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Abstract

Recently, the notion of Lorentzian almost paracontact manifolds with

a coefficient $\alpha$ has been introduced and studied by De et al [3]. In the

present paper we investigate conformally flat LP-Sasakian manifolds with

a coefficient $\alpha$ .

0. Introduction

In 1989, Matsumoto [1] introduced the notion of LP-Sasakian manifolds. Then

Mihai and Rosca [2] introduced the same notion independently and they obtained

several results in this manifold. In a recent paper, De, Shaikh and Sengupta [3]

introduced the notion of LP-Sasakian manifolds with a coefficient $\alpha$ which gener-

alizes the notion of LP-Sasakian manifolds. Recently, T.Ikawa and his coauthors
$[4],[5]$ studied Sasakian manifolds with Lorentzian metric and obtained several re-
sults in this manifold. The object of the present paper is to study an LP-Sasakian

manifold with a coefficient $\alpha$ .
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After preliminaries, in section 2 we study conformally flat LP-Sasakian man-

ifold with a coefficient $\alpha$ and obtain several interesting results. We mainly prove

that in a conformally flat LP-Sasakian manifold with a coefficient $\alpha$ the charac-

teristic vector field $\xi$ is a concircular vector field if and only if the manifold is

$\eta$-Einstein and a conformally flat LP-Sasakian manifold with a constant coeffi-

cient $\alpha$ is a manifold of constant curvature if the scalar curvature $r$ is a constant.

1. Preliminaries

Let $M^{\mathfrak{n}}$ be an n-dimensional differentiable manifold endowed with a $(1, 1)$

tensor field $\phi$ , a contravariant vector field $\xi$ , a covariant vector field $\eta$ and a

Lorentzian metric $g$ of type $(0,2)$ such that for each point $p\in M$ , the tensor $g_{p}$ :

$T_{p}M\times T_{p}M\rightarrow R$ is a non-degenerate inner product of signature $(-, +, +, \ldots+)$ ,

where $T_{p}M$ denotes the tangent vector space of $M$ at $p$ and $R$ is the real number

space, which satisfies

$\eta(\xi)=-1,$ $\phi^{2}X=X+\eta(X)\xi$ , (1.1)

$g(X,\xi)=\eta(X)$ , $g(\phi X, \phi Y)=g(X, Y)+\eta(X)\eta(Y)$ (1.2)

for all vector fields $X$ and Y. Then such a structure $(\phi,\xi, \eta,g)$ is termed as

Lorentzian almost paracontact structure and the manifold $M^{\mathfrak{n}}$ with the structure

$(\phi,\xi,\eta, g)$ is called Lorentzian almost paracontact manifold [1]. In the Lorentzian

almost paracontact manifold $M^{n}$ , the following relations hold good [1] :

$\phi\xi=0,$ $\eta(\phi X)=0$ , (1.3)

$\Omega(X,Y)=\Omega(Y,X)$ , where $\Omega(X, Y)=g(X, \phi Y)$ . (1.4)

In the Lorentzian almost paracontact manifold $M^{n}$ , if the relations

$(\nabla_{Z}\Omega)(X,Y)$ $=$ a $[\{g(X, Z)+\eta(X)\eta(Z)\}\eta(Y)$
(1.5)

$+\{g(Y, Z)+\eta(Y)\eta(Z)\}\eta(X)],$ $(\alpha\neq 0)$
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$\Omega(X, Y)=\frac{1}{\alpha}(\nabla_{X}\eta)(Y)$ , (1.6)

hold where $\nabla$ denotes the operator of covariant differentiation with respect to

the Lorentzian metric $g$ , then $M^{n}$ is called an LP-Sasakian manifold with a

coefficient $\alpha[3]$ . An LP-Sasakian manifold with coefficient 1 is an LP-Sasakian

manifold [1].

