = jg.
These operators were already used in Introduction.

Lemma 2.2. For m ‚ 0 and k ‚ 1; the following commutation formula holds on Sm¿ 0 :

jik =
2k(n + 2m + 2k ¡ 2)

(m + 2k ¡ 1)(m + 2k)
ik¡1 +

m(m ¡ 1)

(m + 2k ¡ 1)(m + 2k)
ikj:

In the case of k = 1, the formula has the form

ji =
2(n + 2m)

(m + 1)(m + 2)
E +

m(m ¡ 1)

(m + 1)(m + 2)
ij; (2.11)

where E the identity operator. The latter formula is proved by a straightforward calcu-
lation in coordinates which is omitted. The general case easily follows from (2.11) with
the help of induction in k.

Lemma 2.3. For an arbitrary integer m ‚ 0; the following decomposition formula holds:

Sm¿ 0 =

[m=2]M

k=0

ik(Ker jm¡2k); (2.12)

where [m=2] is the integer part of m=2; and Ker jm¡2k is the kernel of the restriction jm¡2k

of the operator j to Sm¡2k¿ 0. Each summand of the decomposition is a subbundle in Sm¿ 0

and the summands are orthogonal to each other. The operator i is a monomorphism and
its range is related to decomposition (2.12) by the formula

Ran im¡2 =

[m=2]M

k=1

ik(Ker jm¡2k): (2.13)

The product ji is a self-adjoint and positive deflnite operator. Each summand of (2.12)
is a proper subspace of the operator ji associated with the eigenvalue

‚k =
2(k + 1)(n + 2m ¡ 2k)

(m + 1)(m + 2)
:
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The dimension of the summand equals fi(m¡2k)¡fi(m¡2k¡2), where fi(m) = fi(m; n) =¡
n+m¡1

m

¢
is the dimension of Sm¿ 0.

Proof. The operator ij is self-adjoint and nonnegative since it is the product of two opera-
tors that are dual to each other. Therefore, (2.11) implies that ji is a positive self-adjoint
operator. Hence, i is a monomorphism and the orthogonal decomposition

S⁄¿ 0 = Ker j ' Ran i (2.14)

holds with the summands on the right-hand side being sub-bundles of the left-hand side.
Let u 2 Ker jm¡2k. By Lemma 2.2, we get (ji)(iku) = ‚kiku. Therefore, each summand

in (2.12) is the eigen-subspace of the operator ji associated with the eigenvalue ‚k. Since
all ‚k are difierent, all summands are orthogonal to each other. The injectivity of i and
equation (2.14) imply

dim [ik(Ker jm¡2k] = dim (Ker jm¡2k) = fi(m ¡ 2k) ¡ fi(m ¡ 2k ¡ 2):

Equality (2.12) is now proved by comparing dimensions of spaces on both sides of the
equality. ⁄

Let p 2 Hom(S⁄¿ 0; Ker j) and q 2 Hom(S⁄¿ 0; Ran i) be the orthogonal projections onto
the summands of (2.14). One easily checks the equality

q = i(ji)¡1j: (2.15)

Decomposition (2.12) is closely related to the expansion of functions on the sphere in
Fourier series in spherical harmonics. In order to explain the relationship, we introduce
some notation.

If (x1; : : : ; xn) is a local coordinate system with the domain U then, for x 2 U , a vector
» 2 Tx is uniquely represented as » = »i @

@xi (x). The functions xi; »i (i = 1; : : : ; n) form
a local coordinate system on the manifold T with the domain …¡1(U), where … is the
projection of the tangent bundle. Strictly speaking, we should write xi – … instead of xi.
We use the shorter notation xi and hope it will not cause any ambiguity. Thus, every
function ’ 2 C1¡

…¡1(U)
¢

can be written in coordinates as follows:

’ = ’(x1; : : : ; xn; »1; : : : ; »n) (x 2 U; » 2 Tx):

Since Tx has the structure of an Euclidean space, the Laplace operator
v

¢x : C1(Tx) !
C1(Tx) is well deflned. It smoothly depends on x, and therefore, deflnes an operator

v

¢
: C1(T ) ! C1(T ).

¡
Warning: Do not mix up C1(T ) and C1(¿)!

¢
The operator is

written in coordinates as
v

¢’(x; ») = gij(x)
@2’(x; »)

@»i@»j

and is called the vertical (or flberwise) Laplacian.
The embedding {x : S⁄T 0

x ! C1(Tx) is deflned by

({xu)(») = ui1:::im»i1 : : : »im

for u 2 SmT 0
x. It smoothly depends on x, and hence, deflnes an embedding { : C1(S⁄¿ 0) !

C1(T ) by the formula:

({u)(x; ») = ui1:::im(x)»i1 : : : »im

for u 2 C1(Sm¿ 0). Thus, { identifles rank m symmetric tensor flelds with homogeneous
polynomials (with respect to ») of degree m on T .
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Let › = ›M be the submanifold of T which consists of the unit vectors, and let
›x = › \ Tx be the unit sphere in Tx. Given u 2 S⁄T 0

x, denote the restriction of {xu
to ›x by ‚xu . The operator ‚x : S⁄T 0

x ! C1(›x) smoothly depends on x and deflnes an
operator ‚ : C1(S⁄¿ 0) ! C1(›).

We introduce an inner product h¢ ; ¢i! on the space C1(›x) by the formula

h’; ˆi! =

Z

›x

’(»)ˆ(»)d!(»);

where d! is the volume form on ›x induced by the metric g. The index ! is used in the
notation in order to distinguish this product from the product deflned by (2.9).

Lemma 2.4. The following equalities hold on SmT 0
x :

‚xi = ‚x; (2.16)

m(m ¡ 1){xj =
v

¢x{x: (2.17)

For u; v 2 SmT 0
x such that ju = jv = 0; the following equality holds:

h‚xu; ‚xvi! =
m!…n=2

2m¡1¡(n=2 + m)
hu; vi: (2.18)

Proof. For u 2 SmT 0
x and » 2 ›x, we have

(‚xiu)(») =
‡

¾(i1 : : : im+2)(ui1:::imgim+1im+2)
·

»i1 : : : »im+2 :

Since the product »i1 ¢ ¢ ¢ »im+2 is symmetric with respect to (i1; : : : ; im+2), we can omit the
symmetrization ¾(i1 : : : im+2) here. So we get

(‚xiu)(») = (ui1:::im»i1 : : : »im)(gim+1im+2»im+1»im+2) = ui1:::im»i1 : : : »im

because gim+1im+2»im+1»im+2 = 1 on ›x. By deflnition, the right-hand side of the last
formula equals (‚xu)(»). This proves (2.16). Formula (2.17) is also proved by direct
calculations:

(
v

¢x{xu)(») = gij @2

@»i@»j

¡
ui1:::im»i1 : : : »im

¢

= m(m ¡ 1)gijui1:::im¡2ij»
i1 : : : »im¡2 = m(m ¡ 1)({xju)(»):

It su–ces to prove (2.18) for u = v. The polynomial {xu can be written in the two
ways:

({xu)(») = ui1:::im»i1 : : : »im =
X

jfij=m

ufi»fi; (2.19)

where fi = (fi1; : : : ; fin) is a multiindex. The coe–cients of (2.19) are related by the
equality ufi = m!

fi!
ui(fi), with i(fi) = (1 : : : 1 2 : : : 2 : : : n : : : n) where 1 is repeated fi1 times,

2 is repeated fi2 times, etc.
We choose the coordinates in a neighborhood of x so that gij(x) = –ij, where (–ij) is

the Kronecker symbol. Then

hu; ui =
1

m!

X

jfij=m

fi!jufij2: (2.20)

Indeed,

hu; ui =
nX

i1;:::im=1

jui1:::imj2 =
X

jfij=m

m!

fi!
jui(fi)j2:
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Taking the relations ui(fi) = fi!ufi=m! into account, we obtain (2.20).
For jfij = m, formula (2.19) implies

@fi
» ({xu) = fi!ufi: (2.21)

Therefore equality (2.20) can be written as

hu; ui =
1

m!

X

jfij=m

1

fi!
j@fi

» ({xu)j2: (2.22)

In virtue of (2.17), the condition ju = 0 means ‚xu is a spherical harmonics of degree
m. Ass well known, the spherical harmonics satisfy the equality

Am;m =
2m¡(n=2 + m)¡(m + 1)

¡(n=2)
A0;m; (2.23)

(for example, see [17, Lemma XI.1]), where

A0;m =

Z

›x

j‚xu(»)j2d!(») = h‚xu; ‚xui!; (2.24)

Am;m =
X

jfij=m

m!

fi!

Z

›x

j@fi
» ({xu)j2d!(»):

By (2.21), the last integrand is constant and the last formula gives

Am;m = m!!n

X

jfij=m

fi!jufij2;

where !n is the volume of the unit sphere in Rn. Together with (2.20), the last formula
implies

Am;m = (m!)2!nhu; ui: (2.25)

Finally, substituting (2.24), (2.25), and !n = 2…n=2=¡(n=2) into (2.23), we obtain (2.18).
⁄

According to Lemma 2.4, the operator ‚x isomorphically maps the subspace Ker jm ‰
SmT 0

x onto the space of spherical harmonics of degree m on ›x. Moreover, this isomor-
phism is an isometry up to a constant factor if Ker jm is equipped with the inner product
h¢ ; ¢i and the space of harmonics is equipped with the product h¢ ; ¢i!.

As well known (for example, see [17]), spherical harmonics of difierent degrees are
orthogonal to each other and every function ’ 2 C1(›x) can be expanded in the Fourier
series in spherical harmonics of difierent degrees. The series converges absolutely and
uniformly. The expansion smoothly depends on the point x, and we arrive to the following
statement.

Lemma 2.5. Every function ’ 2 C1(›) can be uniquely represented by the series

’ =
1X

m=0

‚um; (2.26)

where um 2 C1(Sm¿ 0) satisfy the condition jum = 0. The series converges absolutely and
uniformly on each compact subset of ›.
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By Lemma 2.3, a tensor fleld u 2 C1(Sm¿ 0) is uniquely represented in the form

u =

[m=2]X

k=0

ikum¡2k; (2.27)

where every um¡2k 2 C1(Sm¡2k¿ 0) satisfles jum¡2k = 0. Expansion (2.27) coincides with
the Fourier series (2.26) of the function ‚u 2 C1(›). More precisely, the Fourier series
of the function ‚u has a flnite number of the summands, namely,

‚u =

[m=2]X

k=0

‚um¡2k

where the tensor flelds um¡2k are the same as in (2.27).

3. The operators d and –

Given a Riemannian manifold (M; g), let r : C1(›m¿ 0) ! C1(›m+1¿ 0) be the co-
variant difierentiation with respect to the Levi-Civita connection. For a tensor fleld
u = (ui1:::im), higher order covariant derivatives are denoted by rku = (rj1:::jk

ui1:::im).
The inner derivative d : C1(S⁄¿ 0) ! C1(S⁄¿ 0) is deflned by d = ¾r. The divergence
– : C1(S⁄¿ 0) ! C1(S⁄¿ 0) is deflned in local coordinates as (–u)i1:::im¡1 = gjkrjuki1:::im¡1 .
These d and – are the flrst order difierential operators of degree 1 and ¡1, respectively.
They were already mentioned in Introduction.

Theorem 3.1. The operators d and ¡– are dual to each other with respect to the L2-
product of symmetric tensor flelds. Moreover; for a compact manifold M with boundary;
Green’s formula Z

M

(hdu; vi + hu; –vi)dV =

Z

@M

hi”u; vidV 0

holds for u; v 2 C1(S⁄¿ 0); where ” is the unit outward normal to the boundary; and dV
and dV 0 are the Riemannian volume forms of M and of @M; respectively.

The proof is given in [15, x 3.3].

