ON CONFORMALLY FLAT LP-SASAKIAN MANIFOLDS WITH A COEFFICIENT α

U.C. De, J.B. Jun and Absos Ali Shaikh

Abstract

Recently, the notion of Lorentzian almost paracontact manifolds with a coefficient α has been introduced and studied by De et al [3]. In the present paper we investigate conformally flat LP-Sasakian manifolds with a coefficient α.

0. Introduction

In 1989, Matsumoto [1] introduced the notion of LP-Sasakian manifolds. Then Mihai and Rosca [2] introduced the same notion independently and they obtained several results in this manifold. In a recent paper, De, Shaikh and Sengupta [3] introduced the notion of LP-Sasakian manifolds with a coefficient α which generalizes the notion of LP-Sasakian manifolds. Recently, T.Ikawa and his coauthors [4],[5] studied Sasakian manifolds with Lorentzian metric and obtained several results in this manifold. The object of the present paper is to study an LP-Sasakian manifold with a coefficient α.

Mathematics Subject Classification. (1991), 53C15, 53C40.
Keywords and Phrases. LP-Sasakian manifolds with a coefficient α, concircular vector field, torse-forming vector field.

After preliminaries, in section 2 we study conformally flat LP-Sasakian manifold with a coefficient α and obtain several interesting results. We mainly prove that in a conformally flat LP-Sasakian manifold with a coefficient α the characteristic vector field ξ is a concircular vector field if and only if the manifold is η-Einstein and a conformally flat LP-Sasakian manifold with a constant coefficient α is a manifold of constant curvature if the scalar curvature r is a constant.

1. Preliminaries

Let M^{n} be an n-dimensional differentiable manifold endowed with a $(1,1)$ tensor field ϕ, a contravariant vector field ξ, a covariant vector field η and a Lorentzian metric g of type $(0,2)$ such that for each point $p \in M$, the tensor g_{p} : $T_{p} M \times T_{p} M \rightarrow R$ is a non-degenerate inner product of signature (,,,$-++ \ldots+$), where $T_{p} M$ denotes the tangent vector space of M at p and R is the real number space, which satisfies

$$
\begin{gather*}
\eta(\xi)=-1, \quad \phi^{2} X=X+\eta(X) \xi \tag{1.1}\\
g(X, \xi)=\eta(X), \quad g(\phi X, \phi Y)=g(X, Y)+\eta(X) \eta(Y) \tag{1.2}
\end{gather*}
$$

for all vector fields X and Y. Then such a structure (ϕ, ξ, η, g) is termed as Lorentzian almost paracontact structure and the manifold M^{n} with the structure (ϕ, ξ, η, g) is called Lorentzian almost paracontact manifold [1]. In the Lorentzian almost paracontact manifold M^{n}, the following relations hold good [1] :

$$
\begin{gather*}
\phi \xi=0, \eta(\phi X)=0 \tag{1.3}\\
\Omega(X, Y)=\Omega(Y, X), \text { where } \Omega(X, Y)=g(X, \phi Y) \tag{1.4}
\end{gather*}
$$

In the Lorentzian almost paracontact manifold M^{n}, if the relations

$$
\begin{align*}
\left(\nabla_{Z} \Omega\right)(X, Y)= & \alpha[\{g(X, Z)+\eta(X) \eta(Z)\} \eta(Y) \tag{1.5}\\
& +\{g(Y, Z)+\eta(Y) \eta(Z)\} \eta(X)],(\alpha \neq 0)
\end{align*}
$$

$$
\begin{equation*}
\Omega(X, Y)=\frac{1}{\alpha}\left(\nabla_{X} \eta\right)(Y) \tag{1.6}
\end{equation*}
$$

hold where ∇ denotes the operator of covariant differentiation with respect to the Lorentzian metric g, then M^{n} is called an LP-Sasakian manifold with a coefficient α [3]. An LP-Sasakian manifold with coefficient 1 is an LP-Sasakian manifold [1].

If a vector field V satisfies the equation of the following form :

$$
\nabla_{X} V=\beta X+T(X) V
$$

where β is a non-zero scalar function and T is a covariant vector field, then V is called a torse-forming vector field [6].

