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Congruence lattices of lattices

G. Gr�atzer and E. T. Schmidt

In the early sixties, we characterized congruence lattices of universal algebras as

algebraic lattices; then our interest turned to the characterization of congruence

lattices of lattices. Since these lattices are distributive, we �gured that this must

be an easier job. After more then 35 years, we know that we were wrong.

In this Appendix, we give a brief overview of the results and methods. In

Section 1, we deal with �nite distributive lattices; their representation as congru-

ence lattices raises many interesting questions and needs specialized techniques.

In Section 2, we discuss the general case.

A related topic is the lattice of complete congruences of a complete lattice.

In contrast to the previous problem, we can characterize complete congruence

lattices, as outlined in Section 3.

1. The Finite Case

The congruence lattice, ConL, of a �nite lattice L is a �nite distributive lattice

(N. Funayama and T. Nakayama, see Theorem II.3.11). The converse is a result

of R. P. Dilworth (see Theorem II.3.17), �rst published G. Gr�atzer and E. T.

Schmidt [1962]. Note that the lattice we construct is sectionally complemented.

In Section II.1, we learned that a �nite distributive lattice D is determined

by the poset J(D) of its join-irreducible elements, and every �nite poset can be

represented as J(D), for some �nite distributive latticeD. So for a �nite lattice L,

we can reduce the characterization problem of �nite congruence lattices to the

representation of �nite posets as J(ConL).
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546 C. Congruence lattices of lattices

Planar lattices, small lattices

We start with the following result (G. Gr�atzer, H. Lakser, and E. T. Schmidt

[A118]):

Theorem 1 Let D be a �nite distributive lattice with n join-irreducible ele-

ments. Then there exists a planar lattice L of O(n2) elements with ConL �= D.

The original constructions (R. P. Dilworth's and also our own) produced

lattices of size O(22n) and of order dimensionO(2n). In G. Gr�atzer and H. Lakser

[C11], this was improved to size O(n3) and order dimension 2 (planar).

We sketch the construction for Theorem 1.

Let P = J(D), P = fp1; p2; : : : ; png, and we take a chain

C = fc0; c1; : : : ; c2ng; c0 � c1 � � � � � c2n:

To every prime interval [ci; ci+1], we assign an element of P as its \color", so that

each element of P is the color of two adjacent prime intervals: let the color of

[c0; c1] and [c1; c2] be p1; of [c2; c3] and [c3; c4] be p2, and so on, of [c2n�2; c2n�1]

and [c2n�1; c2n] be pn. Follow this on the two examples in Figures 1 and 2; in

Figure 1, P = fp1; p2g and p1 < p2, while in Figure 2, P = fp1; p2; p3g and

p1 < p2, p3 < p2. The colors are indicated on the diagrams.

In C2, we �ll in a \covering square" C2
2 with one more element so that we

obtain an M3, if the two sides have the same color, see Figure 3. Moreover, if p,

q 2 P and p < q, then we take the \double covering square" C3�C2, where the

longer side has two prime intervals of color q and the shorter side is of color p,

and we add one more element, as illustrated in Figure 3, to obtain the sublattice

N5;5.

It is an easy computation to show that jLj � kn2, for some constant k, and

that D �= ConL; this isomorphism is established by assigning to p 2 P the

congruence of L generated by collapsing any (all) prime intervals of color p.

For a natural number n, de�ne cr(n) as the smallest integer such that, for

any distributive lattice D with n join-irreducible elements, there exists a �nite

lattice L satisfying ConL �= D and jLj � cr(n). From the construction sketched

above, it follows that

cr(n) < 3(n+ 1)2:

In Section A.1.7, we discussed the lower bound n2

16 log
2
n
for cr(n). Here is how

it evolved: G. Gr�atzer, I. Rival, and N. Zaguia [C18] proved that Theorem 1 is

\best possible" in the sense that size O(n2) cannot be replaced by size O(n�),

for any � < 2; that is,

kn� < cr(n);
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for any constant k, for any � < 2, and for any su�ciently large integer n.