Lemma 3.2. The following equalities hold on C1(S⁄¿ 0):

id = di; j– = –j; (3.1)

pdp = pd; p–p = –p; (3.2)

qdq = dq; q–q = q–; (3.3)

pdq = 0; q–p = 0: (3.4)

Proof. These formulas are written in pairs every of which is formed by two relatively dual
relationships. It su–ces to prove one formula in each pair. The second formula in (3.1)
can be proved by direct calculation in coordinates and we omit it. The flrst formula
in (3.3) is derived from (2.15) and (3.1) as follows:

qdq = i(ji)¡1jdi(ji)¡1j = i(ji)¡1jid(ji)¡1j = id(ji)¡1j = di(ji)¡1j = dq:

Formula (3.2) is obtained from (3.3) by the substitution q = E¡p. The left multiplication
of the flrst formula of (3.3) by p implies the flrst formula of (3.4). ⁄



CONFORMAL KILLING TENSOR FIELDS 13

Lemma 3.3. The following equalities hold on C1(Sm¿ 0):

–i =
2

m + 2
d +

m

m + 2
i–; (3.5)

jd =
2

m + 1
– +

m ¡ 1

m + 1
dj: (3.6)

Proof. It su–ces to prove (3.5) since (3.6) is obtained by the duality. For u 2 C1(Sm¿ 0),
we have

(–iu)i1:::imj = gkl[¾(i1 : : : imjk)(gjkrlui1:::im)]

by the deflnition of i and –, and by the equality rg = 0. The expression in brackets
represents the sum over ƒm+2. We divide all the terms of the sum into four groups as
follows: The flrst group includes the products of the form grsrlut1:::tm for fr; sg = fj; kg;
the second group (the third group) consists of the products such that k 2 fr; sg and
j =2 fr; sg (k =2 fr; sg and j 2 fr; sg), and the fourth group contains all the remaining
terms. We thus obtain

(m + 1)(m + 2)

2
(–iu)i1:::imj = gkl

h
gjkrlui1:::im +

mX
a=1

gkiarluji1::: bia:::im

+
mX

a=1

gjiarluki1::: bia:::im
+

X

1•a<b•m

giaib
rlujki1::: bia:::bib:::im

i
;

where ^ over an index means the index is omitted. Using the identity gklgjk = –l
k, where

(–l
k) is the Kronecker tensor, we rewrite the last formula in the form

(m + 1)(m + 2)

2
(–iu)i1:::imj = rjui1:::im +

mX
a=1

riauji1::: bia:::im

+
mX

a=1

gjia(–u)i1::: bia:::im
+

X

1•a<b•m

giaib
(–u)ji1::: bia:::bib:::im

:

The sum of the flrst two summands on the right-hand side of this formula equals

(m + 1)(du)ji1:::im , and the sum of the last two summands equals m(m+1)
2

(i–u)ji1:::im . ⁄

Lemma 3.4. The following equalities hold on C1(Sm¿ 0):

dq = qd ¡ m

n + 2m ¡ 2
i–p; q– = –q ¡ m ¡ 1

n + 2m ¡ 4
pdj; (3.7)

dp = pd +
m

n + 2m ¡ 2
i–p; p– = –p +

m ¡ 1

n + 2m ¡ 4
pdj: (3.8)

Proof. As above, the formulas are written in dual pairs and (3.8) is obtained from (3.7)
by the substitution q = E ¡ p. Hence it su–ces to prove the flrst of formulas (3.7).

By (3.1) and (3.6),

jid = jdi =

µ
2

m + 3
– +

m + 1

m + 3
dj

¶
i:

The left and right multiplications of this formula by (ji)¡1 yield

d(ji)¡1 =
m + 1

m + 3
(ji)¡1d +

2

m + 3
(ji)¡1–i(ji)¡1:
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In virtue of (2.15) and (3.6), this gives

dq = di(ji)¡1j = id(ji)¡1j = i
‡m ¡ 1

m + 1
(ji)¡1d +

2

m + 1
(ji)¡1–i(ji)¡1

·
j

=
m ¡ 1

m + 1
i(ji)¡1

‡m + 1

m ¡ 1
jd ¡ 2

m ¡ 1
–
·

+
2

m + 1
i(ji)¡1–q

= qd ¡ 2

m + 1
i(ji)¡1–(E ¡ q);

i.e.,

dq = qd ¡ 2

m + 1
i(ji)¡1–p: (3.9)

The equality jp = 0 follows from the deflnition of p. According to (2.11) and (3.1), this
implies

(ji)–p =
2(n + 2m ¡ 2)

m(m + 1)
–p +

(m ¡ 1)(m ¡ 2)

m(m + 1)
ij–p =

2(n + 2m ¡ 2)

m(m + 1)
–p:

Hence the equality

(ji)¡1–p =
m(m + 1)

2(n + 2m ¡ 2)
–p (3.10)

holds on C1(Sm¿ 0). Substitution of (3.10) into (3.9) implies the flrst formula of (3.7). ⁄

Let us now demonstrate how does Theorem 1.1 imply Corollary 1.2. Let u and v satisfy
the hypotheses of Corollary 1.2, and let ~u = pu. Then

j~u = 0: (3.11)

Applying the operator p to (1.2), we obtain pdu = 0. Transformation of the left-hand
side of this equality by (3.8) impliesµ

d ¡ m

n + 2m ¡ 2
i–

¶
~u = 0:

We denote ~v = m
n+2m¡2

–~u and rewrite the last formula as

d~u = i~v: (3.12)

As is seen from (2.15), the operator p = E ¡ q is represented in coordinates by a matrix
whose elements are rational functions of the components gij of the metric tensor. Therefore
conditions (1.4) imply the similar conditions for ~u = pu:

~u(x0) = 0; r~u(x0) = 0; : : : ; rl~u(x0) = 0: (3.13)

According to (3.11){(3.13), ~u satisfles the hypotheses of Theorem 1.1. Assuming the
theorem to be valid, we obtain ~u = pu = 0. This means the existence of w such that u =
iw. Theorem 1.3 implies Corollary 1.4 in a similar way.

4. Proof of Theorem 1.3

According to Theorem 1.1 whose proof will be given below, Theorem 1.3 follows from
a weaker statement formulated in

Lemma 4.1. Let ¡ be a smooth hypersurface in a Riemannian manifold M . If tensor
flelds u 2 C1(Sm¿ 0) and v 2 C1(Sm¡1¿ 0) satisfy the conditions

du = iv; ju = 0; u
flfl
¡

= 0

then u and v vanish on ¡ together with all their derivatives.
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Proof. The statement is trivial for m = 0. Let m ‚ 1. We prove by induction in k the
validity of the following statement:

uj¡ = 0; ruj¡ = 0; : : : ; rkuj¡ = 0;

vj¡ = 0; rvj¡ = 0; : : : ; rk¡1vj¡ = 0:

For k = 0, the statement coincides with the hypothesis u
flfl
¡

= 0. Assume the required
statement to be true for some k ‚ 0.

We choose a coordinate system (x1; : : : ; xn) = (x01; : : : ; x0n¡1; y) in some neighborhood
of x0 2 ¡ so that ¡ is deflned by the equation y = 0 and gin = –in. Here and below (–ij) is
the Kronecker tensor. By the induction hypothesis,

@l

@yl
@fl

x0ui1:::im

flflflfl
y=0

= 0 for l • k;

@l

@yl
@fl

x0vi1:::im¡1

flflflfl
y=0

= 0 for l • k ¡ 1

(4.1)

for an arbitrary (n ¡ 1)-variate index fl.
The equality du = iv has the following form in the chosen coordinates:

ri1ui2:::im+1 + ri2ui1i3:::im+1 + ¢ ¢ ¢ + rim+1ui1:::im

= (m + 1)¾(i1 : : : im+1)
¡
gi1i2vi3:::im+1

¢
:

Applying the operator @k

@yk

flfl
y=0

to this equality and taking (4.1) into account, we obtain

@k

@yk

µ
@ui2:::im+1

@xi1
+ ¢ ¢ ¢ +

@ui1:::im

@xim+1

¶flflflfl
y=0

= (m + 1)¾(i1 : : : im+1)

µ
gi1i2

@kvi3:::im+1

@yk

flflflfl
y=0

¶
: (4.2)

Hereafter we use the following agreement: Greek indices vary from 1 to n ¡ 1, and the
summation from 1 to n ¡ 1 is assumed over repeated Greek indices. Set (i1; : : : ; im+1) =
(fi1; : : : ; fim+1) in (4.2). Then the left-hand side of (4.2) equals zero by (4.1) and we obtain

¾(fi1 : : : fim+1)

ˆ
gfi1fi2

@kvfi3:::fim+1

@yk

flflflfl
y=0

!
= 0: (4.3)

We rewrite (4.2) in the form

@k

@yk

µ
@ui2:::im+1

@xi1
+ ¢ ¢ ¢ +

@ui1:::im

@xim+1

¶flflflfl
y=0

=
1

m!

X
…2ƒm+1

gi…(1)i…(2)

@kvi…(3):::i…(m+1)

@yk

flflflfl
y=0

: (4.4)

Let 0 • s • m. We set (i1; : : : ; im¡s) = (fi1; : : : ; fim¡s) and im¡s+1 = ¢ ¢ ¢ = im+1 = n
in (4.4). By (4.1), the flrst m ¡ s summands on the left-hand side of (4.4) are equal to
zero and the last s + 1 summands coincide, i.e.,

@k

@yk

µ
@ui2:::im+1

@xi1
+ ¢ ¢ ¢ +

@ui1:::im

@xim+1

¶flflflfl
y=0

= (s + 1)
@k+1ufi1:::fim¡sn:::n

@yk+1

flflflfl
y=0

: (4.5)
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Let us analyze the right-hand side of (4.4) for the chosen indices. If …(1) • m ¡ s and
…(2) > m¡s then gi…(1)i…(2)

= 0. Similarly, gi…(1)i…(2)
= 0 if …(1) > m¡s and …(2) • m¡s.

Therefore

X
…2ƒm+1

gi…(1)i…(2)

@kvi…(3):::i…(m+1)

@yk

flflflfl
y=0

=
X

…2ƒm+1(s)

@kvi…(3):::i…(m+1)

@yk

flflflfl
y=0

+
X

…2ƒ0
m+1(s)

gi…(1)i…(2)

@kvi…(3):::i…(m+1)

@yk

flflflfl
y=0

; (4.6)

where

ƒm+1(s) =
'

… 2 ƒm+1 j …(1) > m ¡ s; …(2) > m ¡ s
“

;

ƒ0
m+1(s) =

'
… 2 ƒm+1 j …(1) • m ¡ s; …(2) • m ¡ s

“
:

All the summands of the flrst sum on the right-hand side of (4.6) coincide because v is
symmetric. And the total amount of the summands is (m ¡ 1)!s(s + 1), i.e.,

X

…2ƒm+1(s)

@kvi…(3):::i…(m+1)

@yk

flflflflfl
y=0

= (m ¡ 1)!s(s + 1)
@kvfi1:::fim¡sn:::n

@yk

flflflfl
y=0

: (4.7)

For s = 0, the right-hand side of (4.7) is equal to zero due to the factor s.
The second sum on the right-hand side of (4.6) is obviously equal to

c(m; s)¾(fi1 : : : fim¡s)

ˆ
gfi1fi2

@kvfi3:::fim¡sn:::n

@yk

flflflfl
y=0

!
; (4.8)

where c(m; s) = (m ¡ 1)!(m ¡ s)(m ¡ s ¡ 1) is total amount of elements in ƒ0
m+1(s).

Substitute (4.7) and (4.8) into (4.6) to obtain

1

(m ¡ 1)!

X
…2ƒm+1

gi…(1)i…(2)

@kvi…(3):::i…(m+1)

@yk

flflflfl
y=0

= s(s + 1)
@kvfi1:::fim¡sn:::n

@yk

flflflfl
y=0

+ (m ¡ s)(m ¡ s ¡ 1)¾(fi1 : : : fim¡s)

ˆ
gfi1fi2

@kvfi3:::fim¡sn:::n

@yk

flflflfl
y=0

!
: (4.9)

Next, we substitute (4.5) and (4.9) into (4.4)

@k+1ufi1:::fim¡sn:::n

@yk+1

flflflfl
y=0

=
s

m

@kvfi1:::fim¡sn:::n

@yk

flflflfl
y=0

+
(m ¡ s)(m ¡ s ¡ 1)

m(s + 1)
¾(fi1 : : : fim¡s)

ˆ
gfi1fi2

@kvfi3:::fim¡sn:::n

@yk

flflflfl
y=0

!
: (4.10)

We deflne the tensor flelds

z(s) 2 C1(Sm¡s¿ 0
¡) (0 • s • m); w(s) 2 C1(Sm¡s¿ 0

¡) (1 • s • m)

on ¡ as follows:

z(s)
fi1:::fim¡s

=
@k+1ufi1:::fim¡sn:::n

@yk+1

flflflfl
y=0

; w(s)
fi1:::fim¡s

=
@kvfi1:::fim¡sn:::n

@yk

flflflfl
y=0

: (4.11)
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For convenience, we also deflne w(0) = 0, w(m+1) = 0, and w(m+2) = 0. Then (4.10) can
be written in the coordinate-free form

z(s) =
s

m
w(s) +

(m ¡ s)(m ¡ s ¡ 1)

m(s + 1)
iw(s+2) (0 • s • m); (4.12)

and (4.3) can be written as iw(1) = 0. Since i is a monomorphism, this implies

w(1) = 0: (4.13)

If m = 1 then v is a scalar function and (4.13) gives @kv
@yk

flfl
y=0

= 0. Equation (4.12)

implies

z(0)
fi =

@k+1ufi

@yk+1

flflflfl
y=0

= 0;
@k+1un

@yk+1

flflflfl
y=0

= z(1) = w(1) = 0:

This justifles the induction step in the case of m = 1. Therefore, we assume m ‚ 2 in the
rest of the proof.

