
On conformal field theories in four dimensions

Citation
Lawrence, Albion, Nikita Nekrasov, and Cumrun Vafa. 1998. “On Conformal Field Theories 
in Four Dimensions.” Nuclear Physics B 533 (1–3): 199–209. https://doi.org/10.1016/
s0550-3213(98)00495-7.

Permanent link
http://nrs.harvard.edu/urn-3:HUL.InstRepos:41385079

Terms of Use
This article was downloaded from Harvard University’s DASH repository, and is made available 
under the terms and conditions applicable to Other Posted Material, as set forth at http://
nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA

Share Your Story
The Harvard community has made this article openly available.
Please share how this access benefits you.  Submit a story .

Accessibility

http://nrs.harvard.edu/urn-3:HUL.InstRepos:41385079
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://osc.hul.harvard.edu/dash/open-access-feedback?handle=&title=On%20conformal%20field%20theories%20in%20four%20dimensions&community=1/1&collection=1/2&owningCollection1/2&harvardAuthors=94de32e72db2c92c5d26fa6ce8721528&department
https://dash.harvard.edu/pages/accessibility


ar
X

iv
:h

ep
-t

h/
98

03
01

5v
2 

 6
 M

ar
 1

99
8

hep-th/9803015
HUTP-98/A015
ITEP-TH-15/98

On Conformal Field Theories in Four Dimensions

Albion Lawrence 2, Nikita Nekrasov 1,2 and Cumrun Vafa 2

1 Institute of Theoretical and Experimental Physics, 117259, Moscow, Russia
2 Lyman Laboratory of Physics, Harvard University, Cambridge, MA 02138

Extending recent work of Kachru and Silverstein, we consider “orbifolds” of 4-dimensional

N = 4 SU(n) super-Yang-Mills theories with respect to discrete subgroups of the SU(4)

R-symmetry which act nontrivially on the gauge group. We show that for every discrete

subgroup of SU(4) there is a canonical choice of imbedding of the discrete group in the

gauge group which leads to theories with a vanishing one-loop beta-function. We conjecture

that these give rise to (generically non-supersymmetric) conformal theories. The gauge

group is⊗iSU(Nni) where ni denote the dimension of the irreducible representations of the

corresponding discrete group; there is also bifundamental matter, dictated by associated

quiver diagrams. The interactions can also be read off from the quiver diagram. For

SU(3) and SU(2) subgroups this leads to superconformal theories with N = 1 and N = 2

respectively. In the N = 1 case we prove the vanishing of the beta functions to two loops.
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1. Introduction

It has been a longstanding problem in quantum field theories to obtain non-trivial

four dimensional theories with vanishing beta functions which lead to conformal theo-

ries [1]. With recent progress in understanding of supersymmetric gauge theories we have

learned how superconformal theories can arise in certain cases. However, not much progress

has been made for the non-supersymmetric case, due in particular to an absence of non-

renormalization theorems. Very recently, motivated by connections between the gauge

systems on branes and their supergravity realizations at large N [2][3], Kachru and Silver-

stein [4] (following the discussions in refs [5][6][7][8]) considered an “orbifold” construction

of gauge theories in four dimensions (with or without supersymmetry) and argued they

should be related to conformal fixed points (at least in large N)1. The aim of this paper

is to extend their construction. We find a large set of proposed gauge theories in four

dimensions, which we conjecture will lead to conformal fixed points. As a first check we

show that they all have vanishing one-loop beta functions for the gauge couplings.

We construct for every discrete subgroup Γ ⊂ SU(4) a gauge theory consisting of

gauge group G = ⊗SU(Nni) where N is an arbitrary integer and ni denote the dimen-

sions of the irreducible representations of Γ. The matter and interactions can be read off

from an associated “quiver” diagram. It consists of one node for each irreducible represen-

tation of Γ and fermionic and bosonic arrows connecting the nodes according to how the

4 and 6 dimensional represenations of Γ (inherited from SU(4)) act on each irreducible

representation. To each bosonic/fermionic arrow from node i to node j we associate a

bifundamental (Nni, Nnj) scalar/Weyl fermion (for i = j this corresponds to an adjoint

representation). There is a Yukawa coupling for each triangle on the quiver, consisting of

two fermionic arrows and a bosonic arrow; and quartic scalar interactions for each square

on the quiver, consisting of four bosonic arrows. The resulting gauge theory is chiral if and

only if Γ is a complex subgroup of SU(4), i.e. if 4 and 4̄ of SU(4) are inequivalent repre-

sentations of Γ. If Γ ⊂ SU(3) the resulting theory is an N = 1 theory and if Γ ⊂ SU(2)

it is an N = 2 theory. In such cases we can use the supersymmery structure to discuss a

reduced quiver (with only one kind of arrow, consisting of multiplication with 3 of SU(3)

and 2 of SU(2)).