Y. Zhang [C39] noticed that the proof of this inequality can be improved to

obtain the following result: for n � 64,

1

64

n2

(log2 n)
2
< cr(n):

The lower bound n2

16 log
2
n
for cr(n) is, of course, much stronger than the last one.
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A di�erent kind of lower bound is obtained in R. Freese [C5]; it is shown that

if J(ConL) has e edges (e > 2), then

e

2 log2 e
� jLj:

R. Freese also proves that J(ConL) can be computed in time O(jLj2 log2 jLj).
Consider the optimal length of L. E. T. Schmidt [1975] constructs a �nite

lattice L of length 5m, where m is the number of dual atoms of D; S.-K. Teo

[C36] proves that this result is best possible. (For �nite chains, this was done in

J. Berman [1972].)

Special classes of lattices

Modular and semimodular lattices

E. T. Schmidt [1974] proves that Every �nite distributive lattice D can be rep-

resented as the congruence lattice of a modular lattice M . It follows from The-

orem III.4.9 that the congruence lattice of a �nite modular lattice is a Boolean

lattice, therefore, we cannot expect M to be �nite. For a short proof of this

result, see [C35].

A much deeper result was proved in E. T. Schmidt [C33]:

Theorem 2 Every �nite distributive lattice can be represented as the con-

gruence lattice of a complemented modular lattice.

It was pointed out by F. Wehrung that the ring theoretic and ordered group-

theoretic results of G. A. Elliott [C4], P. A. Grillet [C28], E. G. E�ros, D. E.

Handelman, and Chao Liang Shen [C3] (along with some elementary results in

F. Wehrung [A274]) contain this theorem; see K. R. Goodearl and F. Wehrung

[C7] for more detail.

In G. Gr�atzer, H. Lakser, and E. T. Schmidt [A119], we constructed a �nite

semimodular lattice L:
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Theorem 3 Every �nite distributive lattice D can be represented as the con-

gruence lattice of a �nite semimodular lattice S. In fact, S can be constructed as

a planar lattice of size O(n3), where n is the number of join-irreducible elements

of D.

Congruence-preserving extensions

In Section A.1.7, we discussed the concept of congruence-preserving extensions

and some of the major result concerning it. Many of the older results use the

following construction, see E. T. Schmidt [1968]. LetD be a bounded distributive

lattice; let M3[D] (the extension of M3 by D) consist of all triples hx; y; zi 2 D
3

satisfying x^y = x^z = y^z. ThenM3[D] is a (modular) lattice, x 7! hx; 0; 0i,
x 2 D, is an embedding of D into M3[D] and by identifying x with hx; 0; 0i, we
obtain that M3[D] is a congruence-preserving extension of D. (See a variant of

this construction in Section 2.)

In G. Gr�atzer, H. Lakser, and R. W. Quackenbush [C12], it is proved that the

M3[D] construction is a special case of tensor products. If A and B are lattices

with zero, then A 
 B, the tensor product of A and B, is the join-semilattice

freely generated by the poset (A � f0g) � (B � f0g) subject to the relations:

ha0; bi _ ha1; bi = ha0 _ a1; bi and ha; b0i _ ha; b1i = ha; b0 _ b1i (a, a0, a1 2 A, b,
b0, b1 2 B).

Let A and B be �nite lattices. Then A 
 B is obviously a lattice, and the

following isomorphism holds (see [C12]):

Theorem 4

ConA
 ConB �= Con(A 
B):

For any �nite simple lattice S, this isomorphism implies that ConA �=
Con(A 
 S). The case A = D, S =M3 is the M3[D] result.

Theorem 4 has been extended to wide classes of in�nite lattices (substituting

Conc for Con) in G. Gr�atzer and F. Wehrung [C26] and to arbitrary lattices

with zero using \box products" (a variant of tensor products) in G. Gr�atzer and

F. Wehrung [C27].

Many of the newer results utilize a new technique in G. Gr�atzer and E. T.

