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Abstract. Some necessary and/or su�cient condition(s) forK-contact and/or Sasakian
manifolds to be quasi conharmonically 
at, �-conharmonically 
at and '-conharmonically

at are obtained. In last, it is proved that a compact '-conharmonically 
at K-contact
manifold with regular contact vector �eld is a principal S1-bundle over an almost
Kaehler space of constant holomorphic sectional curvature

�
3� 2

2n�1
�
.
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1 Introduction

Let M be an almost contact metric manifold equipped with an almost contact metric
structure ('; �; �; g). At each point p 2M , decompose the tangent space TpM into the
direct sum TpM = ' (TpM)� f�pg, where f�pg is the 1-dimensional linear subspace of
TpM generated by �p. Thus the conformal curvature tensor C is a map

C : TpM � TpM � TpM ! ' (TpM)� f�pg; p 2M:

An almost contact metric manifold M is said to be

(1) conformally symmetric [12] if the projection of the image of C in '(TpM) is zero,

(2) �-conformally 
at [13] if the projection of the image of C in f�pg is zero, and

(3) '-conformally 
at [4] if the projection of the image of Cj'(TpM)�'(TpM)�'(TpM) in
'(TpM) is zero.

In [12], it is proved that a conformally symmetric K-contact manifold is locally
isometric to the unit sphere. In [13], it is proved that a K-contact manifold is �-
conformally 
at if and only if it is an �-Einstein Sasakian manifold. In [4], some
necessary conditions for a K-contact manifold to be '-conformally 
at are proved. In
[5], a necessary and su�cient condition for a Sasakian manifold to be '-conformally 
at
is obtained. In [11], projective curvature tensor in K-contact and Sasakian manifolds
is studied. Moreover, the author [10] considered some conditions on conharmonic
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curvature tensor K, which has many applications in physics and mathematics, on a
hypersurface in the semi-Euclidean space En+1s . He proved that every conharmonicaly
Ricci-symmetric hypersurfaceM satisfying the conditionK �R = 0 is pseudosymmetric.
He also considered the condition K � K = LKQ(g;K) on hypersurfaces of the semi-
Euclidean space En+1s .

On the other hand in a Riemannian manifold M of dimension m � 3, the conhar-
monic curvature tensor K is de�ned by [6]

K (X; Y )Z = R (X; Y )Z � 1

m� 2 fS(Y; Z)X � S(X;Z)Y

+ g (Y; Z)QX � g (X;Z)QY g

for X; Y; Z 2 TM , where R is the curvature tensor and Q is the Ricci operator.
Motivated by the studies of conformal curvature tensor in [12], [13], [4] and [5], and

the studies of projective curvature tensor in K-contact and Sasakian manifolds [11] and
and Lorentzian para-Sasakian manifolds in [9], in this paper we study conharmonic
curvature tensor in K-contact and Sasakian manifolds. The paper is organized as
follows. Section 2 contains some preliminaries. In section 3, in an almost contact
metric manifold we consider three cases of conharmonic curvature tensor, analogous to
conformally symmetric, �-conformally 
at and '-conformally 
at conformal curvature
tensor, and give de�nitions of quasi conharmonically 
at, �-conharmonically 
at and '-
conharmonically 
at almost contact metric manifolds. It is proved that if a K-contact
manifold is quasi conharmonically 
at then the scalar curvature vanishes. We also
prove that a Sasakian manifold is �-conharmonically 
at if and only if it is �-Einstein.
Necessary and su�cient conditions for a K-contact manifold and Sasakian manifold
to be '-conharmonically 
at are obtained. In the last section, it is established that a
'-conharmonically 
at compact regular K-contact manifold is a principal S1-bundle
over an almost Kaehler space of constant holomorphic sectional curvature

�
3� 2

2n�1
�
.

2 Preliminaries

Let M be an almost contact metric manifold equipped with an almost contact metric
structure ('; �; �; g) consisting of a (1; 1) tensor �eld ', a vector �eld �, a 1-form � and
a Riemannian metric g. Then

'2 = � I + � 
 �; �(�) = 1; '� = 0; � � ' = 0; (2.1)

g (X; Y ) = g ('X;'Y ) + �(X)�(Y ); X; Y 2 TM: (2.2)

From (2.1) and (2.2) we easily get

g (X;'Y ) = �g ('X; Y ) ; g (X; �) = �(X); X; Y 2 TM: (2.3)

An almost contact metric manifold is
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(1) a contact metric manifold if g (X;'Y ) = d� (X; Y ) for all X; Y 2 TM ;

(2) a K-contact manifold if r� = �', where r is Levi-Civita connection; and

(3) a Sasakian manifold if (rX')Y = g (X; Y ) � � �(Y )X for all X; Y 2 TM .