1 The N = 1 example considered in [4] had previously been considered in connection with

finding a finite N = 1 theory in [9].
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If Γ ⊂ SU(2) we obtain an N = 2 theory. In fact it is known that this gives us all

possible superconformal theories with gauge group ⊗iSU(Nni) and bifundamental matter

[10], i.e. those theories which arise from quiver diagrams corresponding to affine ADE

Dynkin diagrams. Similarly, we conjecture that for the N = 1, 0 cases the theories we

construct, we also exhaust the possibilities for superconformal theories with gauge group

⊗iSU(Nni) and bifundamental matter. In all cases, we can provide some geometric intu-

ition for the meaning of the choices we have made for “orbifolding” based on the geometry

of branes imbedded in a string background.

2. Projections preserving conformal invariance

Kachru and Silverstein suggested that if one studies N D3-branes on various orbifolds

of IR6 and follows the conjecture of [3] (i.e. for values of N , gs, and Ms for which that

picture makes sense), then one finds that one is studying an orbifold of AdS5 × S5 where

the orbifold group acts only on the S5 factor. Since the conformal group of the field theory

is identified with the isometry group of AdS5, these orbifolds should lead to conformal field

theories on the D3-branes.

2.1. Projection of the field theory: general story

For the purposes of understanding the field content, one can simply work with the

perturbative open string theory on the D-branes, as was done in [5][6] for the N = 2 case

and in [8] for the N = 1 case. Since we would like to keep our discussion as close to

field theory as possible, we will abstract the discussion in [5] below and discuss general

projections on the fields of the original N = 4 theory. Within this abstract setup, we can

ask which projections lead to vanishing one-loop beta-functions for the gauge coupling. Of

course, in general the beta functions for other couplings must be checked as well.

We will start with an U(n) N = 4 field theory. As is well known (see for example [11]

for a discussion with references), this theory has an Spin(6) = SU(4) R-symmetry group

(the transverse rotation group of the D3-brane in the perturbative open string picture, or

the rotation group of the S5 in [3].) It contains the gauge bosons AIJ (I, J = 1, . . . , n)

which are singlets of SO(6); adjoint Weyl fermions Ψα
IJ with α in a 4 of SU(4); and

adjoint scalars Φm
IJ with m in the 6 of SO(6). We now wish to pick a discrete subgroup

Γ of Spin(6) which acts nontrivially on the gauge group; such an action corresponds to

the action of the orbifold group on the Chan-Paton factors of the open strings [12][5].
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Let {ri} be the set of unitary irreducible representations of Γ. We can specify the action

by breaking up the indices I into various representations Ri = CNiri of Γ such that
∑

i Nidim(ri) = n, where Ni denotes the number of times the representation ri appears in

this decomposition. Here Γ acts trivially on CNi . Note that for projections which break

only part of the supersymmetry, Γ will lie in SU(2), preserving N = 2 or SU(3), preserving

N = 1.

We now consider a modified theory whose fields correspond to keeping Γ-invariant

fields of the original theory, together with the terms in the action containing them. This

is not orbifolding in the usual sense of that word as it is not gauging a discrete symmetry.

However, we sometimes will continue to refer to this as orbifolding or projecting the original

theory; the justification of this terminology comes from the fact that in string context such

theories arise upon orbifolding string backgrounds. One may write U(n) adjoint fields

which are singlets under the broken R-symmetry as homomorphisms from Cn to itself, or

as Cn ⊗ (Cn)∗. The effect of this projection is easily derived:

Hom(Cn,Cn)
Γ
=

⊕

i,j

Hom(Ri,Rj)
Γ
=

⊕

i,j

(

CNi ⊗ (CNj )∗ ⊗ ri ⊗ r∗j
)Γ

=
⊕

i

CNi ⊗ (CNi)∗ ,

where the superscript Γ means keeping only the trivial representations in the decomposition

with respect to the irreps of Γ. Thus R-charge singlets break up into adjoints of U(Ni); in

particular the unbroken gauge group is

Gproj = ⊗iU(Ni) .