Schmidt [A123] (applied also in G. Gr�atzer and E. T. Schmidt [A124] and [C25]).

The rectangular extension R(K) of a �nite lattice K is de�ned as the direct

product of all subdirect factors of K, that is,

R(K) =
Y

(K=� j � 2M(ConK) );

where M(ConK) is the set of all meet-irreducible congruences of K.

K has a natural embedding into R(K) by

 : a 7! aR= h[a]� j � 2M(ConK)i:
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Let K = KR.

Theorem 5 LetK be a �nite lattice. ThenKRhas the Congruence Extension

Property in R(K) (that is, every congruence of KRcan be extended to R(K)).

p-algebras

T. Katrin�ak [C31] characterized the congruence lattices of �nite p-algebras (that

is, lattices with pseudocomplementation, see Section II.6):

Theorem 6 Every �nite distributive lattice is isomorphic to the congruence

lattice of a �nite p-algebra.

In [C22], we give a more elementary proof of this theorem. In fact, we prove

the following generalization:

Theorem 7 Let D be an algebraic distributive lattice in which the unit ele-

ment of D is compact and every compact element of D is a �nite join of join-

irreducible compact elements. Then D can be represented as the congruence

lattice of a p-algebra P .

Simultaneous representation

It is well-known that, given a lattice L and a convex sublattice K, the restriction

mapConL! ConK is a f0; 1g-preserving lattice homomorphism. In G. Gr�atzer

and H. Lakser [C9], see also E. T. Schmidt [C34], the converse is proved: any

f0; 1g-preserving homomorphism of �nite distributive lattices can be realized as

such a restriction and, indeed, as a restriction to an ideal of a �nite lattice.

If the sublattice K is not a convex sublattice, then the restriction map

ConL! ConK need not preserve join, but it still preserves meet, 0, and 1.

Similarly, we can extend congruences from the sublattice K to L by minimal

extension. This extension map need not preserve meet, but it does preserve

join and 0. Furthermore, it separates 0, that is, nonzero congruences extend to

nonzero congruences. We now formalize this.

Let K and L be lattices, and let ' be a homomorphism of K into L. Then '

induces a map ext' of ConK into ConL: for a congruence relation � of K, let

the image � under ext' be the congruence relation of L generated by the set

�' = f ha'; b'i j a � b (�) g.

The following result was proved by A. P. Huhn in [C29] in the special case

when  is an embedding and was proved for arbitrary  in G. Gr�atzer, H. Lakser,

and E. T. Schmidt [C14]:
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Theorem 8 Let D and E be �nite distributive lattices, and let

 : D ! E

be a f0;_g-homomorphism. Then there are �nite lattices K and L, a lattice

homomorphism ' : K ! L, and isomorphisms

� : D ! ConK;

� : E ! ConL

with

 � = �(ext'):

Furthermore, ' is an embedding i�  separates 0.

Theorem 8 concludes that the following diagram is commutative:

D
 

����! E

�=

??y� �=

??y�

ConK
ext'
����! ConL

In G. Gr�atzer, H. Lakser, and E. T. Schmidt [C15] the following stronger

version is proved (see G. Gr�atzer, H. Lakser, and E. T. Schmidt [C13] for a short

proof):

Theorem 9 Let K be a �nite lattice, let E be a �nite distributive lattice, and

let  : ConK ! E be a f0;_g-homomorphism. Then there is a �nite lattice L,

a lattice homomorphism ' : K ! L, and an isomorphism � : E ! ConL with

ext' =  �. Furthermore, ' is an embedding i�  separates 0.

