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1. Introduction. Let M be a Riemannian manifold with a possibly
indefinite metric g. A tensor field T of type (p, q) on M is called recurrent
([12]) if

(1) T i1...ip
k1...kq,lT

h1...hp
j1...jq − T i1...ip

k1...kqT
h1...hp

j1...jq,l = 0

where the comma denotes covariant differentiation with respect to g. If

(2) T i1...ip
k1...kq,lmTh1...hp

j1...jq
− T i1...ip

k1...kq
Th1...hp

j1...jq,lm = 0 ,

then the tensor field T is called birecurrent. One can easily verify that (1)
implies (2), but the converse is false in general. Moreover, (1) yields that
at each x ∈ M such that T (x) 6= 0 there exists a unique covariant vector b
(called the recurrence vector of T ) which satisfies

(3) T i1...ip
j1...jq,l(x) = bl(x)T i1...ip

j1...jq
(x) .

Analogously, if T (x) 6= 0, then (2) yields that there exists a unique covariant
tensor of type (0, 2) (called the tensor of birecurrence) which satisfies

(4) T i1...ip
j1...jq,lm(x) = alm(x)T i1...ip

j1...jq (x) .

A Riemannian manifold of dimension n > 2 is called Ricci-recurrent ([11])
(birecurrent [8]) if its Ricci tensor is recurrent (if its curvature tensor is
birecurrent). Following Adati and Miyazawa ([1]), an n-dimensional (n ≥ 4)
Riemannian manifold (M, g) will be called conformally recurrent if its Weyl
conformal curvature tensor

Chijk = Rhijk −
1

n− 2
[gijRhk − gikRhj + ghkRij − ghjRik](5)

+
R

(n− 1)(n− 2)
(gijghk − gikghj)

is recurrent. In [12] the metric form of conformally recurrent Ricci-recurrent
manifolds has been obtained.
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In [2] and [9] the concept of conformally birecurrent manifold was intro-
duced. Those are Riemannian manifolds of dimension n ≥ 4 with birecur-
rent Weyl conformal curvature tensor. That class contains all birecurrent
manifolds of dimension n ≥ 4 as well as conformally recurrent ones. The
existence of essentially conformally birecurrent manifolds, i.e., conformally
birecurrent manifolds satisfying Chijk,lm 6= 0 which are neither conformally
recurrent nor birecurrent, was established in [3], [7], [5] for n = 4, n = 2p
and n = 2p − 1 respectively. In all known examples the Ricci tensor is
recurrent.

In this paper we shall deal with conformally birecurrent and Ricci-
recurrent manifolds M with both the Weyl conformal curvature tensor and
the Ricci tensor nowhere vanishing. We shall prove that if dim M > 4, then
in some neighbourhood of a generic point there exists a non-trivial null par-
allel vector field. Moreover, an algebraic form of the curvature tensor will be
given. These are generalizations of some results of [12]. In the next paper
([6]) we shall consider conformally birecurrent manifolds admitting some
vector fields. Among other things we shall prove that for n > 4, if around
a generic point there exists a non-trivial null parallel vector field, then in
some neighbourhood the Ricci tensor is recurrent. Throughout this paper
all manifolds are assumed to be connected and smooth and their metrics are
not assumed to be definite.

2. Preliminaries. In the sequel we shall need the following lemmas.

Lemma 1. The Weyl conformal curvature tensor satisfies

Chijk = −Cihjk = Cjkhi , Cr
rjk = Cr

irk = Cr
ijr = 0 ,

Chijk + Chjki + Chkij = 0 ,

Cr
ijk,r =

n− 3
n− 2

[
Rij,k −Rik,j −

1
2(n− 1)

(gijR,k − gikR,j)
]

.(6)

Lemma 2 ([1], eq. 3.7 and [4], p. 91). The Weyl conformal curvature
tensor satisfies

Chijk,l + Chikl,j + Chilj,k =
1

n− 3
[ghjC

r
ikl,r + ghkCr

ilj,r(7)

+ ghlC
r
ijk,r − gijC

r
hkl,r − gikCr

hlj,r − gilC
r
hjk,r] .

Lemma 3 ([10], Proposition 2). Let M be a Riemannian manifold of
dimension n ≥ 4. Assume that Rij,[lm] = BlmRij on a subset U with
nowhere vanishing Ricci tensor , and Chijk,[lm] = AlmChijk on a subset V
with nowhere vanishing Weyl conformal curvature tensor. Then Blm = 0
on U and Alm = 0 on V .