The U(1) factors decouple at low energies, so we will in fact consider

Gproj = ⊗iSU(Ni) .

The projection for fields carrying R-charge is a bit more complicated. Let us examine fields

transforming under the R-symmetry. For each (not necessarily irreducible) representation

R of Γ define the coefficients aRij by the equations

R⊗ ri = ⊕ja
R
ijrj (2.1)
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Then we may describe the projection of an adjoint field with R-charge as

(R⊗Hom(Cn,Cn))
Γ
=

⊕

i,j

(

R⊗Ri ⊗R∗
j

)Γ
=

⊕

i,j,k

aRij (Rj ⊗R∗
k)

Γ
=

⊕

i,j

aRi,jC
Ni ⊗ (CNi)∗ .

Now let 4, 6 denote representations of Γ coming from the fundamental and antisymmetric

representations of SU(4). Since the Weyl fermions transform according to 4 and scalars

according to 6 of the R-symmetry group, we have a4ij fermions Ψij
fij

where fij runs from

1 to a4ij and a6ij scalars Φij
fij

where fij runs from 1 to a6ij ; all of these lie in the (Ni, N̄j)

representation of the group (in the scalar case we can use the reverse arrow contribution

from j to i and thus think of these as complex fields).

Even though one can easily work out the general case, because we are motivated by

the search for conformal theories we will be interested in a specific case where we choose the

regular representation of Γ. In other words we start with an U(n) gauge group, assume

n = N |Γ|, and think of the fundamental representation of U(n) as decomposing to the

space CN ⊗ {g} with g ∈ Γ. We consider the action of Γ to be on the second index as

right multiplication. As is well known, this represention decomposes to a direct sum of all

irreducible representions of Γ with degeneracy factor ni = dimri for the ri representation.

In this case the gauge group we obtain is

G = ⊗iSU(Nni)

where the index i runs over the irreducible representations of Γ. It is a straightforward

exercise to show that the coupling constant τi of the i-th group (including the theta angle

in the usual way) is given by

τi =
niτ

|Γ|

where τ is the N = 4 coupling (or alternatively the type IIB coupling). Note in particular

that
∑

i

niτi = τ (2.2)

The matter content is naturally summarized by an associated “quiver” diagram. It

consists of one node for each irreducible representation of Γ, and fermionic and bosonic

arrows connecting the nodes according to how the 4- and 6-dimensional representations of

Γ (inherited from SU(4)) act on each irreducible representation. To each bosonic/fermionic
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arrow from node i to node j we associate a bifundamental (Nni, Nnj) scalar/Weyl fermion

(for i = j this corresponds to an adjoint representation). There are Yukawa couplings for

each triangle on the quiver consisting of two fermionic arrows and a bosonic arrow, and

quartic scalar interactions for each square on the quiver consisting of four bosonic arrows.

The coefficients of each interaction can be read off by projecting the original N = 4

lagrangian in terms of the fields we have kept. The Yukawa couplings are given by

Y =
∑

ijk

γ
fij,fjk,fki

ijk TrΨij
fij

Φjk
fjk

Ψki
fki

(2.3)

and the quartic φ4 terms are given by

V =
∑

ijkl

ηijklfij ,fjk,fkl,fli
TrΦij

fij
Φjk

fjk
Φkl

fkl
Φli

fli
, (2.4)

where

γ
fij,fjk,fki

ijk = Γαβ,m

(

Yfij

)α

viv̄j

(

Yfjk

)m

vj v̄k
(Yfki

)
β

vk v̄i
(2.5)

and

ηijklfij ,fjk,fkl,fli
=

(

Yfij

)[m

viv̄j

(

Yfjk

)n]

vj v̄k
(Yfkl

)
[m
vkv̄l

(Yfli)
n]
vlv̄i

. (2.6)

Here summation over repeated indices is understood;
(

Yfij

)α

viv̄j
,
(

Yfij

)m

viv̄j
are the fij ’th

Clebsch-Gordan coefficients corresponding to the projection of 4 ⊗ ri and 6 ⊗ ri onto rj ;

and Γαβ,m is the invariant in 4⊗ 4⊗ 6.