If L is a lattice and L1, L2 are sublattices of L, then there is a map

ConL1 ! ConL2

obtained by �rst extending each congruence relation of L1 to L and then restrict-

ing the resulting congruence relation to L2. All we can say about this map is that

it is isotone and that it preserves 0. The main result of G. Gr�atzer, H. Lakser,

and E. T. Schmidt [C14] (see G. Gr�atzer, H. Lakser, and E. T. Schmidt [C13] for

a short proof) is that this is, in fact, a characterization of 0-preserving isotone

maps between �nite distributive lattices:
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Theorem 10 Let D1 and D2 be �nite distributive lattices, and let

 : D1 ! D2

be an isotone map that preserves 0. Then there is a �nite lattice L with sublat-

tices L1 and L2 and there are isomorphisms

�1 : D1 ! ConL1;

�2 : D2 ! ConL2

such that the diagram

D1

 
����! D2

�=

??y�1 �=

??y�2

ConL1

extension
������! ConL

restriction
������! ConL2

is commutative.

G. Gr�atzer, H. Lakser, and E. T. Schmidt [C16] and [C17] prove that if  is

a 0-preserving join-homomorphism of D into E (D and E are �nite distributive

lattices) and n = max(jJ(D)j; jJ(E)j), then we can construct the �nite lattices

K and L and the lattice homomorphism ' : K ! L that represent  so that

the size of K and L is O(n5) and the order dimensions of K and L are 3. We

conjecture that this result is the best.

The D-relation

In a �nite lattice L, every element a is determined by the set of join-irreducible

elements contained in a. Therefore, it is quite natural that we can characterize

congruences in terms of the join-irreducible elements. This idea was developed

in the papers B. J�onsson and J. B. Nation [C30], A. Day [A42], and R. Wille

[C38]. On the set J(L), a binary relation D is de�ned as follows: for p, q 2 J(L),

let p D q i� there exists an x 2 L such that p � q _ x and p � q� _ x, where

q� denotes the lower cover of q. This relation D de�nes a closure operator D as

follows: for A � J(L), let A be D-closed i� p D q and q 2 A implies that p 2 A.
The following result describes congruence lattices.

Theorem 11 The congruence lattice of a �nite lattice L is isomorphic to the

lattice of D-closed subsets of J(L). This isomorphism is given by

� 7! f p 2 J(L) j �(p�; p) � � g:

This topic is treated in depth in the book R. Freese, J. Je�zek, and J. B.

Nation [A65]; see also M. Tischendorf [A267].
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2. The General Case

In the general case, there are two approaches to try to solve the characterization

problem of congruence lattices of lattices. The �rst is due to the second author

and the second was suggested by P. Pudl�ak [C32].

The �rst approach: distributive join-homomorphisms

Let ConcL denote the semilattice of compact congruences of the lattice L. Let

us call a semilattice S representable i� there is a lattice L with ConcL �= S.

LetD be a �nite distributive lattice, and take the Boolean lattice B generated

by D (see Section II.4). Then for every d 2 B, there exists a smallest element

s(d) 2 D such that d � s(d). The map s : B ! D is a closure operator (see

De�nition IV.3.8(i)). We construct a lattice K, whose congruence lattice is D

with a new unit element adjoined. Take B �C2 and its meet-subsemilattice K,

consisting of all elements of the form hb; 0i, b 2 B and hd; 1i, d 2 D. Then K is

a lattice and B can be identi�ed with an ideal of K under the map b 7! hb; 0i,
b 2 B. Consider a congruence hx; 0i � h0; 0i in B. Joining both sides with h0; 1i,
we get hs(x); 1i = hx; 0i _ h0; 1i � h0; 0i _ h0; 1i = h0; 1i. Thus hs(x); 0i � h0; 0i.
It is easy to see now that the congruence relation �(hs(x); 0i; h0; 0i) of B can

be extended to K and �(h0; 1i; h0; 0i) is the unit congruence. Now we have to

identify the new unit element with the unit of ConK. The following construction

solves this problem (see E. T. Schmidt [1968]).

Let L consist of all triples hx; y; zi 2 B3 satisfying x ^ y = x ^ z = y ^ z and
x 2 D. Then L is a lattice and D �= ConL.

Note that the elements h0; 0; zi, z 2 B, and hx; 1; xi, x 2 D, form a sublattice

of L isomorphic to K.