In a Lorentzian manifold M^{n}, if we assume that ξ is a unit torse-forming vector field, then we have the equation :

$$
\begin{equation*}
\left(\nabla_{X} \eta\right)(Y)=\alpha[g(X, Y)+\eta(X) \eta(Y)] \tag{1.7}
\end{equation*}
$$

where α is a non-zero scalar function. Hence the manifold admitting a unit torseforming vector field satisfying (1.7) is an LP-Sasakian manifold with a coefficient α. Especially, if η satisfies

$$
\begin{equation*}
\left(\nabla_{X} \eta\right)(Y)=\epsilon[g(X, Y)+\eta(X) \eta(Y)], \epsilon^{2}=1 \tag{1.8}
\end{equation*}
$$

then M^{n} is called an LSP-Sasakian manifold [1]. In particular, if α satisfies (1.7) and the equation of the following form :

$$
\begin{equation*}
\alpha(X)=p \eta(X), \alpha(X)=\nabla_{X} \alpha \tag{1.9}
\end{equation*}
$$

where p is a scalar function, then ξ is called a concircular vector field.
Let us consider an LP-Sasakian manifold $M^{n}(\phi, \xi, \eta, g)$ with a coefficient α. Then we have the following relations [3] :

$$
\begin{align*}
\eta(R(X, Y) Z)= & -\alpha(X) \Omega(Y, Z)+\alpha(Y) \Omega(X, Z) \tag{1.10}\\
& +\alpha^{2}\{g(Y, Z) \eta(X)-g(X, Z) \eta(Y)\}
\end{align*}
$$

$$
\begin{equation*}
S(X, \xi)=-\psi \alpha(X)+(n-1) \alpha^{2} \eta(X)+\alpha(\phi X) \tag{1.11}
\end{equation*}
$$

where R, S denote respectively the curvature tensor and the Ricci tensor of the manifold and $\psi=\operatorname{Trace}(\phi)$.

We now state the following results which will be needed in the later section.
Lemma 1.1. ([3]) In an LP-Sasakian manifold M^{n} with a non-constant coefficient α, one of the following cases occur:
i) $\psi^{2}=(n-1)^{2}$
ii) $\alpha(Y)=-p \eta(Y)$, where $p=\alpha(\xi)$.

Lemma 1.2. ([3]) In a Lorentzian almost paracontact manifold $M^{n}(\phi, \xi, \eta, g)$ with its structure (ϕ, ξ, η, g) satisfying $\Omega(X, Y)=\frac{1}{\alpha}\left(\nabla_{X} \eta\right)(Y)$, where α is a nonzero scalar function, the vector field ξ is torse-forming if and only if the relation $\psi^{2}=(n-1)^{2}$ holds good.

2. Conformally flat LP-Sasakian manifold with a coefficient α

Let us consider a conformally flat LP-Sasakian manifold $M^{n}(n>3)$ with a coefficient α. First we suppose that α is not constant. Then since the conformal curvature tensor C vanishes, the curvature tensor ${ }^{\prime} R$ satisfies

$$
\begin{align*}
& \quad R(X, Y, Z, W)=\frac{1}{n-2}[g(Y, Z) S(X, W)-g(X, Z) S(Y, W) \\
& \quad+S(Y, Z) g(X, W)-S(X, Z) g(Y, W)] \\
& \quad-\frac{r}{(n-1)(n-2)}[g(Y, Z) g(X, W)-g(X, Z) g(Y, W)] \tag{2.1}
\end{align*}
$$

where r is the scalar curvature of the manifold. Putting $W=\xi$ in (2.1) and then using (1.10) and (1.11), we get

$$
\begin{align*}
&-\alpha(X) \Omega(Y, Z)+\alpha(Y) \Omega(X, Z)+\alpha^{2}[g(Y, Z) \eta(X)-g(X, Z) \eta(Y)] \\
&= \frac{1}{n-2}\left[g(Y, Z)\left\{-\psi \alpha(X)+(n-1) \alpha^{2} \eta(X)+\alpha(\phi X)\right\}\right. \\
&-g(X, Z)\left\{-\psi \alpha(Y)+(n-1) \alpha^{2} \eta(Y)+\alpha(\phi Y)\right\} \tag{2.2}\\
&+S(Y, Z) \eta(X)-S(X, Z) \eta(Y)] \\
&-\frac{r}{(n-1)(n-2)}[g(Y, Z) \eta(X)-g(X, Z) \eta(Y)]
\end{align*}
$$