We shall often assume the following hypothesis:
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(A) (M, g) is a conformally birecurrent Ricci-recurrent manifold of dimen-
sion n ≥ 4 with Weyl conformal curvature tensor and Ricci tensor
both nowhere vanishing.

Under hypothesis (A), in view of (4) and (3) we have

(8) Chijk,lm = almChijk ,

(9) Rij,l = blRij , Rij,lm = blmRij ,

where blm = bl,m + blbm .
As a consequence of (8), (9), (5) and Lemma 3, we get

Proposition. Under hypothesis (A) we have

(10) Chijk,lm − Chijk,ml = 0 ,

(11) Rij,lm −Rij,ml = 0 ,

(12) Rhijk,lm −Rhijk,ml = 0 .

Hence, the tensors alm and blm defined by (8) and (9) are symmetric.

Lemma 4. Under hypothesis (A), the manifold M is birecurrent iff alm =
blm everywhere on M .

P r o o f. The “only if ” part is obvious. On the other hand, by differen-
tiating (5) twice and making use of (8) and (9) we get R,l = blR, R,lm =
blmR and

Rhijk,lm − almRhijk =
1

n− 2
(blm − alm)

[
gijRhk − gikRhj + ghkRij

− ghjRik −
R

n− 1
(gijghk − gikghj)

]
.

This completes the proof.

Lemma 5 ([10], Proposition 1). Let M be a Ricci-recurrent manifold such
that bl(x) 6= 0 for some x ∈ M . Then

(13) RirR
r
j = 1

2RRij

on M .

Lemma 6. Under assumption (A) we have on M

(14) (alm − blm)RrsCrijs = 0 ,

(15) (alm − blm)R = 0 .

P r o o f. By a direct calculation, in view of (5), (11), (13) and the Ricci
identity, we find

RrmCr
ijk + RriC

r
mjk(16)

=
3− n

2(n− 1)(n− 2)
R(gijRmk − gikRmj + gmjRik − gmkRij) ,
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which, by contraction with gmk and the use of Lemma 1, implies

(17) RrsCrijs =
3− n

2(n− 1)(n− 2)
R(gijR− nRij) .

Differentiating (17) covariantly and taking into account (9) and (17) we get

(18) RrsCrijs,l = blR
rsCrijs .

Differentiating (18), in virtue of (8), (9) and (18), we obtain (14). More-
over, substituting (17) into (14), we have (alm − blm)R(Rgij − nRij) = 0.
Transvecting with Ri

k and applying (13) we easily obtain (15). This com-
pletes the proof.

Lemma 7. Under assumption (A) we have on M

(alm − blm)RnrC
r
ijsb

s
p = 0 .

P r o o f. (15) and (16) yield

(19) (alm − blm)(RrnCr
ijk + RriC

r
njk) = 0 .

Permuting cyclically the indices n, j, k in (19) and adding the resulting equa-
tions to (19) we get

(20) (alm − blm)(RrnCr
ijk + RrjC

r
ikn + RrkCr

inj) = 0 .

Since Rr
i,r = brR

r
i = 1

2biR, which follows from (9), by transvecting (20)
with bk

p = gkrbrp, in virtue of (15), we obtain

(21) (alm − blm)(RrnCr
ijsb

s
p −RrjC

r
insb

s
p) = 0 .

Symmetrizing in (j, i) and taking account of (19) we find

(22) (alm − blm)(RrnCr
ijsb

s
p + RrnCr

jisb
s
p) = 0 .

Finally, adding (21) with i, n interchanged to (22) and using (19), we get
our lemma.

Assume that there exists x ∈ M such that

(B) alm(x)− blm(x) 6= 0 .

Lemma 8. Under hypotheses (A) and (B) we have

R = 0

and
RhrC

r
ijk + RirC

r
hjk = 0

in some neighbourhood of x.

P r o o f. In view of hypothesis (B) this is a simple consequence of (15)
and (16).

Lemma 9. Under assumptions (A) and (B) we have

(23) arpR
r
xRtsC

s
ijl = 0
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in some neighbourhood of x.