If a vector field $V$ satisfies the equation of the following form :

$\nabla_{X}V=\beta X+T(X)V$,

where $\beta$ is a non-zero scalar function and $T$ is a covariant vector field, then $V$ is

called a torse-forming vector field [6].

In a Lorentzian manifold $M^{n}$ , if we assume that $\xi$ is a unit torse-forming

vector field, then we have the equation:

$(\nabla_{X}\eta)(Y)=\alpha[g(X, Y)+\eta(X)\eta(Y)]$ , (1.7)

where $\alpha$ is a non-zero scalar function. Hence the manifold admitting a unit torse-

forming vector field satisfying (1.7) is an LP-Sasakian manifold with a coefficient
$\alpha$ . Especially, if $\eta$ satisfies

$(\nabla_{X}\eta)(Y)=\epsilon[g(X, Y)+\eta(X)\eta(Y)],$ $\epsilon^{2}=1$ (1.8)

then $M^{n}$ is called an LSP-Sasakian manifold [1]. In particular, if a satisfies (1.7)

and the equation of the following form :

$\alpha(X)=p\eta(X),$ $\alpha(X)=\nabla_{X}\alpha$ , (1.9)

where $p$ is a scalar function, then $\xi$ is called a concircular vector field.
Let us consider an LP-Sasakian manifold $M^{\mathfrak{n}}(\phi, \xi, \eta,g)$ with a coefficient $\alpha$ .

Then we have the following relations [3] :

$\eta(R(X, Y)Z)$ $=$ $-\alpha(X)\Omega(Y, Z)+\alpha(Y)\Omega(X, Z)$

(1.10)
$+\alpha^{2}\{g(Y, Z)\eta(X)-g(X, Z)\eta(Y)\}$ ,
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$S(X, \xi)=-\psi\alpha(X)+(n-1)a^{2}\eta(X)+\alpha(\phi X)$ , (1.11)

where $R,$ $S$ denote respectively the curvature tensor and the Ricci tensor of the

manifold and $\psi=hace(\phi)$ .

We now state the following results which will be needed in the later section.

Lemma 1.1. ([3]) In an LP-Sasakian manifold $M^{n}$ with a non-constant coeffi-
cient $\alpha$ , one of the following cases occur:

i) $\psi^{2}=(n-1)^{2}$

ii) $a(Y)=-p\eta(Y)$ , where $p=\alpha(\xi)$ .

Lemma 1.2. ([3]) In a Lorentzian dmost paracontact manifold $M^{n}(\phi, \xi, \eta,g)$

with its structure $(\phi, \xi, \eta, g)$ satisfying $\Omega(X, Y)=\frac{1}{\alpha}(\nabla_{X}\eta)(Y)$ , where $a$ is a non-
zero scalar function, the vector field $\xi$ is torse-forming if and only if the relation
$\psi^{2}=(n-1)^{2}$ holds good.

2. Conformally flat LP-Sasakian manifold with a
coefficient $\alpha$

Let us consider a conformally flat LP-Sasakian manifold $M^{n}(n>3)$ with a

coefficient $\alpha$ . First we suppose that $a$ is not constant. Then since the confomal

curvature tensor $C$ vanishes, the curvature tensor $\prime R$ satisfies

$\prime R(X, Y, Z, W)=\frac{1}{n-2}[g(Y, Z)S(X, W)-g(X, Z)S(Y, W)$

$+S(Y, Z)g(X, W)-S(X, Z)g(Y, W)]$

$-\frac{r}{(n-1)(n-2)}[g(Y, Z)g(X, W)-g(X, Z)g(Y, W)]$ ,
(2.1)

where $r$ is the scalar curvature of the manifold. Putting $ W=\xi$ in (2.1) and then

using (1.10) and (1.11), we get
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$-\alpha(X)\Omega(Y, Z)+\alpha(Y)\Omega(X, Z)+\alpha^{2}[g(Y, Z)\eta(X)-g(X, Z)\eta(Y)]$

$=$

$\frac{1}{-g(Xn-2}[g(Y,Z)\{-\psi\alpha(X)+(n-1)\alpha^{2}\eta(X)+a(\phi X)\}Z)\{-\psi\alpha(Y)+(n-1)\alpha^{2}\eta(Y)+\alpha(\phi Y)\}$

(2.2)
$+S(Y, Z)\eta(X)-S(X, Z)\eta(Y)]$

$-\frac{r}{(n-1)(n-2)}[g(Y, Z)\eta(X)-g(X, Z)\eta(Y)]$ .