This construction also works for certain in�nite distributive lattices, namely,

for dually relatively pseudocomplemented lattices; indeed, for every d 2 D, then
there exists a smallest s(d) 2 B such that d � s(d).

Let B be a generalized Boolean lattice and let h : B ! S be an onto join-

homomorphism. We will say that h is weakly distributive i� for all x, y, z 2 B

with x _ y � z and h(x _ y) = h(z), there are x1, y1 2 B such that x1 _ y1 = z,

h(x) = h(x1), and h(y) = h(y1). If B is the Boolean lattice generated by D and

s(x) exists for every x 2 D, then the map h : x 7! s(x) is a weakly distributive

join-homomorphism.

We call h distributive i� Ker h =
W
(Ker si j i 2 I ), where each si, i 2 I, is a

closure operator on B.

Theorem 12 Let S be a semilattice with zero. If there is a generalized

Boolean lattice B and a distributive join-homomorphism h : B ! S, then S

is representable.

We apply the previous construction for every closure operator si to obtain

the lattices Li, i 2 I. We glue these lattices to each other to construct L with
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ConcL �= S.

By construction, every Li has an ideal Bi isomorphic to B. We de�ne a

latticeMI whose elements are vectors, h: : : ; xi; : : :i, xi 2 B, i 2 I, satisfying the
condition that for three distinct indices i, j, and k, xi ^ xj = xi ^ xk = xj ^ xk.
For every i 2 I, the elements hx; : : : ; x; 1; x; : : :; xi, where the 1 is i-th entry, form
a dual ideal B0

i of MI , which is isomorphic to B and, consequently, to the ideal

Bi of Li. Now we glue together MI and Li by identifying Bi and B
0

i. This way,

we get a meet semilattice. The lattice L is the lattice of all �nitely generated

ideals of this semilattice.

Theorem 12 is su�cient to obtain most representation theorems:

Theorem 13 Let S be a semilattice with zero. Each one of the following

conditions implies that S is representable:

(i) IdS is completely distributive (equivalently, S is isomorphic to the semi-

lattice of all �nitely generated hereditary subsets of some partially ordered

set).

(ii) S is a lattice.

(iii) S is locally countable (that is, for every s 2 S, (s] is countable).

(iv) jSj � @1.

(i) was �rst obtained by R. P. Dilworth. Proofs can be found in G. Gr�atzer

and E. T. Schmidt [1962], H. Dobbertin [C1], and P. Crawley and R. P. Dilworth

[1973].

(ii) was proved in E. T. Schmidt [A247]. P. Pudl�ak [C32] provides another

proof, in a more general, categorical context. Another proof can be found in

H. Dobbertin [C2].

(iii) was �rst obtained in A. P. Huhn [C29] under the condition that jSj � @0.
The general result for locally countable semilattices was obtained in H. Dobbertin

[C1]. Dobbertin proved that if B is a locally countable generalized Boolean

semilattice and if S is a distributive semilattice, then every weakly distributive

homomorphism fromB to S is distributive. Further, he proved that every locally

countable distributive semilattice with zero is the weakly distributive image of

some locally countable generalized Boolean algebra.

(iv) was obtained in A. P. Huhn [C29]. One of the main tools used by Huhn

is the notion of frame introduced in H. Dobbertin [C1], which is a special sort

of lattice with zero used for building trans�nite direct limits of direct systems

having up to @1 objects.

Some of these results are presented in an axiomatic form in M. Tischendorf

[C37].
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The second approach

We have seen that the representation is relatively easy for �nite distributive

lattices. Let D be an arbitrary distributive semilattice with zero; P. Pudl�ak

[C32] proved that for each �nite subset F of D, there is a �nite subsemilattice of

D containing F , therefore, D is a direct limit of all the �nite distributive lattices

contained in it as distributive join-semilattices with zero.