P r o o f. Substituting (6) into (7) and applying Lemma 8 we have

Chijk,l + Chikl,j + Chilj,k

=
1

n− 2
[ghj(Rik,l −Ril,k) + ghk(Ril,j −Rij,l)

+ ghl(Rij,k −Rik,j)− gij(Rhk,l −Rhl,k)− gik(Rhl,j −Rhj,l)
− gil(Rhj,k −Rhk,j)] .

Differentiating and making use of (8) and (9) we get

almChijk + ajmChikl + akmChilj(24)

=
1

n− 2
[ghj(Rikblm −Rilbkm) + ghk(Rilbjm −Rijblm)

+ ghl(Rijbkm −Rikbjm)− gij(Rhkblm −Rhlbkm)
− gik(Rhlbjm −Rhjblm)− gil(Rhjbkm −Rhkbjm)] ,

which, by transvection with Ck
pqt, yields

almChijrC
r
pqt − ajmChilrC

r
pqt + armCr

pqtChilj(25)

=
1

n− 2
[(ghjblm − ghlbjm)RirC

r
pqt − (gijblm − gilbjm)RhrC

r
pqt

+ Chpqt(Rilbjm −Rijblm)− Cipqt(Rhlbjm −Rhjblm)
+ (−ghjRil + ghlRij + gijRhl − gilRhj)brmCr

pqt] .

Changing in (25) the indices (h, i, j) to (t, q, p) respectively we get

almCtqprC
r
jih − apmCtqlrC

r
jih + armCr

jihCtqlp(26)

=
1

n− 2
[(gtpblm − gtlbpm)RqrC

r
jih − (gqpblm − gqlbpm)RtrC

r
jih

+ Ctjih(Rqlbpm −Rqpblm)− Cqjih(Rtlbpm −Rtpblm)
+ (−gtpRql + gtlRqp + gqpRtl − gqlRtp)brmCr

jih] .

Interchanging j and l gives

ajmCtqprC
r
lih − apmCtqjrC

r
lih + armCr

lihCtqjp(27)

=
1

n− 2
[(gtpbjm − gtjbpm)RqrC

r
lih − (gqpbjm − gqjbpm)RtrC

r
lih

+ Ctlih(Rqjbpm −Rqpbjm)− Cqlih(Rtjbpm −Rtpbjm)
+ (−gtpRqj + gtjRqp + gqpRtj − gqjRtp)brmCr

lih] .

Adding (25) to (27) and subtracting (26) we get

apm(CtqlrC
r
jih − CtqjrC

r
lih)(28)

= armCr
jihCtqlp − armCr

pqtChilj − armCr
lihCtqjp
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+
1

n− 2
[(ghjblm − ghlbjm)RirC

r
pqt − (gijblm − gilbjm)RhrC

r
pqt

+ Chpqt(Rilbjm −Rijblm)− Cipqt(Rhlbjm −Rhjblm)
+ (−ghjRil + ghlRij + gijRhl − gilRhj)brmCr

pqt

+ (gtpbjm − gtjbpm)RqrC
r
lih − (gqpbjm − gqjbpm)RtrC

r
lih

+ Ctlih(Rqjbpm −Rqpbjm)− Cqlih(Rtjbpm −Rtpbjm)
+ (−gtpRqj + gtjRqp + gqpRtj − gqjRtp)brmCr

lih

− (gtpblm − gtlbpm)RqrC
r
jih + (gqpblm − gqlbpm)RtrC

r
jih

− Ctjih(Rqlbpm −Rqpblm) + Cqjih(Rtlbpm −Rtpblm)
− (−gtpRql + gtlRqp + gqpRtl − gqlRtp)brmCr

jih] ,

since CtqlrC
r
jih = ChijrC

r
lqt.

On the other hand, applying the Ricci identity, (10), (5) and Lemma 8,
we have

CrijlC
r
hqt + ChrjlC

r
iqt + ChirlC

r
jqt + ChijrC

r
lqt(29)

=
−1

n− 2
[ghqRt

rCrijl − ghtRq
rCrijl + RhqCtijl −RhtCqijl

+ giqRt
rChrjl − gitRq

rChrjl + RiqChtjl −RitChqjl

+ gjqRt
rChirl − gjtRq

rChirl + RjqChitl −RjtChiql

+ glqRt
rChijr − gltRq

rChijr + RlqChijt −RltChijq] .