Now we will ask whether the theory is conformal. As a first step towards proving this

let us show that the one-loop beta-functions vanish. For the ith factor SU(Ni) in Gproj,

there will generally be Weyl fermions transforming as:

⊕ja
4

ij(Ni, N̄j)

and scalars transforming as

⊕ja
6

ij(Ni, N̄j) .

The one-loop beta-function for the gauge coupling gi is proportional to

βi ∝
11

3
Ni −

1

3

∑

j

(a4ij + a4̄ij)Nj −
1

2 · 3

∑

j

a6ijNj .
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(note that this formula makes sense even if j = i in the sum because in that case we get

an adjoint representation and its second casimir is Ni). For Ni = Nni this expression

vanishes, because

4 ·Ni =
∑

j

a4ijNj =
∑

j

a4̄ijNj

6 ·Ni =
∑

j

a6ijNj

and
11

3
−

2

3
4−

1

6
6 = 0.

Of course this is far from proving that these theories correspond to conformal theories.

However, considerations of [4] based on [3] strongly suggest they indeed are.

The considerations above apply to any discrete subgroup Γ ⊂ SU(4). However, if Γ ⊂

SU(3) or Γ ⊂ SU(2) we obtainN = 1, 2 respectively. In these cases it is natural to consider

a reduced quiver which still encodes the theory, taking into account the corresponding

supersymmetry. For the N = 1 case, we consider the quiver with nodes given by irreducible

representations of Γ, and consider k arrows from the i-th node to j-th node if the rj

representation appears k times in 3 ⊗ ri. These correspond to k chiral multiplets Φij
fij

in the (Ni, N̄j) representation. In this case we have a superpotential inherited from the

N = 4 theory which is given by

W =
∑

i,j,k

∑

fij ,fjk,fki

h
fij ,fjk,fki

ijk Tr
(

Φij
fij

Φjk
fjk

Φki
fki

)

(2.7)

where

h
fij ,fjk,fki

ijk = ǫαβγ
(

Yfij

)α

viv̄j

(

Yfjk

)β

vj v̄k
(Yfki

)
γ

vk v̄i
(2.8)

and Y ’s now correspond to Clebsch-Gordan coefficients for 3⊗ ri → rj . Note that in this

context the vanishing condition for the one loop beta function, Nf = 3Nc, follows from

the fact that tensoring any representation Nc with 3 gives a 3Nc flavors (and that if we

get adjoints they contribute like Nc fundamentals).

It would be interesting to see whether this vanishing of beta function persists to higher

loops. It is also important to check whether the anomalous scaling dimensions of the chiral

fields are zero. In fact, the two are related [13][14][15]. We now show that the anomalous

scaling dimensions at one loop vanish, which implies together with the vanishing of the

gauge coupling beta functions at one loop that they continue to vanish at two loops. The
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matrix of anomalous scaling dimensions for chiral fields at one loop is given by (in our

normalizations):

γ
(1)

ad̄
=

∑

b,c

habch̄dbc − 2δad̄ (2.9)

where the indices a, b, c are what we called fij , fjk, fki, habc ≡ h
fij ,fjk,fki

ijk .

Denote by Wij the multiplicity spaces2: 3 ⊗ ri = ⊕Wij ⊗ rj , we also have 3̄ ⊗ ri =

⊕W ∗
ji⊗rj . The Yukawa coupling habc may be defined also as follows. consider the canonical

element ω = ǫαβγeα ⊗ eβ ⊗ eγ of 33. The map h : ri → 33, h(v) = ω ⊗ v when expanded

in the basis Ya of the spaces Wij etc. has the following form:

h(v) =
∑

a,b,c

habcYa ⊗ Yb ⊗ Yc ⊗ v

where Ya ∈ Wij , Yb ∈ Wjk, Yc ∈ Wki. Consider the following diagram:

ρ
ri −→ 33 ⊗ 3̄3 ⊗ ri

ξ ↓ ւ η
3⊗ 3̄⊗ ri

(2.10)

where ρ(v) = ω ⊗ ω̄ ⊗ v, for v ∈ ri, ξ(v) = eα ⊗ ēα ⊗ v and η(a⊗ b⊗ c⊗ d̄⊗ ē⊗ f̄ ⊗ v) =