Let S be a distributive semilattice with zero, and let S be the set of �nite

subsets of S � f0g. P. Pudl�ak's approach (see [C32]) is the following. Choose

an order preserving function that assigns to each F 2 S a �nite distributive

subsemilattice SF of S containing F ; thus S is the direct limit of the SF , F 2 S.
For each F 2 S, construct a �nite atomistic lattice LF whose congruence lattice

is isomorphic to SF and such that if F � G, then LF embeds into LG with the

Congruence Extension Property. Then if LS is the limit of the LF , F 2 S, then
the congruence lattice of LS is isomorphic to IdS.

Applying this method, P. Pudl�ak [C32] gave a new proof of Theorem 13(ii).

Negative results

There are a number of related negative results.

H. Dobbertin [C2] constructs a distributive semilattice with zero S and a

semilattice homomorphism f of a Boolean algebra B (of size @1) onto S such

that f is weakly distributive but not distributive.

F. Wehrung [A273] constructs a bounded distributive semilattice S (of size

@2) that is not isomorphic to any weakly distributive image of a generalized

Boolean algebra. Note that the @2 size is optimal. This shows that we cannot

obtain a positive solution of the congruence lattice characterization problem of

lattices by the �rst approach.

The second approach was also ruled out in F. Wehrung [A274]. The semilat-

tice S of previous paragraph is not isomorphic to ConcL, for any lattice L which

is a direct limit of lattices that are either atomistic or sectionally complemented.

M. Plo�s�cica, J. T�uma, and F. Wehrung [A234] prove that there exists a

distributive semilattice S that is representable as Conc L, for a lattice L, but S

cannot be represented using the �rst or the second approach, that is, S is not a

distributive join-homomorphic image of a generalized Boolean lattice nor is S a

direct limit of lattices that are either atomistic or sectionally complemented. In

fact, one can take S = Conc F , where F is the free lattice on @2 generators in

any nondistributive variety of lattices.

3. Complete Congruences

In Section A.1.8, we brie
y mentioned the result (G. Gr�atzer [A100]):

Theorem 14 Every complete lattice K can be represented as the lattice of

complete congruence relations of a complete lattice L.
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In a series of papers, much sharper results have been obtained.

G. Gr�atzer and H. Lakser [A116] had the �rst published proof of Theorem 14;

in fact, it already contained more: L was constructed as a planar lattice.

Let m be an in�nite regular cardinal, and let K be an m-complete lattice.

Then the lattice ConmK of all m-complete congruence relations of K is m-

algebraic (this concept is the obvious modi�cation of De�nition II.3.12).

G. Gr�atzer and H. Lakser [C10] proved a partial converse:

Let m be a regular cardinal > @0, and let L be an m-algebraic lattice with

an m-compact unit element. Then L is isomorphic to the lattice of m-algebraic

congruences of an m-algebraic lattice K.

A much sharper form of the original result was proved in the paper R. Freese,

G. Gr�atzer, and E. T. Schmidt [C6]:

Every complete lattice L is isomorphic to the lattice of complete congruence

relations of a complete modular lattice K.

The m-algebraic direction and the modular direction were combined by the

present authors in [C19]:

Let m be a regular cardinal > @0. Every m-algebraic lattice L is isomorphic to

the lattice of m-complete congruence relations of a suitable m-complete modular

lattice K.

G. Gr�atzer, P. Johnson, and E. T. Schmidt [C8] presents the same construc-

tion with a simpli�ed proof.

The sharpest result is the following (G. Gr�atzer and E. T. Schmidt [C23]):

Theorem 15 Let m be a regular cardinal > @0. Every m-algebraic lattice

L can be represented as the lattice of m-complete congruence relations of an

m-complete distributive lattice K.

In the construction, we use in�nite complete-simple complete distributive lat-

tices (a complete lattice is complete-simple if it has only the two trivial complete

congruences). Such lattices were constructed in G. Gr�atzer and E. T. Schmidt

[C20] and G. Gr�atzer and E. T. Schmidt [C21]. It can be shown, see G. Gr�atzer

and E. T. Schmidt [C24], that the representation of the three-element chain must

contain such a lattice.
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