In the chosen coordinates, the equation ju = 0 is written as follows:

ui1:::im¡2nn + gfl°ufl°i1:::im¡2 = 0:

Difierentiating this identity k + 1 times with respect to y, we obtain

@k+1ui1:::im¡2nn

@yk+1

flflflfl
y=0

+ gfl° @k+1ufl°i1:::im¡2

@yk+1

flflflfl
y=0

= 0:

We set (i1; : : : ; im¡s) = (fi1; : : : ; fim¡s) and im¡s+1 = : : : im¡2 = n in the last formula to
obtain

z(s) + jz(s¡2) = 0 (2 • s • m):

This implies

z(2s) = (¡j)sz(0) for 0 • 2s • m; z(2s+1) = (¡j)sz(1) for 0 • 2s + 1 • m: (4.14)

Setting s = m and then s = m ¡ 1 in (4.12), we get

w(m) = z(m); w(m¡1) =
m

m ¡ 1
z(m¡1):

Taking (4.14) into account, this implies

w(2m0) = (¡j)m0
z(0) for m = 2m0;

w(2m0) =
2m0 + 1

2m0 (¡j)m0
z(0) for m = 2m0 + 1;

(4.15)

w(2m0¡1) =
2m0

2m0 ¡ 1
(¡j)m0¡1z(1) for m = 2m0;

w(2m0+1) = (¡j)m0
z(1) for m = 2m0 + 1:

(4.16)

Now, we are going to prove the representations

w(2s) = (¡1)s

[m=2]¡sX

l=0

a(m; s; l)iljs+lz(0) for 0 < 2s • m; (4.17)

w(2s+1) = (¡1)s

[m¡1=2]¡sX

l=0

b(m; s; l)iljs+lz(1) for 0 < 2s + 1 • m; (4.18)

with some positive coe–cients a(m; s; l) and b(m; s; l), where [¢] denotes, as usual, the
integer part of a number. For 0 • m ¡ 2s • 1, formula (4.17) coincides with (4.15). We
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shall prove (4.17) by induction in m ¡ 2s. Let s > 0 and m ¡ 2s ‚ 2. If we take s := 2s
in (4.12) then we get

z(2s) =
2s

m
w(2s) +

(m ¡ 2s)(m ¡ 2s ¡ 1)

m(2s + 1)
iw(2s+2):

We express w(2s) from this equation

w(2s) =
m

2s
z(2s) ¡ (m ¡ 2s)(m ¡ 2s ¡ 1)

2s(2s + 1)
iw(2s+2):

We replace the flrst term on the right-hand side by its value (4.14) and replace the second
term by its expression from the inductive hypothesis (4.17)

w(2s) = (¡1)s
‡ m

2s
jsz(0) +

(m ¡ 2s)(m ¡ 2s ¡ 1)

2s(2s + 1)

[m
2 ]¡s¡1X

l=0

a(m; s + 1; l)il+1js+l+1z(0)
·

:

Changing the summation index, we transform this expression to the form

w(2s) = (¡1)s
‡ m

2s
jsz(0) +

(m ¡ 2s)(m ¡ 2s ¡ 1)

2s(2s + 1)

[m
2 ]¡sX

l=1

a(m; s + 1; l ¡ 1)iljs+lz(0)
·

:

This is equivalent to (4.17) with

a(m; s; l) =

8
<
:

m=2s for l = 0;

(m¡2s)(m¡2s¡1)
2s(2s+1)

a(m; s + 1; l ¡ 1) for l ‚ 1:

Thus, representation (4.17) is proved. The proof of (4.18) is quite similar.
Set s = 0 in (4.12)

z(0) = (m ¡ 1)iw(2): (4.19)

By (4.17),

w(2) = ¡
[m

2 ]¡1X

l=0

a(m; 1; l)iljl+1z(0):

Substitution of the last expression into (4.19) gives

h
E + (m ¡ 1)

[m=2]X

l=1

a(m; 1; l ¡ 1)iljl
i
z(0) = 0; (4.20)

where E is the identity operator. The operator in the brackets is nondegenerate since the
coe–cients of the sum are positive and the operator iljl is nonnegative. Hence, (4.20)
implies z(0) = 0. So, according to (4.14) and (4.17), z(2s) = 0 and w(2s) = 0 for all s.

By (4.13), w(1) = 0. On the other hand, setting s = 0 in (4.18), we see

w(1) =
h [m¡1

2 ]X

l=0

b(m; 0; l)iljl
i
z(1) = 0:

Since the operator in the brackets is nondegenerate, z(1) = 0. Together with (4.14)
and (4.18), this gives z(2s+1) = 0 and w(2s+1) = 0 for all s.

We have proved z(s) = 0 and w(s) = 0 for all s. Recalling deflnition (4.11), we see

@k+1ui1:::im

@yk+1

flflflfl
y=0

= 0;
@kvi1:::im

@yk

flflflfl
y=0

= 0;
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and this is the flnish of the inductive step. ⁄

5. Proof of Theorem 1.5

We start with the following observation: the tensor flelds ‚ and ~f can be eliminated
from the system (1.5){(1.7). Indeed, let f; ~f 2 Hk(Sm¿ 0), v 2 Hk+1(Sm¡1¿ 0), and ‚ 2
Hk(Sm¡2¿ 0) satisfy (1.5){(1.7). Applying the operator j to (1.5), we get

jf = jdv + ji‚:

Express ‚ from this
‚ = (ji)¡1j(f ¡ dv); (5.1)

and substitute the result into (1.5)

f = dv + i(ji)¡1j(f ¡ dv) + ~f:

Due to (2.15), this equality can be written in the form

f = dv + q(f ¡ dv) + ~f

or
(E ¡ q)f = (E ¡ q)dv + ~f;

where E is the identity operator. Since E ¡ q = p,

pf = pdv + ~f: (5.2)

To eliminate ~f , we apply the operator – to equation (5.2). Taking – ~f = 0 into account,
we obtain

–pf = –pdv:

Hence, v is a solution to the boundary value problem

(–pd)v = h; vj@M = 0 (5.3)

with
h = –pf 2 Hk¡1(Sm¡1¿ 0): (5.4)

Recall that the subbundle Ker j of the vector bundle S⁄¿ 0 was deflned in Section 2. The
right-hand side h of equation (5.3) belongs to Hk¡1(Ker j) by (5.4) and (3.1). The desired
solution v to problem (5.3) must be a section of Ker j since the requirement jv = 0 is
contained in (1.6). Finally, –pd can be considered as a difierential operator on the vector
bundle Ker j, i.e.,

–pd : C1(Ker j) ! C1(Ker j);

since q(–pd) = (q–p)d = 0 in view of (3.4). So, (5.3) can be considered as a boundary value
problem on the bundle Ker j. We shall prove this is an elliptic problem with zero kernel
and co-kernel. Then, applying the theorem on regular solvability of elliptic problems, we
shall deduce that, for every h 2 Hk(Ker j) (k ‚ 0), problem (5.3) has a unique solution
v 2 Hk+2(Ker j) satisfying the stability estimate

kvkHk+2 • CkhkHk :

Setting h = –pf and deflning ‚ and ~f by formulas (5.1) and (5.2), we get (1.5){(1.8).
Theorem 1.5 is thus reduced to the following proposition:

Theorem 5.1. Let M be a compact connected Riemannian manifold with nonempty
boundary. Being considered on the vector bundle Ker j, the boundary value problem (5.3)
is elliptic and has zero kernel and co-kernel.
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Proof. We start with checking ellipticity of the operator –pd on Ker j. The principal
symbols ¾1(d) and ¾1(–) of the operators d and – at a point (x; ») 2 T 0 are

¾1(d) =
p¡1i» ¾1(–) =

p¡1j»;

here
p¡1 is the imaginary unit. Hence,

¾2(–pd) = ¡j»pi»:

For x 2 M , let Kerm
x j = ff 2 SmT 0

x j jf = 0g. We have to prove the operator

j»pi» : Kerm
x j ! Kerm

x j (5.5)

is an isomorphism for every m ‚ 0 and every 0 6= » 2 T 0
x.

The operator j»pi» is easily seen to be nonnegative. Indeed,

hj»pi»f; fi = hpi»f; i»fi = hpi»f; pi»fi = jpi»f j2:

Therefore veriflcation of the ellipticity of –pd reduces to the following proposition.

Lemma 5.2. If a tensor f 2 SmT 0
x satisfles the conditions

jf = 0; pi»f = 0

for some 0 6= » 2 T 0
x then f = 0.

To prove Lemma 5.2, we need the following:

Lemma 5.3. The commutation formula

pi» = i»p ¡ 2

m + 1
i(ji)¡1j»p

holds on Sm¿ 0.

Proof. The commutation formula

ji» =
2

m + 1
j» +

m ¡ 1

m + 1
i»j on Sm¿ 0 (5.6)

is checked by direct calculations in coordinates, and we omit them. Using (2.15) and (5.6),
we obtain

qi» = i(ji)¡1ji» = i(ji)¡1(ji») = i(ji)¡1

µ
2

m + 1
j» +

m ¡ 1

m + 1
i»j

¶
:

Hence,

qi» = i(ji)¡1

µ
2

m + 1
j» +

m ¡ 1

m + 1
i»j

¶
on Sm¿ 0: (5.7)

Using (5.6) again, we get

jii» = (ji»)i =

µ
2

m + 3
j» +

m + 1

m + 3
i»j

¶
i =

2

m + 3
j»i +

m + 1

m + 3
i»(ji):

Multiplying the extreme parts of this formula by (ji)¡1 from the left and from the right,
we obtain

i»(ji)¡1 =
2

m + 3
(ji)¡1j»i(ji)¡1 +

m + 1

m + 3
(ji)¡1i»:

Hence,

(ji)¡1i» =
m + 3

m + 1
i»(ji)¡1 ¡ 2

m + 1
(ji)¡1j»i(ji)¡1 on Sm¿ 0: (5.8)

We transform the second summand on the right-hand side of (5.7) with the htlp of (5.8).
The summand equals zero in the case of m = 0 and of m = 1 due to the factor j on its
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right. Therefore we assume m ‚ 2. Since the operator j acts before (ji)¡1i», the value m
in (5.8) should be changed to m ¡ 2. Thus, the result of the transformation is as follows:

qi» =
2

m + 1
i(ji)¡1j» +

m ¡ 1

m + 1
i

µ
m + 1

m ¡ 1
i»(ji)¡1 ¡ 2

m ¡ 1
(ji)¡1j»i(ji)¡1

¶
j:

We arrange this formula as

qi» = i»i(ji)¡1j +
2

m + 1
i(ji)¡1j»(E ¡ i(ji)¡1j)

and use (2.15) again to obtain

qi» = i»q +
2

m + 1
i(ji)¡1j»p on Sm¿ 0: (5.9)

We have thus proved (5.9) in the case of m ‚ 2. Actually, (5.9) is valid for any m ‚ 0.
Indeed, both sides of this formula are equal to zero in the case of m = 0. In the case of
m = 1, (5.9) has the form

qi» =
1

n
ij» on ¿ 0

and can be easily checked.
Substituting q = E ¡ p into (5.9), we complete the proof of Lemma 5.3. ⁄

Proof of Lemma 5:2. The statement of the lemma is trivial for m = 0 since pi»f = i»f in
the latter case and i» is a monomorphism for » 6= 0. So we assume m ‚ 1.

Let f 2 SmT 0
x satisfy the equalities jf = 0 and pi»f = 0. By Lemma 5.3, the second

equality implies

0 = pi»f = i»pf ¡ 2

m + 1
i(ji)¡1j»pf:

Since pf = f , this equality is simplifled to the following one:

i»f ¡ 2

m + 1
i(ji)¡1j»f = 0:

Taking the scalar product of this with i»f , we get

hi»f; i»fi ¡ 2

m + 1
hi(ji)¡1j»f; i»fi = 0

or

hj»i»f; fi ¡ 2

m + 1
h(ji)¡1j»f; ji»fi = 0: (5.10)

The operators i» and j» satisfy the commutation formula

j»i»f =
j»j2

m + 1
f +

m

m + 1
i»j»f for f 2 Sm¿ 0 (5.11)

(see [15, Lemma 3.3.3]).
Since jf = 0, formula (5.6) implies

ji»f =
2

m + 1
j»f: (5.12)

Using (2.11) and taking jf = 0 into account, we deduce

(ji)(j»f) =
2(n + 2m ¡ 2)

m(m + 1)
j»f:
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Applying the operator (ji)¡1 to this equation, we infer

(ji)¡1(j»f) =
m(m + 1)

2(n + 2m ¡ 2)
j»f: (5.13)

Substitute (5.11){(5.13) into (5.10) to obtain

j»j2jf j2 + m

µ
1 ¡ 2

n + 2m ¡ 2)

¶
jj»f j2 = 0:

Both coe–cients of the equality are positive in the case of n ‚ 2, m ‚ 1, and » 6= 0.
Hence, f = 0. ⁄

We have thus proved the ellipticity of the principal symbol j»pi» of the operator ¡–pd on
the bundle Ker j. Actually, we have shown the principal symbol is positive. This implies
the ellipticity of the boundary value problem (5.3). Indeed, as is known [19, Chapter 5,
Proposition 11.10], the positivity of the principal symbol implies the Lopatinski‚‡ condition
for the Dirichlet problem.