Again if we put $X=\xi$ in (2.2) and using (1.3) and (1.11) we obtain by straightforward calculations

$$
\begin{align*}
S(Y, Z)= & {\left[\frac{r}{n-1}-\alpha^{2}-\psi p\right] g(Y, Z)+\left[\frac{r}{n-1}-n \alpha^{2}\right] \eta(Y) \eta(Z) } \\
& +\{\psi \alpha(Z)-\alpha(\phi Z)\} \eta(Y)+\{\psi \alpha(Y)-\alpha(\phi Y)\} \eta(Z) \tag{2.3}\\
& +p(n-2) \Omega(Y, Z)
\end{align*}
$$

where $p=\alpha(\xi)$.
We now suppose that M^{n} is η-Einstein. If an LP-Sasakian manifold M^{n} with the coefficient α satisfies the relation

$$
S(X, Y)=a g(X, Y)+b \eta(X) \eta(Y)
$$

where a, b are the associated functions on the manifold, then the manifold M^{n} is called an η-Einstein manifold. Then we have [3]

$$
\begin{align*}
S(X, Y)= & {\left[\frac{r}{n-1}-\alpha^{2}-\frac{\psi p}{n-1}\right] g(X, Y) } \tag{2.4}\\
& +\left[\frac{r}{n-1}-n \alpha^{2}-\frac{n \psi p}{n-1}\right] \eta(X) \eta(Y)
\end{align*}
$$

By virtue of (2.4) and (2.3) we get

$$
\begin{gather*}
\frac{(n-2) \psi p}{n-1} g(Y, Z)-\frac{n \psi p}{n-1} \eta(Y) \eta(Z)-\{\psi \alpha(Z)-\alpha(\phi Z)\} \eta(Y) \tag{2.5}\\
-\{\psi \alpha(Y)-\alpha(\phi Y)\} \eta(Z)-p(n-2) \Omega(Y, Z)=0
\end{gather*}
$$

Putting $Z=\xi$ in (2.5) we obtain

$$
\begin{equation*}
\psi \alpha(Y)-\alpha(\phi Y)=-\psi p \eta(Y), \text { for all } Y \tag{2.6}
\end{equation*}
$$

Using (2.6) in (2.5) we get by simplification

$$
\begin{equation*}
p\left\{\frac{\psi}{n-1}[g(Y, Z)+\eta(Y) \eta(Z)]-\Omega(Y, Z)\right\}=0 \tag{2.7}
\end{equation*}
$$

If $p=0$, then from (2.6) we have $\alpha(\phi Y)=\psi \alpha(Y)$. Thus since ψ is an eigenvalue of the matrix $(\phi), \psi$ is equal to ± 1. Hence, by virtue of Lemma 1.1, we get $\alpha(Y)=0$ for all Y and hence α is constant, which contradicts to our assumption.

Consequently, we have $p \neq 0$ and hence from (2.7) we get

$$
\begin{equation*}
\frac{\psi}{n-1}[g(Y, Z)+\eta(Y) \eta(Z)]-\Omega(Y, Z)=0 . \tag{2.8}
\end{equation*}
$$

Putting $Y=\phi Y$ in (2.8) we have by virtue of (1.3)

$$
\begin{equation*}
\frac{\psi}{n-1} \Omega(Y, Z)-\{g(Y, Z)+\eta(Y) \eta(Z)\}=0 \tag{2.9}
\end{equation*}
$$

Combining (2.8) and (2.9) we get

$$
\left\{\psi^{2}-(n-1)^{2}\right\}[g(Y, Z)+\eta(Y) \eta(Z)]=0
$$

which gives by virtue of $n>3$

$$
\begin{equation*}
\psi^{2}=(n-1)^{2} . \tag{2.10}
\end{equation*}
$$

Hence Lemma 1.2 proves that ξ is torse-forming. We have that

$$
\left(\nabla_{X} \eta\right)(Y)=\beta\{g(X, Y)+\eta(X) \eta(Y)\}
$$

Then from (1.6) we get

$$
\begin{aligned}
\Omega(X, Y) & =\frac{\beta}{\alpha}\{g(X, Y)+\eta(X) \eta(Y)\} \\
& =g\left(\frac{\beta}{\alpha}(X+\eta(X) \xi, Y)\right.
\end{aligned}
$$

and $\Omega(X, Y)=g(\phi X, Y)$.
Since g is non-singular, we have

$$
\phi(X)=\frac{\beta}{\alpha}(X+\eta(X) \xi)
$$

and

$$
\phi^{2}(X)=\left(\frac{\beta}{\alpha}\right)^{2}(X+\eta(X) \xi)
$$

It follows from (1.1) that $\left(\frac{\beta}{\alpha}\right)^{2}=1$ and hence, $\alpha= \pm \beta$. Thus we have