Again if we put $ X=\xi$ in (2.2) and using (1.3) and (1.11) we obtain by

straightforward calculations

$S(Y, Z)$ $=$ $[\frac{r}{n-1}-\alpha^{2}-\psi p]g(Y, Z)+[\frac{r}{n-1}-n\alpha^{2}]\eta(Y)\eta(Z)$

$+\{\psi\alpha(Z)-\alpha(\phi Z)\}\eta(Y)+\{\psi\alpha(Y)-a(\phi Y)\}\eta(Z)$ (2.3)

$+p(n-2)\Omega(Y, Z)$ ,

where $p=\alpha(\xi)$ .

We now suppose that $M^{n}$ is $\eta$-Einstein. If an LP-Sasakian manifold $M^{n}$ with

the coefficient $a$ satisfies the relation

$S(X, Y)=ag(X, Y)+b\eta(X)\eta(Y)$ ,

where $a,$
$b$ are the associated function $s$ on the manifold, then the manifold $M^{n}$ is

called an $\eta$-Einstein manifold. Then we have [3]

$S(X, Y)$ $=$

$+-n\alpha^{2}-\frac{n\psi p1]g}{n-1}]\eta(X)\eta(Y)[\frac{r}{n[\frac{-1r}{n-1}}-a^{2}-\frac{\psi p}{n-}(X,Y)$

.
(2.4)

By virtue of (2.4) and (2.3) we get

$\frac{(n-2)\psi p}{n-1}g(Y, Z)-\frac{n\psi p}{n-1}\eta(Y)\eta(Z)-\{\psi\alpha(Z)-a(\phi Z)\}\eta(Y)$ (2.5)

$-\{\psi a(Y)-a(\phi Y)\}\eta(Z)-p(n-2)\Omega(Y, Z)=0$ .
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Putting $ Z=\xi$ in (2.5) we obtain

$\psi\alpha(Y)-\alpha(\phi Y)=-\psi p\eta(Y)$ , for all Y. (2.6)

Using (2.6) in (2.5) we get by simplification

$p\{\frac{\psi}{n-1}[g(Y, Z)+\eta(Y)\eta(Z)]-\Omega(Y, Z)\}=0$ . (2.7)

If $p=0$ , then $hom(2.6)$ we have $\alpha(\phi Y)=\psi a(Y)$ . Thus since $\psi$ is an

eigenvalue of the matrix $(\phi),$ $\psi$ is equal $to\pm 1$ . Hence, by virtue of Lemma 1.1,

we get $a(Y)=0$ for all $Y$ and hence $\alpha$ is constant, which contradicts to our

assumption.

Consequently, we have $p\neq 0$ and hence from (2.7) we get

$\frac{\psi}{n-1}[g(Y, Z)+\eta(Y)\eta(Z)]-\Omega(Y, Z)=0$ . (2.8)

Putting $Y=\phi Y$ in (2.8) we have by virtue of (1.3)

$\frac{\psi}{n-1}\Omega(Y, Z)-\{g(Y, Z)+\eta(Y)\eta(Z)\}=0$ . (2.9)

Combining (2.8) and (2.9) we get

$\{\psi^{2}-(n-1)^{2}\}[g(Y, Z)+\eta(Y)\eta(Z)]=0$ ,

which gives by virtue of $n>3$

$\psi^{2}=(n-1)^{2}$ . (2.10)

Hence Lemma 1.2 proves that $\xi$ is torse-forming. We have that

$(\nabla_{X}\eta)(Y)=\beta\{g(X, Y)+\eta(X)\eta(Y)\}$ .