Next, we are going to prove the triviality of the kernel of the boundary value prob-
lem (5.3). Let v 2 Hk(Ker j) (k ‚ 2) be a solution to the homogeneous problem

(–pd)v = 0; vj@M = 0: (5.14)

Due to the ellipticity, v is smooth: v 2 C1(Ker j). Applying Green’s formula from
Theorem 3.1, we have

(pdv; pdv)L2 = (pdv; dv)L2 = ¡(–pdv; v)L2 = 0;

i.e., pdv = 0. Hence, v is a trace-free conformal Killing fleld. According to Theorem 1.3, if
such a fleld satisfles the homogeneous boundary condition v

flfl
@M

= 0 then it is identically
zero.

Let Sm¿ 0flfl
@M

denote the restriction of the bundle Sm¿ 0 to the boundary. To prove the
triviality of the co-kernel of the boundary value problem (5.3), we need the following
proposition.

Lemma 5.4. If a tensor fleld u 2 C1¡
Sm¿ 0flfl

@M

¢
satisfles the condition ju = 0 then there

exists v 2 C1(Sm¿ 0) satisfying the conditions v
flfl
@M

= 0; jv = 0 and such that

j”pdvj@M = u; (5.15)

where ” is the outward normal vector to the boundary.

The proof of Lemma 5.4 will be given below. We now flnish the proof of Theorem 5.1
with the help of the lemma.

Assume a fleld w 2 C1(Ker j) to be orthogonal to the range of the operator of the
boundary value problem (5.3), i.e.,

(w; –pdv)L2 = 0 (5.16)

for every v 2 C1(Ker j) satisfying the boundary condition v
flfl
@M

= 0. We have to show
w · 0. We flrst choose v such that supp v ‰ M n @M . Green’s formula and (5.16) imply

(–pdw; v)L2 = (w; –pdv)L2 = 0:

Since v 2 C1
0 (Ker j) is arbitrary, this means

–pdw = 0: (5.17)
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For an arbitrary u 2 C1¡
Ker j

flfl
@M

¢
, Lemma 5.4 guaranties the existence of some

v 2 C1(Ker j) which satisfles (5.15) and vanishes on the boundary. With the help of
Green’s formula, (5.15){(5.17) yield

0 = (w; –pdv)L2 = (–pdw; v)L2 +

Z

@M

hw; j”pdvidV 0 =

Z

@M

hw; uidV 0:

This means w
flfl
@M

= 0 since u is arbitrary. So, w belongs to the kernel of the boundary
problem operator. As was already proved, such w must be identically equal to zero.
Theorem 5.1 is proved. ⁄

Proof of Lemma 5:4. In order to simplify the notation, we give here the proof only in the
case of an odd m. The case of an even m is considered in a similar way. Both the cases
can be considered simultaneously but with much more complicated notation.

In virtue of the condition v
flfl
@M

= 0, (5.15) can be considered as an algebraic equation

in the unknown @v=@”
flfl
@M

. We are going to prove the existence and uniqueness of a
solution to the equation under the condition ju = 0. Moreover, the solution satisfles
j@v=@”

flfl
@M

= 0 as will be shown. Then the proof of the existence is realized by choosing

a section v of the vector bundle Ker j with prescribed boundary values v
flfl
@M

= 0 and

@v=@”
flfl
@M

.

We choose normal boundary coordinates (x1; : : : ; xn) = (x1; : : : ; xn¡1; y) in a neighbor-
hood of a boundary point so that gin = –in and the boundary is deflned by the equation
y = 0. Below the Greek indices change from 1 to n ¡ 1. We deflne the tensor flelds
u(s); v(s) 2 C1(Ss¿ 0

@M) for 0 • s • 2m + 1 by the formulas

v(s)
fi1:::fis

=
@vfi1:::fisn:::n

@y

flflflfl
y=0

; u(s)
fi1:::fis

= 2(m + 1)(n + 4m)ufi1:::fisn:::n: (5.18)

The condition ju = 0 is expressed in terms of u(s) as follows:

u(s) + ju(s+2) = 0:

From this,

u(2s) = (¡j)m¡su(2m); u(2s+1) = (¡j)m¡su(2m+1): (5.19)

Using (3.8), we transform (5.15) to the form

j”

µ
dpv ¡ 2m + 1

n + 4m
i–pv

¶flflflfl
@M

= u:

If jv = 0 then pv = v and the equation simplifles to the following one:

j”

µ
dv ¡ 2m + 1

n + 4m
i–v

¶flflflfl
@M

= u: (5.20)

We are going to derive some recurrent formulas from (5.20) which uniquely determine the
tensors v(s).

In the normal boundary coordinates, the vector ” has the coordinates (0; : : : ; 0; 1) and
equation (5.20) takes the form

(dv)ni1:::i2m+1jy=0 ¡ 2m + 1

n + 4m
(i–v)ni1:::i2m+1jy=0 = ui1:::i2m+1 : (5.21)
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Set (i1; : : : ; is) = (fi1; : : : ; fis) and is+1 = ¢ ¢ ¢ = i2m+2 = n in the equality

(dv)i1:::i2m+2 =
1

2m + 2

µ
@vi2:::i2m+2

@xi1
+

@vi1i3:::i2m+2

@xi2
+ ¢ ¢ ¢ +

@vi1:::i2m+2

@xi2m+1

¶
:

The flrst s summands on the right-hand side vanish on @M since v
flfl
@M

= 0. The last 2m¡
s + 2 summands are pairwise equal. Hence,

(dv)fi1:::fisn:::njy=0 =
2m ¡ s + 2

2(m + 1)
v(s)

fi1:::fis
: (5.22)

Similarly, we deduce

(–v)fi1:::fisn:::njy=0 = v(s)
fi1:::fis

: (5.23)

Setting (i1; : : : ; is) = (fi1; : : : ; fis) and is+1 = ¢ ¢ ¢ = i2m+2 = n in the equality

(i–v)i1:::i2m+2 =
1

(2m + 2)!

X
…2ƒ2m+2

gi…(1)i…(2)
(–v)i…(3):::i…(2m+2)

and analyzing the right-hand side in the same way as has been used for deriving (4.9), we
obtain

(i–v)fi1:::fisn:::n

flfl
y=0

=
(2m ¡ s + 1)(2m ¡ s + 2)

(2m + 1)(2m + 2)
(–v)fi1:::fisn:::n

flflflfl
y=0

+
s(s ¡ 1)

(2m + 1)(2m + 2)
¾(fi1 : : : fis)

¡
gfi1fi2(–v)fi3:::fisn:::n

flfl
y=0

¢
:

With the help of (5.23), this gives

(i–v)fi1:::fisn:::n

flfl
y=0

=
(2m ¡ s + 1)(2m ¡ s + 2)

(2m + 1)(2m + 2)
v(s)

fi1:::fis

+
s(s ¡ 1)

(2m + 1)(2m + 2)

¡
iv(s¡2)

¢
fi1:::fis

: (5.24)

We set (i1; : : : ; is) = (fi1; : : : ; fis) and is+1 = ¢ ¢ ¢ = i2m+2 = n in (5.21). Then we
substitute values (5.22) and (5.24) for the summands on the left-hand side of (5.21) and
value (5.18) for the right-hand side of (5.21). In such the way we obtain the recurrent
formula

(2m ¡ s + 2)(n + 2m + s ¡ 1)v(s) ¡ s(s ¡ 1)iv(s¡2) = u(s):

In view of (5.19), this formula can be rewritten as

2(m¡s+1)(n+2m+2s¡1)v(2s)¡2s(2s¡1)iv(2s¡2) = (¡j)m¡su(2m); (5.25)

(2m¡2s+1)(n+2m+2s)v(2s+1)¡2s(2s+1)iv(2s¡1) = (¡j)m¡su(2m+1): (5.26)

Formulas (5.25) and (5.26) imply the following representations:

v(2s) =
sX

k=0

a(s; k)ikjm¡s+ku(2m); (5.27)

v(2s+1) =
sX

k=0

b(s; k)ikjm¡s+ku(2m+1); (5.28)

with some coe–cients a(s; k) and b(s; k) which depend on n; m; s, and k only. The de-
pendence on n and m is not indicated explicitly since the values of these two parameters
are flxed in the proof.
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Substitution of (5.27) and (5.28) into (5.25) and (5.26), respectively, imply the following
recurrent relations:

a(s; 0) =
(¡1)m¡s

2(m ¡ s + 1)(n + 2m + 2s ¡ 1)
;

a(s; k) =
(2s ¡ 1)

(m ¡ s + 1)(n+2m+2s¡1)
a(s¡1; k¡1) for 1 • k • s;

(5.29)

b(s; 0) =
(¡1)m¡s

(2m ¡ 2s + 1)(n + 2m + 2s)
;

b(s; k) =
2s(2s + 1)

(2m ¡ 2s + 1)(n + 2m + 2s)
b(s ¡ 1; k ¡ 1) for 1 • k • s:

(5.30)

The coe–cients a(s; k) and b(s; k) are uniquely determined by equations (5.29) and (5.30),
and formulas (5.27) and (5.28) show that the tensors v(2s) and v(2s+1) are uniquely deter-
mined by u(2m) and u(2m+1).

Finally, we have to prove the tensors v(2s) and v(2s+1) satisfy the equations

v(2s) + jv(2s+2) = 0 for 0 • s • m ¡ 1; (5.31)

v(2s+1) + jv(2s+3) = 0 for 0 • s • m ¡ 1 (5.32)

that are equivalent to the relation j @v
@”

flfl
@M

= 0 in view of the flrst formula in (5.18).
Applying the operator j to equation (5.27), we obtain

jv(2s+2) =
s+1X

k=0

a(s + 1; k)jikjm¡s+k¡1u(2m): (5.33)

We transpose the factors j and ik on the right-hand side of (5.33) with the help of
Lemma 2.2. We have to set n := n ¡ 1 and m := 2s ¡ 2k + 2 in the statement of the
ltmma since jm¡s+k¡1u(2m) is the tensor of rank 2s ¡ 2k + 2 on the (n ¡ 1)-dimensional
manifold @M . So we have

jv(2s+2) =
s+1X

k=0

a(s + 1; k)

µ
k(n + 4s ¡ 2k + 1)

(s + 1)(2s + 1)
ik¡1jm¡s+k¡1

+
(s ¡ k + 1)(2s ¡ 2k + 1)

(s + 1)(2s + 1)
ikjm¡s+k

¶
u(2m):

This equality can be transformed as follows:

jv(2s+2) =
sX

k=0

µ
(s¡k+1)(2s¡2k+1)

(s+1)(2s+1)
a(s+1; k)

+
(k+1)(n+4s¡2k¡1)

(s+1)(2s+1)
a(s+1; k+1)

¶
ikjm¡s+ku(2m): (5.34)

Substitution of (5.27) and (5.34) into (5.31) gives

sX

k=0

•
a(s; k) +

(s ¡ k + 1)(2s ¡ 2k + 1)

(s + 1)(2s + 1)
a(s + 1; k)

+
(k + 1)(n + 4s ¡ 2k ¡ 1)

(s + 1)(2s + 1)
a(s + 1; k + 1)

‚
ikjm¡s+ku(2m) = 0:
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Since u(2m) is an arbitrary tensor, the expression in the brackets must be equal to zero
for all s and k, i.e.,

a(s; k) +
(s ¡ k + 1)(2s ¡ 2k + 1)

(s + 1)(2s + 1)
a(s + 1; k)

+
(k + 1)(n + 4s ¡ 2k ¡ 1)

(s + 1)(2s + 1)
a(s + 1; k + 1) = 0 for 0 • k • s • m ¡ 1:

(5.35)

Similarly, (5.32) is equivalent to the equation

b(s; k) +
(s ¡ k + 1)(2s ¡ 2k + 3)

(s + 1)(2s + 3)
b(s + 1; k)

+
(k + 1)(n + 4s ¡ 2k + 1)

(s + 1)(2s + 1)
b(s + 1; k + 1) = 0 for 0 • k • s • m ¡ 1:

(5.36)

We have to prove the following statement: Being deflned by recurrent formulas (5.29)
and (5.30), the coe–cients a(s; k) and b(s; k) satisfy equations (5.35) and (5.36), re-
spectively. This can be proved with the help of the following explicit formulas for the
coe–cients:

a(s; k) =
(¡1)m¡s¡k

2

s!(2s¡1)!!(m¡s)!