〈d̄, c〉〈ē, b〉a⊗ f̄ ⊗ v. The identity ǫαβγǫδβγ = 2δαδ implies that

η ◦ ρ = 2ξ. (2.11)

Now let us rewrite (2.11) in the basis Yfij of intertwiners. We shall use the indices a for

fij , b for fjk and c for fki. First of all, it is easy to represent the map ρ as:

ρ(v) =
∑

a,b,c,d,e,f

habch̄defYa ⊗ Yb ⊗ Yc ⊗ Ȳf ⊗ Ȳe ⊗ Ȳd ⊗ v

where Ya ∈ Wij , Yb ∈ Wjk, Yc ∈ Wki, Ȳd ∈ W ∗
mi, Ȳe ∈ W ∗

nm, Ȳ ∗
f ∈ W ∗

in and we sum over

j, k,m, n. Under the η map the only vectors which are not mapped to zero are those for

which b = e, c = f , hence m = k, n = j, hence

η ◦ ρ(v) = habch̄dbcYa ⊗ Ȳd ⊗ v

On the other hand it is equal to 2Ya ⊗ Ȳa ⊗ v, hence γ
(1)
ad = 0.

2 We thank P. Etingof and D. Kazhdan for the explanation of this point
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If Γ ∈ SU(2) we get an N = 2 theory. In this case the nodes of the quivers correspond

to irreducible representations of Γ and links correspond to the decomposition of repre-

sentation upon tensoring with 2. This gives rise to the well known affine A-D-E Dynkin

diagrams where the ni correspond to Dynkin indices associated with each node. In fact

these N = 2 theories have been studied in [10] where it was shown that they are the only

conformal N = 2 theories if the gauge group is a product of SU ’s and the matter is in the

bifundamental representations. Note that the 2 in the conformality condition Nf = 2Nc is

the dimension of the fundamental representation of SU(2). In fact, the power of orbifolding

in this case suggests that perhaps even in the N = 1 and N = 0 cases considered above, in

the subclass of gauge theories corresponding to product of SU groups with matter in bi-

fundamentals we have a full class of allowed conformal theories. It is quite interesting that

discrete subgroups of SU(3) [16] and SO(6) [17] have already been classified. For example,

for the SU(3) case, in addition to the subgroups of SU(2)×U(1) one has: two infinite seria

∆(3n2) and ∆(6n2) (which are analogues of An and Dn’s in SU(2) case - they are exten-

sions of ZZn×ZZn); and six exceptional cases Σ(d), d = 60, 168, 360ϕ, 36ϕ, 72ϕ, 216ϕ, where

ϕ = 1 or 3 depending on whether the group belongs to SU(3)/ZZ3 or SU(3) respectively.

The number in braces is the order of the group.

It should be noted that a generic choice of Nis would not lead to a conformal theory.

A conceptually useful example of a projection which does not lead to a superconformal

theory is one for which the Chan-Paton factors transform in n copies of a single irrep r1

of Γ ⊂ SU(2). It is easy to see that there will be no hypermultiplets after the projection

and the theory will be a pure SU(n) N = 2 gauge theory, which is not superconformal.

3. Relations to string theory

If we realize these field theories via orbifolds of D3-brane theories, different choices of

representations for the Chan-Paton factors will have definite physical meanings [5][18][7].

If we wish to describe N D-branes away from the fixed point, the unprojected theory

will be U(N |Γ|) and the indices I, J will lie in N copies of the regular representation

of Γ. This is in fact why we considered the action of Γ in the previous section. Other

representations will involve Chan-Paton factors living at the fixed point of the orbifold;

they will correspond to D5- or D7- branes wrapped around shrunken 2- or 4-cycles [18][7].

Given the fact that these other physical projections make sense, it remains to explain why

not all the orbifoldings give rise to conformal theories from the supergravity viewpoint [3].
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4. Moduli Space of Couplings in the Conformal Theory

So far we have only considered the action induced from the N = 4 theory. This

means that the conformal theory has at least one free coupling constant, which is that

inherited from N = 4. It is natural to ask whether there are other deformations of this

theory. In the case of N = 2, which corresponds to the ADE examples noted before, it

is known that there is a moduli space of deformations, one coupling for each group. It

was suggested in [4] that this may be related to the blowup modes also expected from the

supergravity orbifolds. As noted in [4] there is a puzzle here as one would naively expect

the blow-up modes to correspond to FI-terms. However we believe that in the present

context 3-branes are secretly 5-branes wrapped around the extra vanishing two spheres,

as has been suggested in [18][7][19], in which case the couplings will be related to the

expectation values of NS-NS Bij (related to coupling constant of gauge theory) and RR

Bij (changing the theta angle) [5] fields.