Then from (1.6) we get

$\Omega(X, Y)$ $=$ $\frac{\beta}{\alpha}\{g(X, Y)+\eta(X)\eta(Y)\}$

$g(\frac{\beta}{\alpha}(X+\eta(X)\xi, Y)$
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and $\Omega(X, Y)=g(\phi X, Y)$ .

Since $g$ is non-singular, we have

$\phi(X)=\frac{\beta}{\alpha}(X+\eta(X)\xi)$

and

$\phi^{2}(X)=(\frac{\beta}{\alpha})^{2}(X+\eta(X)\xi)$ .

It follows from (1.1) that $(_{\alpha}^{4})^{2}=1$ and hence, $\alpha=\pm\beta$ . Thus we have

$\phi(X)=\pm(X+\eta(X)\xi)$ .

By virtue of (2.6) we see
$\alpha(Y)=-p\eta(Y)$ ,

where $p=\alpha(\xi)$ . Thus, we conclude that $\xi$ is a concircular vector field.

Conversely, we suppose that $\xi$ is a concircular vector field. Then we have the

equation of the following form :

$(\nabla_{X}\eta)(Y)=\beta\{g(X, Y)+\eta(X)\eta(Y)\}$ ,

where $\beta$ is a certain function and $\nabla_{X}\beta=q\eta(X)$ for a certain scalar function $q$ .
Hence by virtue of (1.6) we have $\alpha=\pm\beta$ . Thus

$\Omega(X, Y)=\epsilon\{g(X, Y)+\eta(X)\eta(Y)\},$ $\epsilon^{2}=1$ ,

$\psi=\epsilon(n-1),$ $\nabla_{X}\alpha=\alpha(X)=p\eta(X),$ $p=\epsilon q$ .

Using these relations in (2.3) and (2.6), it can be easily seen that $M^{\mathfrak{n}}$ is $\eta$-Einstein.

Thu $s$ we can state the following:

Theorem 2.1. In a conformally flat LP-Sasakian manifold $M^{n}(n>3)$ with a

non-constant coefficient $\alpha$ , the charactenstic vector fidd $\xi$ is a concircular vector

field if and only if $M^{\mathfrak{n}}$ is $\eta$-Einstein.
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For $n=3$ , it is clear that the following theorem holds good:

Theorem 2.2. In a 3-dimensional LP-Sasakian manifold with a non-constant

coefficient $\alpha$ , the characteristic vector field $\xi$ is a concircular vector field if and

only if the manifold is $\eta$-Einstein.

Next we consider the case when the coefficient $\alpha$ is constant. In this case the

following relations hold good:

$\eta(R(X, Y)Z)=\alpha^{2}\{g(Y, Z)\eta(X)-g(X, Z)\eta(Y)\}$ , (2.11)

$S(X,\xi)=(n-1)\alpha^{2}\eta(X)$ . (2.12)

We now consider a conformally flat LP-Sasakian manifold $M^{\mathfrak{n}}(n>3)$ with a

constant coefficient $a$ . Then we have the relation (2.1). Putting $ W=\xi$ in (2.1)

and then using (2.11) and (2.12), we get

$\alpha^{2}[g(Y, Z)\eta(X)-g(X, Z)\eta(Y)]$

$\frac{1}{n-2}[(n-1)a^{2}\{g(Y, Z)\eta(X)-g(X, Z)\eta(Y)\}$

$+S(Y, Z)\eta(X)-S(X, Z)\eta(Y)]$ (2.13)

$-\frac{r}{(n-1)(n-2)}[g(Y, Z)\eta(X)-g(X, Z)\eta(Y)]$ .