$$
\phi(X)= \pm(X+\eta(X) \xi)
$$

By virtue of (2.6) we see

$$
\alpha(Y)=-p \eta(Y)
$$

where $p=\alpha(\xi)$. Thus, we conclude that ξ is a concircular vector field.
Conversely, we suppose that ξ is a concircular vector field. Then we have the equation of the following form :

$$
\left(\nabla_{X} \eta\right)(Y)=\beta\{g(X, Y)+\eta(X) \eta(Y)\}
$$

where β is a certain function and $\nabla_{X} \beta=q \eta(X)$ for a certain scalar function q. Hence by virtue of (1.6) we have $\alpha= \pm \beta$. Thus

$$
\begin{aligned}
& \Omega(X, Y)=\epsilon\{g(X, Y)+\eta(X) \eta(Y)\}, \epsilon^{2}=1, \\
& \psi=\epsilon(n-1), \nabla_{X} \alpha=\alpha(X)=p \eta(X), p=\epsilon q
\end{aligned}
$$

Using these relations in (2.3) and (2.6), it can be easily seen that M^{n} is η-Einstein.
Thus we can state the following :
Theorem 2.1. In a conformally flat LP-Sasakian manifold $M^{n}(n>3)$ with a non-constant coefficient α, the characteristic vector field ξ is a concircular vector field if and only if M^{n} is η-Einstein.

For $n=3$, it is clear that the following theorem holds good:
Theorem 2.2. In a 3-dimensional LP-Sasakian manifold with a non-constant coefficient α, the characteristic vector field ξ is a concircular vector field if and only if the manifold is η-Einstein.

Next we consider the case when the coefficient α is constant. In this case the following relations hold good :

$$
\begin{gather*}
\eta(R(X, Y) Z)=\alpha^{2}\{g(Y, Z) \eta(X)-g(X, Z) \eta(Y)\} \tag{2.11}\\
S(X, \xi)=(n-1) \alpha^{2} \eta(X) \tag{2.12}
\end{gather*}
$$

We now consider a conformally flat LP-Sasakian manifold $M^{n}(n>3)$ with a constant coefficient α. Then we have the relation (2.1). Putting $W=\xi$ in (2.1) and then using (2.11) and (2.12), we get

$$
\begin{align*}
\alpha^{2}[g(Y, Z) \eta(X) & -g(X, Z) \eta(Y)] \\
= & \frac{1}{n-2}\left[(n-1) \alpha^{2}\{g(Y, Z) \eta(X)-g(X, Z) \eta(Y)\}\right. \\
& +S(Y, Z) \eta(X)-S(X, Z) \eta(Y)] \tag{2.13}\\
& -\frac{r}{(n-1)(n-2)}[g(Y, Z) \eta(X)-g(X, Z) \eta(Y)]
\end{align*}
$$

Again putting $X=\xi$ in (2.13) we get by virtue of (2.12) that

$$
\begin{equation*}
S(Y, Z)=\left\{\frac{r}{n-1}-\alpha^{2}\right\} g(Y, Z)+\left\{\frac{r}{n-1}-n \alpha^{2}\right\} \eta(Y) \eta(Z) \tag{2.14}
\end{equation*}
$$

Hence we can state the following :
Theorem 2.3. A conformally flat LP-Sasakian manifold $M^{n}(n>3)$ with a constant coefficient α is an η-Einstein manifold.

Corollary. The 3-dimensional LP-Sasakian manifold M^{3} with a constant coefficient α is always an η-Einstein manifold.

Now substituting (2.14) into (2.1) we get

$$
\begin{align*}
& \prime \\
&(X, Y, Z, W)= \\
& \frac{1}{n-2}\left[\left(\frac{r}{n-1}-2 \alpha^{2}\right)\{g(Y, Z) g(X, W)-g(X, Z) g(Y, W)\}\right. \tag{2.15}\\
&+\left(\frac{r}{n-1}-n \alpha^{2}\right)\{g(Y, Z) \eta(X) \eta(W)+g(X, W) \eta(Y) \eta(Z) \\
&-g(X, Z) \eta(Y) \eta(W)-g(Y, W) \eta(X) \eta(Z)\}]
\end{align*}
$$