As further confirmation of this picture, we now connect this picture to the known

result that the moduli space of couplings for these theories is the moduli space of flat

ADE connections on the torus [10](for the A case see also [20]). Let us first discuss

more explicitly this moduli space. Let us consider flat G-connection Az,z̄ on a two-torus

Eτ = C/ (ZZ+ τZZ) with complex parameter τ . Let r be the rank of the group G and let

Hi’s i = 1, . . . , r be the generators of the Cartan subalgebra of G. It can be shown that

by a complex gauge transformation the (0, 1) component Az̄ can be brought to a constant

tC-valued form: Az̄ =
∑

i
τi

τ−τ̄
Hi. Note that the τi are defined up to the action of the

Weyl group of G. Moreover the gauge transformations of the form

g(z, z̄) = exp

(

2πi

τ − τ̄
((z − z̄)ai + (zτ̄ − z̄τ)bi)Hi

)

, ai, bi ∈ ZZ (4.1)

shift the value of τi by ai + biτ . We can introduce an extra τ0, obeying the property:
∑r

i=0 niτi ≡ 0mod (ZZ+ τZZ) (where n0 = 1). This presentation makes the action of

SL2(ZZ) of the underlying torus manifest:

τ → −1/τ, τi → τi/τ. (4.2)

Now we connect this to the moduli that we expect to see in the orbifold picture with

the branes. By writing

τi = xi + yiτ, xi, yi ∈ IR, i = 0, . . . , r

9



with the condition
∑

i xi ≡
∑

i yi ≡ 0 mod ZZ we make the connection to the fluxes of

the B-fields explicit:
∫

Σi
BNS = yi,

∫

Σi
BRR = xi. Here Σi are the two-cycles of the

corresponding ALE space, which are in one-to -one correspondence with simple roots of

G. The action of IIB S-duality group on BNS , BRR and string coupling τ translates to

the action (4.2). We may also think of the τi’s as the points on the torus E (actually,

on the dual torus, which coincides with E as complex manifold). The periodicity of the

torus x, y ∼ x, y+1 becomes the periodicity of the B-fields. The τi is the coupling for the

SU(Nni) factor. The orbifold point corresponds to xi = 0, yi =
ni

|Γ| . Note that the Weyl

group action in the gauge theory setup is exactly mapped to the monodromy action in the

context of ADE singularities. We thus see they are indeed identical.

It would be interesting to extend this to the case of N = 1 and N = 0, where again

we may expect the 3-brane to be secretly a combination of 5-branes and 7-branes. The

moduli of the corresponding orbifold theory is expected to be related to the analogs of the

various B fields and the 4-form gauge field expectation values. This should be interesting

to develop and reconcile with the supergravity picture.

Another issue is the global identifications of the moduli space. This will correspond

to non-trivial dualities in the field theory setup, which in the N = 2 is completely known.

Since we do not know the full description of the moduli for the N = 1 and N = 0 cases we

cannot specify the full duality group. However, there is already one complex modulus of

the conformal theories which is inherited from the N = 4 coupling τ (which as noted before

is related to the coupling of the gauge groups by τi = τ ni

|Γ| ). In this case the SL(2,ZZ)

invariance of Montonen-Olive will give rise to SL(2,ZZ) symmetry in this subspace. In other

words we thus expect to have a self-duality in this direction of coupling constant space.

This is quite exciting, given that we are dealing with field theory S-dualities including the

N = 0 case.

If our conjecture about the vanishing of beta functions in the N = 0 is true, this would

indeed inovlve an amazing set of cancellations which is not a direct result of supersymmetry.

It is natural to expect applications of this idea in the context of hierarchy problem. For

example, in all of the models we have it is easy to see that we have equal numbers of

bosons and fermions, even though we do not have supersymmetry. This is quite intriguing

and may point to a new physical symmetry principle.
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