Again putting $ X=\xi$ in (2.13) we get by virtue of (2.12) that

$S(Y, Z)=\{\frac{r}{n-1}-a^{2}\}g(Y, Z)+\{\frac{r}{n-1}-n\alpha^{2}\}\eta(Y)\eta(Z)$ . (2.14)

Hence we can state the following:

Theorem 2.3. A conformally flat LP-Sasakian manifold $M^{n}(n>3)$ with a

constant coefficient $a$ is an $\eta$-Einstein manifold.

Corollary. The S-dimensiond LP-Sasakian manifold $M^{3}$ with a constant coeffi-
cient $a$ is always an $\eta$-Einstein manifold.

–128–



Now substituting (2.14) into (2.1) we get

$\prime R(X, Y, Z, W)$ $=$ $\frac{1}{n-2}[(\frac{r}{n-1}-2\alpha^{2})\{g(Y, Z)g(X, W)-g(X, Z)g(Y, W)\}$

$+(\frac{r}{n-1}-n\alpha^{2})\{g(Y, Z)\eta(X)\eta(W)+g(X, W)\eta(Y)\eta(Z)$

$-g(X, Z)\eta(Y)\eta(W)-g(Y, W)\eta(X)\eta(Z)\}]$ . (2.15)

Again differentiating (2.14) covariantly along $X$ and making use of (1.6), we get

$(\nabla_{X}S)(Y, Z)$ $=$ $\frac{dr(X)}{n-1}[g(Y, Z)+\eta(Y)\eta(Z)]$

$+\alpha(\frac{r}{n-1}-n\alpha^{2})[\Omega(X, Y)\eta(Z)+\Omega(X, Z)\eta(Y)]$ ,

where $dr(X)=\nabla_{X}r$ .
This implies that

$(\nabla_{X}S)(Y, Z)-(\nabla_{Y}S)(X, Z)$ $=$ $\frac{dr(X)}{n-1}[g(Y, Z)+\eta(Y)\eta(Z)]$

$-\frac{dr(Y)}{n-1}[g(X, Z)+\eta(X)\eta(Z)]+\alpha(\frac{r}{n-1}-n\alpha^{2})$

$[\Omega(X, Z)\eta(Y)-\Omega(Y, Z)\eta(X)]$ . (2.16)

On the other hand, in our case , since we have $(\nabla_{W}C)(X, Y)Z=0$ , we get

$divC=0$ , where $\prime div^{\prime}$ denotes the divergence. So for $n>3$ , $divC=0$ gives

$(\nabla_{X}S)(Y, Z)-(\nabla_{Y}S)(X, Z)=\frac{1}{2(n-1)}[g(Y, Z)dr(X)-g(X, Z)dr(Y)]$ . $(2.17)$

${\rm Re} mark$ . When $n=3$ , the equation (2.17) is the condition for the manifold

to be conformally flat.

It follows from (2.16) and (2.17) that

$\frac{1}{2(n-1)}[g(Y, Z)dr(X)-g(X, Z)dr(Y)]+\frac{1}{n-1}[dr(X)\eta(Y)$

$-dr(Y)\eta(X)]\eta(Z)+\alpha(\frac{r}{n-1}-n\alpha^{2})[\Omega(X, Z)\eta(Y)-\Omega(Y, Z)\eta(X)]=0$ . (2.18)

If $r$ is constant, then from (2.18) we obtain

$r=n(n-1)\alpha^{2}$ .
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Hence from (2.15) it follows that

$\prime R(X, Y, Z, W)=\alpha^{2}[g(Y, Z)g(X, W)-g(X, Z)g(Y, W)]$ ,

which shows that the manifold is of constant curvature.

Thus we can state the following:

Theorem 2.4. In a $conformdly\backslash $ flat LP-Sasakian manifold $M^{\mathfrak{n}}(n>3)$ with a

constant coefficient $\alpha$ , if the scalar curvature $r$ is constant, then $M^{\mathfrak{n}}$ is of constant

curvature.
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