(n+2m+2s¡1)!!

£ (n+2m+2s¡2k¡3)!!

(s¡k)!(m¡s+k+1)!(2s¡2k¡1)!!
; (5.37)

b(s; k) = (¡1)m¡s¡k s!(2s+1)!!(2m¡2s¡1)!!

(n+2m+2s)!!

£ 2k(n+2m+2s¡2k¡2)!!

(s¡k)!(2m¡2s+2k+1)!!(2s¡2k+1)!!
: (5.38)

Here we use the standard notation:

(2k)!! = 2kk!; (2k + 1)!! = (2k + 1)(2k ¡ 1) : : : 1; (¡1)!! = 1:

Formulas (5.37) and (5.38) are proved by substituting them into recurrent formulas (5.29)
and (5.30) and checking the validity of the resulting equations. Then the validity of
(5.35) and (5.36) is proved by substitution of values (5.37) and (5.38) followed by a direct
calculation. ⁄

6. Proof of Theorems 1.6 and 1.7

In this section, for a Riemannian manifold, we use the notions of a semibasic tensor fleld
and the vertical and horizontal derivatives of such a fleld. The corresponding deflnitions
are presented in [15, Ch. 3] (see also [4, x 4] where the case of a Finsler manifold is
considered as well). We denote the space of smooth semibasic (r; s)-tensor flelds on TM

by C1(flr
sM), and

v

r,
h

r : C1(flr
sM) ! C1(flr

s+1M) denote the vertical and horizontal
derivatives, respectively.

Proof of Theorem 1.6. Let u 2 C1(Sm¿ 0
M) be a trace-free conformal Killing tensor fleld,

i.e., ju = 0 and du = iv for some v 2 C1(Sm¡1¿ 0
M). We assume here m ‚ 1 since

the statement of the theorem is trivial in the case of m = 0. Deflne the function U 2
C1(TM) = C1(fl0

0M) as follows:
U(x; ») = ui1:::im(x)»i1 ¢ ¢ ¢ »im : (6.1)
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The function is homogeneous with respect to »,

U(x; t») = tmU(x; »); (6.2)

and satisfles the kinetic equation

HU(x; ») = j»j2vi1:::im¡1(x)»i1 ¢ ¢ ¢ »im¡1 ; (6.3)

where H denotes difierentiation along the geodesic °ow, and HU(x; ») = »i
h

riU . Since
ju = 0, the function U satisfles the equation

v

¢U = 0; (6.4)

where
v

¢ =
v

ri
v

ri is the vertical Laplacian (see Lemma 2.4).

Let us derive the commutation formula for
v

¢ and H. Since the vertical and horizontal
derivatives commute,

v

¢HU =
v

ri
v

ri

¡
»j

h

rjU
¢

=
v

ri
¡ h

riU + »j
h

rj

v

riU
¢

= 2
v

ri
h

riU + H
v

¢U:

By (6.4), this gives

v

¢HU = 2
v

ri
h

riU: (6.5)

We write the Pestov identity for the function U (see [15])

2
› h

rU;
v

rHU
fi ¡

v

ri

¡ h

riU ¢ HU
¢

=
flfl h

rU
flfl2

+
h

riw
i ¡ R»

¡ v

rU
¢
; (6.6)

where

R»

¡ v

rU
¢

= Rijkl»
i»k

v

rjU ¢
v

rlU (6.7)

and w is some semibasic vector fleld on TM . It depends on U quadratically but its value
is not relevant now. Since the sectional curvature is nonpositive, we have

R»

¡ v

rU
¢ • 0: (6.8)

We transform the flrst summand on the left-hand side of equation (6.6) with the help
of (6.5) as follows:

2
› h

rU;
v

rHU
fi

= 2
h

riU ¢
v

ri(HU)

=
v

ri

¡
2

h

riU ¢ HU
¢ ¡ 2

v

ri
h

riU ¢ HU

= ¡ v

¢HU ¢ HU +
v

ri

¡
2

h

riU ¢ HU
¢

= ¡
v

ri

v

riHU ¢ HU +
v

ri

¡
2

h

riU ¢ HU
¢

= ¡
v

ri

¡ v

riHU ¢ HU
¢

+
v

riHU ¢
v

riHU +
v

ri

¡
2

h

riU ¢ HU
¢

=
flfl v

rHU
flfl2

+
v

ri

¡
2

h

riU ¢ HU ¡
v

riHU ¢ HU
¢
:

Substitute this value into (6.6)

flfl v

rHU
flfl2

+
v

ri

¡ h

riU ¢ HU ¡
v

riHU ¢ HU
¢

=
flfl h

rU
flfl2

+
h

riw
i ¡ R»

¡ v

rU
¢
:
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We integrate this equality over ›M versus to the Liouville volume form d§ and transform
the integrals of divergent terms by the Gauss-Ostrogradsky formulas (see [15, Theorem
3.6.3])
Z

›M

‡flfl v

rHU
flfl2

+(n+2m)
›
»;

h

rU ¡
v

rHU
fi
HU

·
d§ =

Z

›M

‡flfl h

rU
flfl2¡R»

¡ v

rU
¢·

d§: (6.9)

The coe–cient (n+2m) appears here because the semibasic vector fleld
¡ h

rU ¡
v

rHU
¢
HU

is homogeneous of degree 2m+1 in ». With the help of the Euler formula for homogeneous
functions ›

»;
v

rHU
fi

= (m + 1)HU (6.10)

and of
›
»;

h

rU
fi

= HU , formula (6.9) takes the form
Z

›M

‡flfl v

rHU
flfl2 ¡ m(n + 2m)jHU j2

·
d§ =

Z

›M

‡flfl h

rU
flfl2 ¡ R»

¡ v

rU
¢·

d§: (6.11)

Now, we estimate the left-hand side of (6.11) as follows. At an arbitrary point (x; ») 2
›M , we represent the vector

v

rHU in the form

v

rHU = ‚» +
v

r?HU;
›
»;

v

r?HU
fi

= 0: (6.12)

Here ‚ = ‚(x; ») is some scalar function. The second summand of the representation has
a clear geometrical sense: If ˆx = HU

flfl
›xM

is a restriction of HU to the unit sphere ›xM

then
v

r?HU(x; ») = rˆx(») is the gradient of the function ˆx at the point » 2 ›xM .
Formula (6.3) implies that ˆx(») = vi1:::vim¡1

(x)»i1 ¢ ¢ ¢ »im¡1 . Applying the Euler for-

mula (6.10), we see that ‚ = (m + 1)HU . Thus, (6.12) implies

flfl v

rHU
flfl2

= (m + 1)2jHU j2 + jrˆxj2: (6.13)

By Green’s formula,
Z

›xM

jrˆxj2 d!(») = ¡
Z

›xM

ˆx¢!ˆx d!(»);

where ¢! is the spherical Laplacian on ›xM . The eigenvalues of ¡¢! are ‚k = k(n+k¡2),
k = 0; 1; : : : , and the spherical harmonics of degree k are the eigenfunctions corresponding
to ‚k. Since ˆx is a polynomial of degree m ¡ 1, the last integral can be estimated as
follows: Z

›xM

jrˆxj2 d!(») = ¡
Z

›xM

ˆx¢!ˆx d!(»)

• sup
k•m¡1

‚k

Z

›xM

jˆxj2 d!(»)

= (m ¡ 1)(n + m ¡ 3)

Z

›xM

jHU j2 d!(»):

Together with (6.13), this imply
Z

›M

‡flfl v

rHU
flfl2 ¡ m(n + 2m)jHU j2

·
d§ • ¡(2m + n ¡ 4)

Z

›M

jHU j2 d§:
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Taking this inequality into account, we derive from (6.11)

¡(2m + n ¡ 4)

Z

›M

jHU j2 d§ ‚
Z

›M

‡flfl h

rU
flfl2 ¡ R»

¡ v

rU
¢·

d§: (6.14)

The coe–cient (2m + n ¡ 4) is nonnegative since m ‚ 1 and n ‚ 2. Hence the left-
hand side of (6.14) is nonpositive. At the same time, the right-hand side of (6.14) is
nonnegative in virtue of (6.8). Thus, both sides of (6.14) are equal to zero. In particular,
flfl h

rU
flfl2 ¡ R»

¡ v

rU
¢

= 0 on ›M . Applying (6.8) once more, we obtain

R»(
v

rU) = 0 (6.15)

and
h

rU = 0 on ›M . Hence,
h

rU is identically zero on TM . Now, (6.1) implies 0 =
h

riU = riui1:::im»i1:::im . Thus, ru is identically zero on M , i.e., u is absolutely parallel.
Now, we prove the statement: u(x0) = 0 if all sectional curvatures at the point x0 are

negative. This implies u · 0 since u is absolutely parallel.

Given » 2 ›x0 , like in (6.12), we represent the vector
v

rU(x0; ») in the form
v

rU(x0; ») = „(»)» +
v

r?U(x0; »);
›
»;

v

r?U(x0; »)
fi

= 0: (6.16)

Here „ is some scalar function. We claim
v

r?U(x0; ») = 0 for all » 2 ›x0 . Indeed, assume
v

r?U(x0; ») 6= 0 for some ». Then, substituting (6.16) into (6.7) and using symmetries of
the curvature tensor, we infer

R»

¡ v

r?U(x0; »)
¢

= K
¡
x0; » ^

v

rU(x0; »)
¢flfl v

r?U
flfl2

< 0:

Here K
¡
x0; » ^

v

rU(x0; »)
¢

is the value of the sectional curvature at the point x0 in the

two-dimensional direction » ^
v

rU(x0; »). The last inequality contradicts (6.15).

Hence,
v

r?U(x0; ») = 0 for all » 2 ›x0 . This means that

U
flfl
›x0 M

= c = const: (6.17)

In the case of an odd m, the constant c must be equal to zero since the function U(x; »)
is odd in ». In the case of m = 2l > 0, (6.1) and (6.17) imply u(x0) = cgl. The condition
ju = 0 implies c = 0. Thus, u(x0) = 0 for all m.

We have proved the statements of Theorem 1.6 concerning trace-free conformal Killing
tensor flelds. We now prove the statements of the theorem concerning a Killing fleld by
induction in the rank m of the fleld.

The statements are valid in the cases of m = 0 and of m = 1 since a Killing vector fleld
is a trace-free conformal Killing fleld as well. Assume m ‚ 2 and let u 2 C1(Sm¿M) be
a Killing tensor fleld of rank m. Represent u in the form

u = ~u + iv; (6.18)

where ~u satisfles the condition j~u = 0. So, ~u is a trace-free conformal Killing fleld, and
thus, r~u = 0. Applying the operator d to (6.18), we obtain idv = 0. Hence, dv = 0, i.e.,
v is a Killing fleld. We obtain rv = 0 by the inductive assumption. So, both summands
on the right-hand side of (6.18) are absolutely parallel, and u is also an absolutely parallel
fleld.

The remaining statement on Killing flelds is proved in a similar way. ⁄
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Proof of Theorem 1.7. We now need the following corollary of Theorem A from [5] (see
also the remark after formulation of the theorem in [5]).

Proposition 6.1. Let (M; g) be a closed Riemannian manifold without conjugate points.
Let h 2 C1(M) and µ 2 C1(¿ 0

M). If the equation

HU(x; ») = h(x) + µi(x)»i; (x; ») 2 ›M;

has a solution U 2 C1(›M) then h = 0 and µ is an exact 1-form.

Assume now u to be a conformal Killing covector fleld, i.e.,

du = iv (6.19)

for some function v on M . Deflne the function U 2 C1(›M) by

U(x; ») = ui(x)»i; (x; ») 2 ›M:

As follows from (6.19), U satisfles the kinetic equation

HU(x; ») = v(x) on ›M:

Applying Proposition 6.1, we obtain v · 0. Since
¡
du(x)

¢
ij

»i»j = HU(x; ») = v(x) = 0;

we see that du = 0, i.e., u is a Killing covector fleld. If the geodesic °ow of (M; g) has a
dense orbit in ›M then HU = 0 implies U · const. This means that u · 0.