Symmetrizing (28) in (h, i) and (l, j), substituting (29), then contracting
the resulting equation with ghq (cf. [11], Lemma 9) and applying Lemmas
5–8, we get

−apmRtrC
r
ijl(30)

=
n− 3
n− 2

[blmRjrC
r
tip + bpmRirC

r
tjl

+ bjmRlrC
r
tpi + bimRprC

r
tlj ]

− n− 3
n− 2

RptbrmCr
ijl + 2

n− 3
n− 2

btmRprC
r
ijl

+
1

n− 2
[Rij((n− 2)brmCr

tpl + 2brmCr
plt)

−Ril((n− 2)brmCr
tpj + 2brmCr

pjt)
+ RtlbrmCr

jpi + RtjbrmCr
lip + RtibrmCr

pjl] ,

which, by further transvection with Rm
x, implies (23).

Lemma 10. Let ajm, Tpjih, bjm, Wpjih be numbers satisfying

(31) Tpjih = −Tjpih , Wpjih = −Wjpih ,
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(32) ajmTpkih − akmTpjih = bjmWpkih − bkmWpjih .

Then ajmTpkih = bjmWpkih.

P r o o f. Symmetrizing (32) in (p, j) and using (31) we get

(33) ajmTpkih + apmTjkih = bjmWpkih + bpmWjkih ,

whence, by interchanging j and k,

(34) akmTpjih + apmTkjih = bkmWpjih + bpmWkjih .

Adding (32), (33), (34) and applying (31) we get the assertion.

Lemma 11. Under assumptions (A) and (B) the relations

armCr
ijk =

n− 3
n− 2

(Rijbkm −Rikbjm) ,(35)

(n− 3)(bqmRtrC
r
jih − btmRqrC

r
jih + bhmRirC

r
jqt − bimRhrC

r
jqt)(36)

= 2bjm(RhrC
r
iqt + RqrC

r
tih) + RijbrmCr

hqt

−RhjbrmCr
iqt + RtjbrmCr

qih −RqjbrmCr
tih ,

and

−apmRtrC
r
ijl + atmRprC

r
ijl(37)

=
n− 3
n− 2

(blmRjrC
r
itp − bjmRlrC

r
itp + btmRprC

r
ijl − bpmRtrC

r
ijl)

+ 2
n− 3
n− 2

(bimRtrC
r
pjl + btmRprC

r
ijl + bpmRirC

r
tjl)

+
n

n− 2
(RijbrmCr

lpt −RilbrmCr
jpt)

+
1

n− 2
(RtlbrmCr

jpi −RplbrmCr
jti + RtjbrmCr

lip

−RpjbrmCr
lit + RtibrmCr

pjl −RpibrmCr
tjl)

are satisfied in some neighbourhood of x.

P r o o f. Differentiating (6), then using (8), (9) and Lemma 8 we get
(35). Contracting (28) with glp and making use of (35), Lemmas 7 and 8 we
obtain (36). Finally, alternating (30) in (t, p), we have (37), which completes
the proof.

Lemma 12. Under conditions (A) and (B), if armRr
p = 0, then

atmRqrC
r
ijk = 0 on M .

P r o o f. Assume apm(x) 6= 0. Transvecting (24) with Rl
p, in virtue of

Lemmas 5 and 8, we get

ajmRprC
r
kih − akmRprC

r
jih
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=
−1

n− 2
[bjm(RphRki −RpiRkh)− bkm(RphRji −RpiRjh)] .

It is easy to see that if we put

RprC
r
kih = Tpkih ,

−1
n− 2

(RphRki −RpiRkh) = Wpkih ,

then, in view of Lemma 8, the assumptions of Lemma 10 are satisfied. Thus
we have

(38) ajmRprC
r
kih =

−1
n− 2

bjm(RphRki −RpiRkh) ,

whence, alternating in (p, k) and (h, i), we get

(39) ajm(RprC
r
kih −RhrC

r
ikp) = 0 .

Applying this in (36), permuting cyclically the indices h, i, j and adding the
three resulting equations we obtain

2(n− 3)(bhmRirC
r
jqt + bimRjrC

r
hqt + bjmRhrC

r
iqt)(40)

= RtjbrmCr
qih −RqjbrmCr

tih + RthbrmCr
qji

−RqhbrmCr
tji + RtibrmCr

qhj −RqibrmCr
thj .

Now, changing in (36) and (40) the indices (q, t, j, i, h) to (l, j, i, t, p) respec-
tively and substituting the obtained expressions into the first and second
rows of the right-hand side of (37) we get

(41) atmRprC
r
ijl − apmRtrC

r
ijl = RijbrmCr

lpt −RilbrmCr
jpt .