Again differentiating (2.14) covariantly along X and making use of (1.6), we get

$$
\begin{aligned}
\left(\nabla_{X} S\right)(Y, Z)= & \frac{d r(X)}{n-1}[g(Y, Z)+\eta(Y) \eta(Z)] \\
& +\alpha\left(\frac{r}{n-1}-n \alpha^{2}\right)[\Omega(X, Y) \eta(Z)+\Omega(X, Z) \eta(Y)]
\end{aligned}
$$

where $d r(X)=\nabla_{X} r$.
This implies that

$$
\begin{align*}
\left(\nabla_{X} S\right)(Y, Z)-\left(\nabla_{Y} S\right)(X, Z)= & \frac{d r(X)}{n-1}[g(Y, Z)+\eta(Y) \eta(Z)] \\
& -\frac{d r(Y)}{n-1}[g(X, Z)+\eta(X) \eta(Z)]+\alpha\left(\frac{r}{n-1}-n \alpha^{2}\right) \\
& {[\Omega(X, Z) \eta(Y)-\Omega(Y, Z) \eta(X)] } \tag{2.16}
\end{align*}
$$

On the other hand, in our case, since we have $\left(\nabla_{W} C\right)(X, Y) Z=0$, we get $\operatorname{div} C=0$, where ' $\operatorname{div}^{\prime}$ denotes the divergence. So for $n>3, \operatorname{div} C=0$ gives

$$
\begin{equation*}
\left(\nabla_{X} S\right)(Y, Z)-\left(\nabla_{Y} S\right)(X, Z)=\frac{1}{2(n-1)}[g(Y, Z) d r(X)-g(X, Z) d r(Y)] \tag{2.17}
\end{equation*}
$$

Remark. When $n=3$, the equation (2.17) is the condition for the manifold to be conformally flat.
It follows from (2.16) and (2.17) that

$$
\begin{align*}
& \frac{1}{2(n-1)}[g(Y, Z) d r(X)-g(X, Z) d r(Y)]+\frac{1}{n-1}[d r(X) \eta(Y) \\
& -d r(Y) \eta(X)] \eta(Z)+\alpha\left(\frac{r}{n-1}-n \alpha^{2}\right)[\Omega(X, Z) \eta(Y)-\Omega(Y, Z) \eta(X)]=0 \tag{2.18}
\end{align*}
$$

If r is constant, then from (2.18) we obtain

$$
r=n(n-1) \alpha^{2}
$$

Hence from (2.15) it follows that

$$
' R(X, Y, Z, W)=\alpha^{2}[g(Y, Z) g(X, W)-g(X, Z) g(Y, W)]
$$

which shows that the manifold is of constant curvature.
Thus we can state the following :
Theorem 2.4. In a conformally flat LP-Sasakian manifold $M^{n}(n>3)$ with a constant coefficient α, if the scalar curvature r is constant, then M^{n} is of constant curvature.

Acknowledgement: The authors are thankful to the referee for his valuable suggestions in the improvement of the paper.

References

[1] K. Matsumoto, On Lorentzian paracontact manifolds, Bull. of Yamagata Univ., Nat. Sci. 12 (1989), 151-156.
[2] I. Mihai and R. Rosca, On Lorentzian P-Sasakian manifolds, Classical Analysis, World Sci. Publi., Singapore, (1992), 155-169.
[3] U.C. De, A.A. Shaikh and A. Sengupta, On LP-Sasakian Manifolds with a coefficient α, to appear in Kyungpook Math. Jour.,July, 2002.
[4] T. Ikawa and M. Erdogan, Sasakian manifolds with Lorentzian metric, Kyungpook Math. J., 35 (1996), 517-526.
[5] T. Ikawa and J.B. Jun, On sectional curvatures of a normal contact Lorentzian manifold, Korean J. Math. Sciences, 4 (1997), 27-33.
[6] K.Yano , On the torse-forming direction in Riemannian spaces, Proc. Imp. Acad. Tokyo, 20 (1944),340-345.

U.C. De and Absos Ali Shaikh
Department of Mathematics, University of Kalyani, Kalyani - 741235, West Bengal, INDIA.
e-mail : ucde@klyuniv.ernet.in
J.B.Jun
Department of Mathematics, Faculty of Natural Science, Kookmin University, Seoul Korea, 136-702. e-mail: jbjun@kookmin.ac.kr

Received July 13, 2001 Revised May 24, 2002