Assume now u to be a trace-free conformal Killing symmetric fleld of rank 2, i.e.,

du = iv; ju = 0

for some covector fleld v. Deflne the function

U(x; ») = uij(x)»i»j

on ›M . It satisfles the equation

HU(x; ») = vi(x)»i; (x; ») 2 ›M: (6.20)

By Proposition 6.1, v is an exact 1-form, i.e.,

v = d’ (6.21)

for some function ’ on M . Formulas (6.20) and (6.21) imply

d(u ¡ ’g) = 0: (6.22)

Since ju = 0, this means u is the trace-free part of the Killing fleld u ¡ ’g. On the other
hand, the trace-free part of a Killing tensor fleld is obviousely a trace-free conformal
Killing fleld.

If the geodesic °ow (M; g) has a dense in ›M orbit then u¡’g = cg for some constant c,
as follows from (6.22). Together with the condition ju = 0, this means u = 0. Theorem
1.6 is proved. ⁄
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7. Comparison of differential operators modulo low order terms

In our studying difierential operators on tensor flelds, we will usually ignore low order
terms. In order to simplify the exposition, we introduce the following notation: If A
and B are two difierential expressions, we write

Au = Bu (mod rku) on A
if there exists a difierential operator L(k) of order k such that

Au = Bu + L(k)u

for all tensor flelds u belonging to the subspace A of the space C1(›⁄¿ 0). The choice of
the subspace will be mostly clear from the context. Similar notation is used for difierential
operators depending on several variables.

Lemma 7.1. For k ‚ 1 and u 2 C1(›m¿ 0);

rj1:::jk
ui1:::im = ¾(j1 : : : jk)

¡rj1:::jk
ui1:::im

¢
(mod rk¡2u):

We omit the proof that can be easily carried out by induction in k starting from the
following formula for the second order derivatives:

¡rjk ¡ rkj

¢
ui1:::im =

mX
a=1

Rp
iakjui1:::ia¡1pia+1:::im ; (7.1)

where
¡
Rp

ijk

¢
is the curvature tensor.

Lemma 7.2. For v 2 C1(Sm¿ 0) and p ‚ 0;

rj1:::jm+pvi1:::im = ¾(i1 : : : im)¾(j1 : : : jm+p)
mX

l=0

(¡1)l

µ
p + l ¡ 1

l

¶µ
m + p

m ¡ l

¶

£ rim¡l+1:::imjl+p+1:::jm+p(dpv)i1:::im¡lj1:::jl+p
(mod rm+p¡2v):

Proof. Deflne the tensors u and f as follows:

ui1:::imj1:::jpk1:::km = ¾(j1 : : : jpk1 : : : km)rj1:::jpk1:::kmvi1:::im ;

fi1:::imj1:::jpk1:::km = ¾(i1 : : : imj1 : : : jp)¾(k1 : : : km)rj1:::jpk1:::kmvi1:::im :
(7.2)

By Lemma 7.1, we have

rj1:::jpk1:::kmvi1:::im = ui1:::imj1:::jpk1:::km (mod rm+p¡2v): (7.3)

Applying the operator ¾(i1 : : : imj1 : : : jp)¾(k1 : : : km) to this equation and using (7.2), we
obtain

¾(i1 : : : imj1 : : : jp)ui1:::imj1:::jpk1:::km = fi1:::imj1:::jpk1:::km (mod rm+p¡2v):

Hence, u and f satisfy the hypotheses of Lemma 2.1. Application of the lemma gives

ui1:::imj1:::jm+p = ¾(i1 : : : im)¾(j1 : : : jm+p)
mX

l=0

(¡1)l

µ
p + l ¡ 1

m ¡ l

¶µ
m + p

m ¡ l

¶

£ fi1:::im¡lj1:::jm+pim¡l+1:::im (mod rm+p¡2v): (7.4)

From (7.2) and Lemma 7.1, we deduce

fi1:::imj1:::jpk1:::km = ¾(k1 : : : km)
¡rk1:::km(dpv)i1:::imj1:::jp

¢
(mod rm+p¡2v):

Substituting the last expression into (7.4) and using equality (7.3), we obtain the state-
ment of the lemma. ⁄
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Lemma 7.3. Let ui 2 C1(›mi¿ 0) for 1 • i • k. If; for every i; there exists pi ‚ 1 such
that

rpiui = 0 (mod rp1¡1u1; : : : ; rpk¡1uk)

and ui(x0) = 0; rui(x0) = 0; : : : ; rpi¡1ui(x0) = 0 at some point x0 of a connected
manifold M then all the flelds ui are identically equal to zero.

Proof. We present only the scheme of the proof without details. In order to show that ui

vanish at some point x1, we connect the points x0 and x1 by a smooth curve x(t). The
components of tensors ui(t) = ui

¡
x(t)

¢
satisfy a linear homogeneous system of ordinary

difierential equations with homogeneous initial conditions. The order of the system with
respect to ui(t) equals pi and the system is solved with respect to the highest order
derivatives. This implies the statement of the lemma. ⁄

The last two lemmas imply the following proposition.

Lemma 7.4. Assume M to be connected and ui 2 C1(Smi¿ 0); 1 • i • k. If; for every i;
there exists pi such that

d piui = 0 (mod rp1¡1u1; : : : ; rpk¡1uk)

and
ui(x0) = 0; rui(x0) = 0; : : : ; rmi+pi¡1ui(x0) = 0

at some point x0 then all ui are identically equal to zero.

8. Commutation formula for d and –. The operator ¢

Let the operator ¢ : C1(Sm¿ 0) ! C1(Sm¿ 0) be deflned as follows:

(¢u)i1:::im = gjkrjkui1:::im : (8.1)

This difierential operator has the order 2 and the degree 0, and acts on sections of the
flber bundle S⁄¿ 0: Probably, (7.2) is not the best deflnition of the Laplacian, and some zero
order terms should be added to the right-hand side like for the Laplacian on difierential
forms. However, the most of our statements concerning ¢ are formulated modulo low
order terms, and such statements are independent of low order terms on the right-hand
side of (8.1).

Lemma 8.1. The operator ¢ is formally self-adjoint and satisfles the relations

¢i = i¢; (8.2)

¢j = j¢; (8.3)

¢ldku = dk¢lu (mod rk+2l¡2u); (8.4)

¢l–ku = –k¢lu (mod rk+2l¡2u): (8.5)

Proof. As follows from Green’s formula, for u; v 2 C1
0 (S⁄¿ 0),

(¢u; v)L2 = ¡(ru; rv)L2 :

This implies the flrst statement of the lemma since the right-hand side of the last formula
is symmetric in u and v. Equality (8.2) is proved by a direct calculation in coordinates
which is omitted, and (8.3) follows from (8.2) since these relations are dual to each other.

We now prove (8.4) in the case of k = l = 1. For u 2 C1(Sm¿ 0), we have

(¢du)i1:::im+1 = ¾(i1 : : : im+1)(gjkrjkim+1ui1:::im);

(d¢u)i1:::im+1 = ¾(i1 : : : im+1)(gjkrim+1jkui1:::im):
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By Lemma 7.1, the right-hand sides of these equalities coincide modulo ru. This proves
(8.4) for k = l = 1. In the general case, (8.4) is proved by induction in k and l. Formula
(8.5) follows from (8.4) by conjugation. ⁄

We deflne the operator R 2 Hom(S⁄¿ 0; S⁄¿ 0) by setting

(Ru)i1:::im =
mX

a=1

gijRiiauji1:::bia:::im
+ 2

X

1•a<b•m

gipgjqRiiajib
upqi1:::bia:::bib:::im

for u 2 Sm¿ 0. Here (Rijkl) is the curvature tensor, and
¡
Rij = gklRkijl

¢
is the Ricci tensor.

The second sum on the right-hand side is absent in the case of m = 1, .

Lemma 8.2. The following commutation formula holds on C1(Sm¿ 0):

–d =
1

m + 1
(md– + ¢ ¡ R):

Proof. For u 2 C1(Sm¿ 0); we have

(m + 1)(–du)i1:::im = (m + 1)gim+1im+2rim+2(du)i1:::im+1

= gim+1im+2

ˆ
rim+2im+1ui1:::im +

mX
a=1

rim+2iaui1::: bia:::im+1

!
:

This can be written in the form

(m + 1)(–du)i1:::im = (¢u)i1:::im +
mX

a=1

ria

¡
gim+1im+2rim+2ui1::: bia:::im+1

¢

¡
mX

a=1

gim+1im+2
¡riaim+2 ¡ rim+2ia

¢
ui1::: bia:::im+1

:

Denote the last sum on the right-hand side of this equality by Ai1:::im and rewrite the
formula as

(m + 1)(–du)i1:::im = (¢u)i1:::im + m(d–u)i1:::im ¡ Ai1:::im : (8.6)

According to (7.1), we have

Ai1:::im = gim+1im+2

mX
a=1

m+1X
b=1
b 6=a

Rp
ibim+2ia

ui1:::bia:::ib¡1pib+1:::im+1
:

We distinguish the summands corresponding to b = m + 1. Then

Ai1:::im =
mX

a=1

gim+1im+2Rp
im+1im+2ia

ui1:::bia:::imp

+ 2
X

1•a<b•m

gim+1im+2Rp
ibim+2ia

ui1:::bia:::bib:::im+1p = (Ru)i1:::im :

The statement of the lemma immediately follows by substituting the last expression
into (8.6). ⁄

We are going to use only the following corollary of Lemma 8.2:

–du =
m

m + 1
d–u +

1

m + 1
¢u (mod u) for u 2 C1(Sm¿ 0): (8.7)
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Lemma 8.3. For arbitrary nonnegative integers m; k; and l; the equality

–ldku =
l!(m + k ¡ l)!

(m + k)!

X
p

µ
k

p

¶µ
m

l ¡ p

¶
dk¡p¢p–l¡pu (mod rk+l¡2u) (8.8)

holds for all u 2 C1(Sm¿ 0). The summation in (8.8) is taken over all integers p under
the agreement:

µ
i

j

¶
= 0 for j < 0 or i < j; and i! = 0 for i < 0: (8.9)

Proof. Equality (8.8) is trivial for k = 0 or l = 0. For k = l = 1, it coincides with (8.7).
In the case of l = 1 and and of an arbitrary k, (8.8) looks as follows:

–dku =
m

m + k
dk–u +

k

m + k
dk¡1¢u (mod rk¡1u): (8.10)

The trivial case m = k = 0 is not considered here. We prove (8.10) by induction in k.
Assume (8.10) to be valid for some k ‚ 1. Then

–dk+1u = –dk(du) =

µ
m + 1

m + k + 1
dk– +

k

m + k + 1
dk¡1¢ (mod rk¡1)

¶
du

=
m + 1

m + k + 1
dk– du +

k

m + k + 1
dk¡1¢ du (mod rku):

Taking (8.4) and (8.7) into account, this gives

–dk+1u =
m + 1

m + k + 1
dk

µ
m

m + 1
d–u +

1

m + 1
¢ u (mod u)

¶

+
k

m + k + 1
dk¢ u (mod rku)

=
m

m + k + 1
dk+1 –u +

k + 1

m + k + 1
dk ¢ u (mod rku):

The last relation coincides with (8.10) for k := k + 1. Hence, (8.10) is proved.
Equality (8.8) is trivial for l > k + m since, in this case, both its sides are equal to

zero. Hence it su–ces to prove (8.8) for 1 • l • k + m. We use induction in l. For
l = 1, equality (8.8) is already established. Assume now that (8.8) is satisfled for some
1 • l < k + m. Then

–l+1dku = –(–ldku) =
l!(m + k ¡ l)!

(m + k)!

X
p

µ
k

p

¶µ
m

l ¡ p

¶
(–dk¡p)¢p–l¡pu (mod rk+l¡1u):

Using (8.10) and (8.5), we transform the last formula to the following one:

–l+1dku =
l!(m + k ¡ l)!

(m + k)!