On the other hand, applying the Ricci identity to (10) and transvecting with
ah

t, in virtue of (35) and (11), we find

artR
r
slmCs

ijk =
n− 3
n− 2

(RijbrtR
r
klm −RikbrtR

r
jlm) .

Hence, by the use of (5), (35) and Lemma 8, we have

(atm+(n− 3)btm)RlrC
r
ijk − (atl + (n− 3)btl)RmrC

r
ijk

= (n− 3)(RijbrtC
r
klm −RikbrtC

r
jlm)

+
n− 3
n− 2

[btm(RijRkl −RikRjl)− btl(RijRkm −RikRjm)] .

Since (41) and (38) hold, the right-hand side of the above equation vanishes.
Symmetrizing the resulting equation in (m, i), in virtue of Lemma 8, we
obtain (atm + (n − 3)btm)RlrC

r
ijk = 0. Assume that at some x ∈ M we

have atm + (n− 3)btm = 0. Then (B) and (38) lead to

(n− 3)RprC
r
kih =

1
n− 2

(RkiRph −RkhRpi) ,
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whence, by covariant differentiation and the use of (8) and (9), we have

(n− 3)almRprC
r
kih =

1
n− 2

blm(RkiRph −RkhRpi) .

Comparing the last result with (38) we get RprC
r
kih = 0 at x. This com-

pletes the proof.

Lemma 13. Under hypotheses (A) and (B) suppose that RriC
r
jkl = 0.

Then

(42) RijbrmCr
lpt −RilbrmCr

jpt = 0 .

If , moreover , ahp(x) 6= 0, then

(43) arpR
r
qCtijl =

n− 3
n− 2

bqp(RijRtl −RilRtj)

on some open U .

P r o o f. We set Mmijk = brmCr
ijk. Then Mmijk = −Mmikj and

Mmijk +Mmjki +Mmkij = 0. In view of the assumptions, (36) and (37) can
be rewritten as

(44) RijMmhqt −RhjMmiqt = RtjMmqhi −RqjMmthi ,

(45) n(RijMmlpt −RilMmjpt) + RtlMmjpi −RplMmjti

+RtjMmlip −RpjMmlit + RtiMmpjl −RpiMmtjl = 0 .

Changing in (44) the indices (i, j, h, q, t) to (t, i, p, j, l) respectively and ap-
plying the obtained expression to the last two terms in (45) we get

(n− 1)(RijMmlpt −RilMmjpt)(46)
+ RtlMmjpi −RplMmjti + RtjMmlip −RpjMmlit = 0 .

Alternating (46) in (t, p) and (j, l) we have

(n− 1)(RijMmlpt −RilMmjpt + RipMmtlj −RitMmplj)
−RtlMmijp + RpjMmitl −RlpMmitj + RjtMmilp = 0 .

Applying (44) to the first pair of terms in the (second) brackets we find that
the bracketed expression vanishes and, consequently,

(47) RtlMmijp −RplMmijt = RtjMmilp −RpjMmilt .

Moreover, commuting in (47) i into j and l, j, i into j, i, l respectively, we
obtain

(48)
RtlMmjpi −RplMmjti = RtiMmjpl −RpiMmjtl ,

RtjMmlip −RpjMmlit = RtiMmljp −RpiMmljt .

Finally, commuting in (44) the indices (j, q, h, i) into (i, p, j, l), we get

(49) RliMmjpt −RjiMmlpt = RtiMmpjl −RpjMmtjl .
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Substituting (48) into (46) and taking into account equation (49) we obtain

(50) (n− 2)(RijMmlpt −RilMmjpt) = 0 ,

whence (42) follows.
On the other hand, transvecting (29) with ah

p and making use of (35)
and (42), we find

arpR
r
qCtijl − arpR

r
tCqijl

=
n− 3
n− 2

[bqp(RijRtl −RilRtj)− btp(RijRql −RilRqj)] ,

which, in virtue of Lemma 10, implies (43).

Now we assume the following hypothesis:

(C) (M, g) is a conformally birecurrent and Ricci recurrent manifold of
dimension n > 4 with Weyl conformal curvature tensor and Ricci
tensor both nowhere vanishing. Moreover, there is x ∈ M such that

alm(x)− blm(x) 6= 0 .