X
p

µ
k

p

¶µ
m

l ¡ p

¶

£
•

m ¡ l + p

m ¡ l + k
dk¡p¢p–l¡p+1u +

k ¡ p

m ¡ l + k
dk¡p¡1¢p+1–l¡pu

‚
(mod rk+l¡1u):

Combining the flrst summand in the brackets of the pth term and the second summand
of the (p ¡ 1)th term, we arrive to (8.8) for l := l + 1. ⁄
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Lemma 8.4. For arbitrary nonnegative integers m and k; the equality

–kiu =
1

(m+1)(m+2)

‡
2k(m¡k+2)d–k ¡1u+k(k¡1)¢–k ¡2u

+(m¡k+1)(m¡k+2)i–ku
·

(mod rk ¡2u) (8.11)

is valid for all u 2 C1(Sm¿ 0). If m + k ‚ 2 then

jdku =
1

(m + k ¡ 1)(m + k)

‡
2kmdk¡1–u + k(k ¡ 1)dk¡2¢u

+ m(m ¡ 1)dkju
·

(mod rk¡2u): (8.12)

Proof. These equalities are dual to each other. Hence it su–ces to prove the second one.
We prove (8.12) by induction in k. This equality is trivial for k = 0 and coincides

with (3.6) for k = 1. Assume (8.12) to be valid for some k ‚ 1. Then

jdk+1u = (jdk)du =
1

(m + k)(m + k + 1)

‡
2k(m + 1)dk¡1–du + k(k ¡ 1)dk¡2¢du

+ m(m + 1)dkjdu
·

(mod rk¡1u):

Transforming each summand on the right-hand side according to Lemmas 8.3, 8.1,
and 3.3, respectively, we arrive to (8.12) for k := k + 1. ⁄

9. Proof of theorem 1.1 in the case of n = dim M ‚ 3

In the case of m = 0, equation (1.3) reduces to du = 0 for a scalar function u, and
Theorem 1.1 is obvious in this case. Hence we assume m ‚ 1 in this section.

Roughly speaking, the next lemma allows us to eliminate u from equations (1.2){(1.3).

Lemma 9.1. Let u 2 C1(Sm¿ 0) and v 2 C1(Sm¡1¿ 0) satisfy (1.2){(1.3). Then

(n + 2m ¡ 4)dm+1v = i
¡
(m ¡ 1)dm–v ¡ dm¡1¢v

¢
(mod rmu); (9.1)

jv = 0; (9.2)

v = 0 (mod ru): (9.3)

Proof. Applying the operator j to equation (1.3) and using Lemma 3.3, we obtain

(m + 1)jiv = (m + 1)jdu = 2–u + (m ¡ 1)dju:

Since ju = 0, this gives

v =
2

m + 1
(ji)¡1–u: (9.4)

Observe that j(–u) = –ju = 0. Applying Lemma 2.2 to –u, we obtain

(ji)¡1–u =
m(m + 1)

2(n + 2m ¡ 2)
–u:

Substitute this expression into (9.4) to obtain

v =
m

n + 2m ¡ 2
–u: (9.5)

In particular, this implies (9.2) and (9.3).
In order to prove (9.1), we introduce the temporary notation f = iv. Equation (1.3)

can be written as du = f . The latter equation can be solved in rm+1u. Indeed, applying
Lemma 7.2 with p = 1, we obtain
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rj1:::jm+1ui1:::im = ¾(i1 : : : im)¾(j1 : : : jm+1)
mX

l=0

(¡1)l

µ
m + 1

l + 1

¶

£ rim¡l+1:::imjl+2:::jm+1fi1:::im¡lj1:::jl+1
(mod rm¡1u): (9.6)

Our further arguments are difierent in the cases of m = 1 and of m > 1. We flrst
assume m > 1. We contract equation (9.6) with gim¡1im (i.e., multiply this equation by
gim¡1im and take the sum over im¡1 and im). In virtue of the equality

gim¡1imrj1:::jm+1ui1:::im = rj1:::jm+1(ju)i1:::im¡2 = 0;

we obtain

¾(j1 : : : jm+1)
m+1X

l=1

(¡1)l

µ
m + 1

l

¶
gim¡1im

£ ¾(i1 : : : im)rim¡l+2:::imjl+1:::jm+1fi1:::im¡l+1j1:::jl
= 0 (mod rm¡1u): (9.7)

Using Lemma 7.1 and the equality f = iv = 0 (mod ru) which follows from (9.3), we
can permute the indices in each factor of the product

rim¡l+2:::imjl+1:::jm+1fi1:::im¡l+1j1:::jl

without violating equation (9.7). Using this observation, we divide all summands of the
sum in (9.7) to three groups so that the indices im¡1 and im belong to the flrst (second)
factor in all summands of the flrst (third) group, and belong to difierent factors in the
summands of the second group. Rename these indices as im¡1 = p1 and im = p2 for
clarity. In such the way we obtain

¾(i1 : : : im¡2)¾(j1 : : : jm+1)
m+1X

l=1

(¡1)l

µ
m + 1

l

¶
gp1p2

£
‡

(l ¡ 1)(l ¡ 2)rim¡l+2:::im¡2jl+1:::jm+1p1p2fi1:::im¡l+1j1:::jl

+ 2(l ¡ 1)(m ¡ l + 1)rim¡l+1:::im¡2jl+1:::jm+1p2fi1:::im¡lj1:::jlp1

+ (m¡l)(m¡l+1)rim¡l:::im¡2jl+1:::jm+1fi1:::im¡l¡1j1:::jlp1p2

·
= 0 (mod rm¡1u):

Now, we symmetrize this equation in all free indices (i.e., apply the operator
¾(i1 : : : im¡2j1 : : : jm+1)). Changing simultaneously notations as j1 = im¡1; : : : ; jm+1 =
i2m¡1, we get

¾(i1 : : : i2m¡1)
m+1X

l=1

(¡1)l

µ
m + 1

l

¶
gp1p2

£
h
(l ¡ 1)(l ¡ 2)rim+2:::i2m¡1p1p2fi1:::im+1

+ 2(l ¡ 1)(m ¡ l + 1)rim+1:::i2m¡1p2fi1:::imp1

+ (m ¡ l)(m ¡ l + 1)rim:::i2m¡1fi1:::im¡1p1p2

i
= 0 (mod rm¡1u):

Observe that, for difierent values of l, the values of the flrst (second, third) summand in
the brackets difier only by some factors. So the equation is transformed to the following
form:

¾(i1 : : : i2m¡1)
‡

arim+2:::i2m¡1p1p2fi1:::im+1 + brim+1:::i2m¡1p2fi1:::imp1

+ crim:::i2m¡1fi1:::im¡1p1p2

·
gp1p2 = 0 (mod rm¡1u); (9.8)
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where
a =

m+1X

l=1

(¡1)l

µ
m + 1

l

¶
(l ¡ 1)(l ¡ 2) = ¡2;

b = 2
m+1X

l=1

(¡1)l

µ
m + 1

l

¶
(l ¡ 1)(m ¡ l + 1) = 2(m + 1);

c =
m+1X

l=1

(¡1)l

µ
m + 1

l

¶
(m ¡ l)(m ¡ l + 1) = ¡m(m + 1):

Substituting these values for the coe–cients, we write (9.8) in the coordinate-free form

2dm¡2¢f ¡ 2(m + 1)dm¡1–f + m(m + 1)dmjf = 0 (mod rm¡1u): (9.9)

We recall that f = iv and express all summands of (9.9) in terms of v. Lemma 2.2
and (9.2) imply

jf = jiv =
2(n + 2m ¡ 2)

m(m + 1)
v: (9.10)

With the help of Lemma 3.3, we deduce

–f = –iv =
2

m + 1
dv +

m ¡ 1

m + 1
i–v: (9.11)

Since the operators i and ¢ commute, we have

¢f = ¢iv = i¢v: (9.12)

Substituting (9.10){(9.12) into (9.9) and using the commutation formula di = id, we
arrive to the relation

(n + 2m ¡ 4)dmv = i
¡
(m ¡ 1)dm¡1–v ¡ dm¡2¢v

¢
(mod rm¡1u): (9.13)

Applying the operator d to this equation, we obtain (9.1).
Let us now consider the case of m = 1. Equation (9.6) takes the form

rj2j3ui = rj2fij3 + rj3fij2 ¡ rifj2j3 (mod u):

After difierentiation we obtain

rj1j2j3ui = rj1j2fij3 + rj1j3fij2 ¡ rj1ifj2j3 (mod ru): (9.14)

According to Lemma 9.1, the third order derivatives satisfy the relation

rj1j2j3ui ¡ rj2j1j3ui = 0 (mod ru):

Inserting (9.14) into the last equation, we obtain

rj1j3fij2 + rij2fj1j3 ¡ rj2j3fij1 ¡ rij2fj2j3 = 0 (mod ru):

Now, substituting f = iv, we deduce

gij2rj1j3v + gj1j3rij2v ¡ gij1rj2j3v ¡ gj2j3rij1v = 0 (mod ru):

Contracting this equation with gj1j3 , we arrive to the formula

(n ¡ 2)rijv = ¡(¢v)gij (mod ru)

that coincides with (9.1) for m = 1. ⁄
Observe that, in the case of m > 1, we have established relation (9.13) which is stronger

than that of Lemma (9.1).
The next statement plays the main role in the proof of Theorem 1.1.
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Lemma 9.2. Assume u 2 C1(Sm¿ 0) and v 2 C1(Sm¡1¿ 0) to satisfy (1.2) and (1.3) for
m ‚ 1. Then; for every integer l such that 0 • l • 2m; the equation

p2X
p=p1

apdm¡l+p+1¢l¡p–pv = i

p4X
p=p3

bpdm¡l+p¡1¢l¡p+1–pv (mod rm+lu) (9.15)

is valid with some rational coe–cients ap = ap(n; m; l) and bp = bp(m; l). Here the
summation limits are deflned as follows:

p1 = p1(m; l) = max(0; l ¡ m ¡ 1);

p2 = p2(m; l) = min(m ¡ 1; l);

p3 = p3(m; l) = max(0; l ¡ m + 1);

p4 = p4(m; l) = min(m ¡ 1; l + 1):

(9.16)

The coe–cients ap1 and ap2 are not equal to zero.

Proof. Apply the operator –l to equation (9.1)

(n + 2m ¡ 4)–ldm+1v = –li
¡
(m ¡ 1)dm–v ¡ dm¡1¢v

¢
(mod rm+lu):

We transform the right-hand side of this equality with the help of Lemma 8.4 and obtain

2m(2m ¡ 1)(n + 2m ¡ 4)–ldm+1v ¡ 2l(2m ¡ l)(m ¡ 1)d–l¡1dm–v

¡ l(l¡1)(m¡1)¢–l¡2dm–v+2l(2m¡l)d–l¡1dm¡1¢v+l(l¡1)¢–l¡2dm¡1–v

= (2m ¡ l)(2m ¡ l ¡ 1)i
£
(m ¡ 1)–ldm–v ¡ –ldm¡1¢v

⁄
(mod rm+lu):

Taking (9.3) into account, we transform each summand on the left-hand side and the
summands in the brackets to the form dr¢s–tv by using the commutation formulas for
powers of d, –, and ¢ (see Lemmas 8.1 and 8.3). Elementary but cumbersome calculations
lead us to equation (9.15) where the summation is taken over all integers p under the
agreement dk = –k = ¢k = 0 for k < 0, and the coe–cients are as follows:

ap =

•
(n + 2m ¡ 4)

µ
m + 1

l ¡ p

¶
+ 2

µ
m ¡ 1

l ¡ p ¡ 1

¶
+

µ
m ¡ 1

l ¡ p ¡ 2

¶‚ µ
m ¡ 1

p

¶

¡ (m ¡ 1)

•
2

µ
m

l ¡ p

¶
+

µ
m

l ¡ p ¡ 1

¶‚ µ
m ¡ 2

p ¡ 1

¶
; (9.17)

bp = (m ¡ 1)

µ
m

l ¡ p + 1

¶µ
m ¡ 2

p ¡ 1

¶
¡

µ
m ¡ 1

l ¡ p

¶µ
m ¡ 1

p

¶
: (9.18)

Agreement (8.9) is used in (9.17) and (9.18).
Elementary arithmetical analysis of formula (9.17) shows that the coe–cients ap can

be nonzero for p1 • p • p2 only, where p1 and p2 are deflned in (9.16), and ap1 and ap2

are deflnitely nonzero. Similarly, (9.18) implies that bp can be nonzero for p3 • p • p4

only. ⁄

Proof of Theorem 1:1. Recall that we assume m ‚ 1. First we prove by induction in k
the equality

¢m+k–m¡kv = 0 (mod r3m+k¡1u) for 0 • k • m: (9.19)
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The equality is trivial for k = 0 since –mv = 0. Assume (9.19) to be valid for k =
0; : : : ; s ¡ 1 < m. We write (9.15) for l = 2m ¡ s + 1 as follows:

m¡1X
p=m¡s

apds+p¡m¢2m¡s+p+1–pv = i

m¡1X
p=m¡s+2

bpds+p¡m¡2¢2m¡s¡p+2–pv (mod r3m¡s+1u):

We apply the operator ¢s¡1 to this equality and transform all terms of the resulting
formula to the form dr¢s–tv with the help of (8.4). By Lemma 9.2, am¡s 6= 0. We
distinguish the flrst summand on the left-hand side and write the result as follows:

¢m+s–m¡sv +
m¡1X

p=m¡s+1

a0
pds+p¡m¢2m¡p–pv

= i

m¡1X
p=m¡s+2

b0
pds+p¡m¡2¢2m¡p+1–pv (mod r3m+s¡1u):

(9.20)

By the inductive hypothesis,

¢m+k–m¡kv = 0 (mod r3m+k¡1u) for 0 • k • s ¡ 1:

Setting k = m ¡ p here, we have

¢2m¡p–pv = 0 (mod r4m¡p¡1u) for m ¡ s + 1 • p • m ¡ 1:

Applying the operators ds+p¡m and ds+p¡m¡2¢ to this equation, we obtain

ds+p¡m¢2m¡p–pv = 0 (mod r3m+s¡1u) for m ¡ s + 1 • p • m ¡ 1;

ds+p¡m¡2¢2m¡p+1–pv = 0 (mod r3m+s¡1u) for m ¡ s + 2 • p • m ¡ 1:

Both sums on (9.20) are equal to zero (mod r3m+s¡1u), as follows from the last two
equations. Hence,

¢m+s–m¡sv = 0 (mod r3m+s¡1u):

This coincides with (9.19) in the case of k = s. This completes the inductive step.
Thus, (9.19) is proved.

Now we prove the equality

dm+2r+k¡1¢2m¡r¡k–kv = 0 (mod r5m¡2u) for 0 • r • 2m; 0 • k • 2m ¡ r (9.21)

by double induction in r and k.
Setting k := m ¡ k in (9.19), we have

¢2m¡k–kv = 0 (mod r4m¡k¡1u) for 0 • k • m:

Applying the operator dm+k¡1 to this equality, we obtain (9.21) for r = 0.
Assume now (9.21) to be valid valid for 0 • r • s ¡ 1 < 2m, i.e.,

dm+2r+k¡1¢2m¡r¡k–kv = 0 (mod r5m¡2u) for 0 • r • s ¡ 1; 0 • k • 2m ¡ r: (9.22)

We are going to prove (9.21) for r = s. To this end we write down (9.15) for l = 0
¡
this

is exactly (9.1)
¢

as follows:

(n + 2m ¡ 4)dm+1v = i
¡
(m ¡ 1)dm–v ¡ dm¡1¢v

¢
(mod rmu):

Applying the operator d2s¡2¢2m¡s to this equality, we obtain

(n + 2m ¡ 4)dm+2s¡1¢2m¡sv

= i
¡
(m ¡ 1)dm+2s¡2¢2m¡s–v ¡ dm¡2s¡3¢2m¡s+1v

¢
(mod r5m¡2u):
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Setting k = 0 and r = s ¡ 1 in (9.22), and then setting k = 1 and r = s ¡ 1 in (9.22),
we see that the right-hand side of the last formula equals zero (mod r5m¡2u). We have
thus proved (9.21) for r = s and k = 0.

Assume now (9.21) to be valid for r = s and 0 • k • t ¡ 1 < 2m ¡ s, i.e.,

dm+2s+k¡1¢2m¡s¡k–kv = 0 (mod r5m¡2u) for 0 • k • t ¡ 1: (9.23)

We are going to prove (9.21) for k = t.
If t ‚ m, then (9.21) is obviously true for k = t, since –tv = 0 in this case. Therefore

we assume

t • min(2m ¡ s; m ¡ 1) (9.24)

Recall also that

1 • s • 2m: (9.25)

Let us write down (9.15) for l = t. By (9.24) and (9.25), this equation takes the form

tX
p=0

apdm¡t+p+1¢t¡p–pv = i

p4X
p=0

bpdm¡t+p¡1¢t¡p+1–pv (mod rm+tu); (9.26)

where

p4 = min(m ¡ 1; t + 1): (9.27)

According to Lemma 9.2, the coe–cient at in (9.26) is not zero. We distinguish the last
summand on the left-hand side of (9.26) and apply the operator d2s+t¡2¢2m¡s¡t to this
equation

dm+2s+t¡1¢2m¡s¡t–tv +
t¡1X
p=0

a0
pdm+2s+p¡1¢2m¡s¡p–pv

= i

p4X
p=0

b0
pdm+2s+p¡3¢2m¡s¡p+1–pv (mod r5m¡2u): (9.28)

The sum on the left-hand side of (9.28) equals zero (mod r5m¡2u) by the inductive
hypothesis (9.23). We shall prove the same for the right-hand side.

Setting r = s ¡ 1 and k = p in (9.22), we obtain

dm+2s+p¡3¢2m¡s¡p+1–pv = 0 (mod r5m¡2u) for 0 • p • 2m ¡ s + 1: (9.29)

Inequalities (9.24) and (9.27) imply p4 • 2m ¡ s + 1. Therefore all the summands
on the right-hand side of (9.28) are equal to zero (mod r5m¡2u) according to (9.29).
Hence, (9.28) implies

dm+2s+t¡1¢2m¡s¡t–tv = 0 (mod r5m¡2u):

We have thus proved (9.23) for k = t. This completes the inductive step in k and r.
Thus, (9.21) is proved.

Setting r = 2m and k = 0 in (9.21), we obtain

d5m¡1v = 0 (mod r5m¡2u): (9.30)

According to (1.3), we have du = 0 (mod v). Applying the operator d5m¡2 to this equality,
we deduce

d5m¡1u = 0 (mod r5m¡2v): (9.31)

We write the initial conditions (1.4) in the form

u(x0) = 0; ru(x0) = 0; : : : ; r6m¡2u(x0) = 0: (9.32)
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From (9.3) and (9.32),

v(x0) = 0; rv(x0) = 0; : : : ; r6m¡3v(x0) = 0: (9.33)

We have thus proved that u and v satisfy equations (9.30) and (9.31) and the initial
conditions (9.32) and (9.33). Applying Lemma 7.4, we obtain u · v · 0 This flnishes the
proof of Theorem 1.1 in the case of n ‚ 3. ⁄

Recall that the highest order of derivatives in the initial conditions (1.4) is denoted by
l(m). We have shown in the proof that

l(m) • 6m ¡ 2 if m > 0:

As was mentioned after the statement of Theorem 1.1, this estimate is not sharp. The
exact value l(m) = 2m was found in [21] for m = 2, and in [1, 6] for an arbitrary m. In
the same papers, the upper bound

(n + m ¡ 3)!(n + m ¡ 2)!(n + 2m ¡ 2)(n + 2m ¡ 1)(n + 2m)

m!(m + 1)!(n ¡ 2)!n!

was established for the dimension of the space of trace-free conformal Killing symmetric
tensor flelds of the rank m on a manifold of dimension n ‚ 3. Both the estimates are
sharp and become equalities in the case of a conformal °at manifold.

10. Spherical harmonics Fourier series expansion
of solution to the kinetic equation

Let M be a Riemannian manifold. Recall the operator

‚ : C1(S⁄¿ 0) ! C1(›)

was deflned in Section 2. Let H be the vector fleld on T = TM which generates the
geodesic °ow. The fleld is expressed by (1.9) in local coordinates. The fleld is tangent
to the submanifold › ‰ T at points of the latter submanifold. Hence the fleld can be
considered as a difierential operator H : C1(›) ! C1(›) on the submanifold.

Lemma 10.1. The following equality holds on C1(S⁄¿ 0):

‚d = H‚: (10.1)

Since ‚ and H are restrictions to › of some operators deflned on T , it su–ces to prove
the equality

{d = H{; (10.2)

where H is considered as an operator on T , and the operator { : C1(S⁄¿ 0) ! C1(T ) has
been deflned in x 2. The last equality can be easily checked by calculations in coordinates,
and we omit the calculations.

Now, assume functions U; F 2 C1(›) to be linked by the kinetic equation

HU = F: (10.3)

From (10.3), we will deduce some equations that relate the Fourier series of the functions
U and F .

By Lemma 2.5, the functions U and F can be uniquely represented by the series

U =
1X

m=0

‚um; um 2 C1(Sm¿ 0); jum = 0; (10.4)

F =
1X

m=0

‚fm; fm 2 C1(Sm¿ 0); jfm = 0: (10.5)
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As well known [17], the Fourier series of a su–ciently smooth function on a sphere can be
termwise difierentiated with respect to the coordinates of a point of the sphere. The same
is true for the difierentiation with respect to the coordinates of a point x 2 M which play
the role of parameters in the series. Hence, (10.4) implies

HU =
1X

m=0

H‚um (10.6)

and the series converges absolutely and uniformly on any compact subset of ›.
According to Lemma 10.1, we have

H‚um = ‚dum: (10.7)

The condition jum = 0 is equivalent to pum = um. The last equality and Lemma 3.4
imply

dum = dpum = pdum +
m

n + 2m ¡ 2
i–pum = pdum +

m

n + 2m ¡ 2
i–um:

Apply the operator ‚ to this equality and use Lemma 2.4 to obtain

‚dum = ‚pdum +
m

n + 2m ¡ 2
‚–um:

Comparing this formula with (10.7), we see

H‚um = ‚pdum +
m

n + 2m ¡ 2
‚–um:

Substitute this expression into (10.6) to obtain

HU =
1X

m=0

‚

µ
pdum¡1 +

m + 1

n + 2m
–um+1

¶
: (10.8)

For convenience, we assume here u¡1 = 0. The expression in parentheses in (10.8) belongs
to the kernel of j since – and j commute. Hence, (10.8) is the Fourier series of the function
HU = F with respect to the spherical harmonics, i.e., (10.8) must coincide with (10.5).
We have thus proved the following

Theorem 10.2. Let U 2 C1(›) be a solution to the kinetic equation HU = F; and
let (10.4) and (10.5) be the spherical Fourier series of U and F ; respectively. Then

–u1 = nf0;

pdum +
m + 2

n + 2m + 2
–um+2 = fm+1 for m = 0; 1; 2; : : : ;

where n = dim M .

11. Proof of THeorem 1.1 in the two-dimensional case

We assume here n = dim M = 2. As well known, an isothermic coordinate system (x; y)
exists in some neighborhood of every point of a two-dimensional Riemannian manifold.
In such a coordinate system, the Riemannian metric has the form

ds2 = e2„(x;y)(dx2 + dy2): (11.1)

It su–ces to prove Theorem 1.1 under the assumption that such a coordinate system is
deflned on the whole of M .

Deflne the coordinate system (x; y; µ) on the three-dimensional manifold › such that µ is
the angle between the unit vector » 2 › and the coordinate line y = const. The spherical
harmonics series expansion of a function U(x; y; µ) 2 C1(›) coincides with the Fourier
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series with respect to µ. Hence the next statement is a particular case of Lemma 2.5 (cf.
the remark after statement of the lemma).

Lemma 11.1. Let u 2 C1(Sm¿ 0) and let

(‚u)(x; y; µ) =
1

2
a0(x; y) +

mX

k=1

¡
ak(x; y) cos kµ + bk(x; y) sin kµ

¢

be the Fourier series of the function ‚u 2 C1(›). Then

(‚pu)(x; y; µ) = am(x; y) cos mµ + bm(x; y) sin mµ:

Assume u and v to satisfy the hypotheses of Theorem 1.1. The assumption ju = 0 is
equivalent to pu = u. Then, according to Lemma 11.1, there exist functions a; b 2 C1(M)
such that

(‚u)(x; y; µ) = a(x; y) cos mµ + b(x; y) sin mµ: (11.2)

The condition du = iv is equivalent to pdu = 0. According to Lemma 11.1, this means that
the Fourier series of the function ‚du does not contain the harmonics of order m+1. Due
to Lemma 10.1, we have ‚du = H‚u. Hence the coe–cients at cos(m+1)µ and sin(m+1)µ
in the Fourier series of the function H‚u are equal to zero identically in (x; y).

The operator H has the following form in the coordinates (x; y; µ):

H = e¡„

µ
cos µ

@

@x
+ sin µ

@

@y
+ (¡„x sin µ + „y cos µ)

@

@µ

¶
: (11.3)

This can be derived from (1.9) and (11.1) by a direct calculation that is omitted.
Now, we express H‚u in terms of a and b using (11.2) and (11.3), and then expand H‚u

in the Fourier series in µ. Equating to zero the coe–cients of the series at cos(m + 1)µ
and sin(m + 1)µ, we arrive to the following equations:

ax ¡ by ¡ m(„xa ¡ „yb) = 0;

ay + bx ¡ m(„ya + „xb) = 0:
(11.4)

Introducing the notation

z = x + iy; w = a + ib;
@

@„z
=

1

2

µ
@

@x
+ i

@

@y

¶
;

we write (11.4) in the complex form

@

@„z
(e¡m„w) = 0:

So, e¡m„w is a holomorphic function. According to the hypotheses of Theorem 1.1, this
function vanishes together with all its derivatives at some point. Hence it is identically
zero. Now, (11.2) shows that ‚u · 0. Hence, u · 0 and Theorem 1.1. is proved.
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