Lemma 14. Under hypothesis (C) let RirC
r
jkl = 0. Then

(51) armRr
p = 0

on some open V 3 x.

P r o o f. We can assume alm(x) 6= 0. Then, by Lemma 13, (43) is
satisfied on some U 3 x. For the set of points at which bqp vanishes (51) is
obvious. Let y ∈ U and bqp(y) 6= 0. Transvecting (43) with Ct

abc we have
arpR

r
qCsijlC

s
abc = 0. Suppose that at y

(52) CsijlC
s
abc = 0 .

Differentiating (7) covariantly, making use of (8), then transvecting the ob-
tained equation with Cl

abc, in virtue of (52), we get

armCr
abcChijk =

1
n− 3

(ChabcarmCr
ijk − CiabcarmCr

hjk) .

Hence, by further transvection with ah
p and symmetrization in (m, p), we

have
n− 4
n− 3

(armCr
abcaspC

s
ijk + arpC

r
abcasmCs

ijk) = 0 .

This yields armCr
ijk = 0 at y, which, in virtue of (35), is equivalent to

(53) Rijbkm −Rikbjm = 0 .

Since bkm(y) 6= 0, one can choose at y a vector tk such that bkpt
ktp = e,

|e| = 1. Transvecting (53) with tktm we get

(54) Rij = ekikj .

Applying this to (43) gives (51) at y. This completes the proof.
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Lemma 15. Suppose that (C) and alm(x) 6= 0 hold. Then

(55) armRr
p = 0

and

(56) RirC
r
jkl = 0

in some neighbourhood of x.

P r o o f. This follows immediately from Lemmas 9, 12 and 14.

3. Main results. We are now in a position to prove

Theorem 1. Suppose that under hypothesis (C) the inequalities Rij,l(x)
6= 0 and Rij,lm(x) 6= 0 hold. Then rank Rij = 1 and in some neighbourhood
of x there exists a non-trivial null parallel vector field.

P r o o f. Suppose alm(x) = 0. Then, by (35), we have (53) at x, which
implies rank Rij(x) = 1. Thus assume that alm(x) 6= 0. Then, by Lemma
15, we have (55) in some neighbourhood of x. Substituting (55) into (43)
we easily obtain rankRij(x) = 1. Because of the recurrence of the Ricci
tensor its rank must be constant on M . But it was proved by Roter (cf.
[12], Proposition 1) that if a manifold admits a (0, 2) symmetric recurrent
tensor of rank 1 and the recurrence vector is locally a gradient, then M
admits locally a parallel vector field. Together with (11), (54), (9) and (15),
this completes the proof.

R e m a r k. The null parallel vector field we look for is of the form

vi = exp
(
− 1

2b
)
ki ,

where ki is defined by (54), b,j = bj , bj is the recurrence vector of Rij .

Corollary. Under the assumptions of Theorem 1 the scalar curvature
of M vanishes.

Lemma 16. Suppose that under hypothesis (C) the inequalities alm(x) 6=
0, Rij,l(x) 6= 0, Rij,lm(x) 6= 0 hold. Then

Qhpjiqt =RhpCjiqt −RhjCpiqt + RipChjqt −RijChpqt(57)
+ RqpChijt −RqjChipt + RtpChiqj −RtjChiqp = 0

in some neighbourhood of x.

P r o o f. Applying (56) and (42) to (28) we obtain

apm(CtqlrC
r
jih − CtqjrC

r
lih)(58)

= armCr
jihCtqlp − armCr

pqtChilj − armCr
lihCtqjp

+
1

n− 2
[Chpqt(Rilbjm −Rijblm)− Cipqt(Rhlbjm −Rhjblm)

+ (−ghjRil + ghlRij + gijRhl − gilRhj)brmCr
pqt
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+ Ctlih(Rqjbpm −Rqpbjm)− Cqlih(Rtjbpm −Rtpbjm)
+ (gtjRqp − gqjRtp)brmCr

lih

− Ctjih(Rqlbpm −Rqpblm) + Cqjih(Rtlbpm −Rtpblm)
− (gtlRqp − gqlRtp)brmCr

jih] .

Transvecting (58) with al
v and using (56) and (35) we get

armCr
jihasvCs

ptq − armCr
pqtasvCs

jhi

+
1

n− 2
asvbs

m(−RijChpqt + RhjCipqt + RqpCtjih −RtpCqjih)

+
1

n− 2
[(ahvRij − aivRhj)brmCr

pqt − asvCs
tih(Rqjbpm −Rqpbjm)

+ asvCs
qih(Rtjbpm −Rtpbjm)− (atvRqp − aqvRtp)brmCr

jih] = 0 .

Alternating in (p, j) and using (42) we find

− armCr
jihasvCs

pqt + armCr
pihasvCs

jqt

+ armCr
pqtasvCs

jih − armCr
jqtasvCs

pih

+
1

n− 2
asvbs

m(RhpCjiqt −RhjCpiqt + RipChjqt −RijChpqt

+ RqpChijt −RqjChipt + RtpChiqj −RtjChiqp)

+
2

n− 2
[−asvCs

tih(Rqjbpm −Rqpbjm) + asvCs
qih(Rtjbpm −Rtpbjm)] = 0 ,

which, by (35) and Theorem 1, yields

asvbs
m(RhpCjiqt −RhjCpiqt + RipChjqt −RijChpqt

+ RqpChijt −RqjChipt + RtpChiqj −RtjChiqp) = 0 .

Assume that at some x ∈ M

(59) asvbs
m = 0 .

We shall prove that at x

(60) brvbr
m = 0 .

Transvecting (58) with at
v, by (35), (42), (55) and (56), we get

(n− 3)2

n− 2
[bhm(Rilbjv −Rijblv)− bim(Rhlbjv −Rhjblv)](61)

+ ajvbrmCr
lih − alvbrmCr

jih

+
n− 3
n− 2

bsvbs
m(−ghjRil + ghlRij + gijRhl − gilRhj) = 0 ,

since rank Rij = 1.
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On the other hand, transvecting (42) with bl
v, we have RijbrmbsvCrs

pt =
0. Therefore, transvecting (61) with bj

p, we find

brvbr
m(Rhlbip −Rilbhp) = (n− 3)brvbr

p(Rhlbim −Rilbhm) ,

whence we easily obtain

(62) (n− 4)brvbr
m(Rhlbip −Rilbhp) = 0 ,

since brvbr
m = brmbr

v. Finally, transvecting (62) with bi
q, we get (60).

Now, in view of (60), relation (61) can be rewritten as

(n− 3)2

n− 2
[bhm(Rilbjv −Rijblv)− bim(Rhlbjv −Rhjblv)]

+ajvbrmCr
lih − alvbrmCr

jih = 0 .

On the other hand, transvecting (24) with bk
v, we have

almbrvCr
jih − ajmbrvCr

lih

=
1

n− 2
[bhv(Rilbjm −Rijblm)− biv(Rhlbjm −Rhjblm)] .

Comparing the last two results we get

(n− 4)[bhm(Rilbjv −Rijblv)− bim(Rhlbjv −Rhjblv)] = 0 ,

whence, multiplying by Rab, in virtue of (54), we obtain

(63) (n− 4)(Rblbjv −Rbjblv)(Raibhm −Rahbim) = 0 .

Thus (24) and (63) imply

(64) almChijk + ajmChikl + akmChilj = 0 .

Moreover, from (35) it follows that armCr
ijk = 0.

Finally, transvecting (64) with Ck
pqt, we can follow step by step the

proof of Lemma 9 to obtain

(65) CtqlrC
r
jih − CtqjrC

r
lih = 0 .

Now, (57) follows from (29), (65) and (56). This completes the proof.

Theorem 2. Under hypothesis (C) let the inequalities alm(x) 6= 0,
Rij,l(x) 6= 0, Rij,lm(x) 6= 0 hold. Then, in some neighbourhood of x, the
curvature tensor takes the form

(66) Rqthj = ktkhSqj − ktkjSqh + kqkjSth − kqkhStj ,

where Sqj = prpsRrqjs, prkr = 1 and Rij = ekikj , |e| = 1.

P r o o f. Substituting (54) into (57), then alternating in (h, p, j) and
making use of [13], Lemma 4, we get

(67) kpCqthj + khCqtjp + kjCqtph = 0 .
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Since the scalar curvature vanishes and (54) is satisfied, from (67), by a
direct calculation, we have

kpRqthj + khRqtjp + kjRqtph = 0 .

Now, with the help of the last result, we can follow step by step a proof of
Walker ([15], p. 45 and [14], p. 155) to obtain (66).
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