A K-contact manifold is a contact metric manifold, while converse is true if the Lie
derivative of ' in the characteristic direction � vanishes. A Sasakian manifold is always
a K-contact manifold. A 3-dimensional K-contact manifold is a Sasakian manifold. A
contact metric manifold is Sasakian if and only if

R (X; Y ) � = � (Y )X � � (X)Y; X; Y 2 TM: (2.4)

In a Sasakian manifoldM equipped with a Sasakian structure ('; �; �; g), the following
relations are well known.

R (�;X)Y = g (X; Y ) � � � (Y )X; X; Y 2 TM; (2.5)

S (X; �) = 2n� (X) ; X 2 TM; (2.6)

where dim(M) = 2n+ 1. For more details we refer to [2].

The following equations of this section are taken from [11]. In a (2n+ 1)-dimensional
almost contact metric manifold M , if fe1; : : : ; e2n; �g is a local orthonormal basis of
vector �elds in M , then f'e1; : : : ; 'e2n; �g is also a local orthonormal basis and

2nX
i=1

g (ei; ei) =
2nX
i=1

g ('ei; 'ei) = 2n; (2.7)

2nX
i=1

g (ei; Z)S(Y; ei) =
2nX
i=1

g ('ei; Z)S(Y; 'ei) = S(Y; Z)� S(Y; �)�(Z)
(2.8)

for all Y; Z 2 TM . In particular, in view of � � ' = 0 we get
2nX
i=1

g (ei; 'Z)S(Y; ei) =

2nX
i=1

g ('ei; 'Z)S(Y; 'ei) = S(Y; 'Z) (2.9)

for all Y; Z 2 TM . If M is a K-contact manifold then it is known that

R (X; �) � = X � � (X) �; X 2 TM: (2.10)

and

S (�; �) = 2n: (2.11)

Moreover, M is Einstein if and only if

S = 2ng: (2.12)
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From (2.11) we get

2nX
i=1

S(ei; ei) =

2nX
i=1

S('ei; 'ei) = r � 2n: (2.13)

In a K-contact manifold we also get

R (�; Y; Z; �) = g ('Y; 'Z) ; Y; Z 2 TM: (2.14)

Consequently,

2nX
i=1

R(ei; Y; Z; ei) =

2nX
i=1

R('ei; Y; Z; 'ei) = S(Y; Z)� g('Y; 'Z):
(2.15)

for all Y; Z 2 TM .

3 Some structure theorems

In a (2n+ 1)-dimensional almost contact metric manifold (M;'; �; �; g) the conhar-
monic curvature tensor K is given by

K (X; Y )Z = R (X; Y )Z � 1

2n� 1 fS (Y; Z)X � S (X;Z)Y

+ g (Y; Z)QX � g (X;Z)QY g ; (3.1)

where X; Y; Z 2 TM .
Analogous to the considerations of conformal curvature tensor, we give the following

De�nition 3.1 An almost contact metric manifold M is said to be
quasi conharmonically 
at if

g (K(X; Y )Z;'W ) = 0; X; Y; Z;W 2 TM; (3.2)

�-conharmonic 
at if

K(X; Y )� = 0; X; Y 2 TM; (3.3)

and '-conharmonically 
at if

g (K('X;'Y )'Z; 'W ) = 0; X; Y; Z;W 2 TM: (3.4)

We begin with the following

Theorem 3.2 If a (2n+ 1)-dimensional K-contact manifold is quasi conharmonically

at then

r = 0; (3.5)

S(Y; Z) = � g(Y; Z)� (2n� 1)�(Y )�(Z)
+ �(Y )S(Z; �) + �(Z)S(Y; �) (3.6)

for all Y; Z 2 TM .
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Proof. From (3.1) we get

g (K (X; Y )Z;'W ) = g (R (X; Y )Z;'W )

� 1

2n� 1 fS (Y; Z) g (X;'W )� S (X;Z) g (Y; 'W )

+ g(Y; Z)S(X;'W )� g (X;Z)S(Y; 'W )g (3.7)

for X; Y; Z;W 2 TM . For a local orthonormal basis fe1 ; : : : ; e2n; �g of vector �elds in
M , putting X = 'ei and W = ei in (3.7) we get

2nX
i=1

g (K ('ei; Y )Z;'ei) =

2nX
i=1

R ('ei; Y; Z; 'ei)

� 1

2n� 1

2nX
i=1

fS(Y; Z)g('ei; 'ei)� S('ei; Z)g(Y; 'ei)

+ g(Y; Z)S('ei; 'ei)� g('ei; Z)S(Y; 'ei)g

for Y; Z 2 TM . Using (2.15), (2.7), (2.8) and (2.13) in the above equation we get
2nX
i=1

g (K ('ei; Y )Z;'ei) = S (Y; Z)� g('Y; 'Z)

� 1

2n� 1 f(2n� 2)S(Y; Z) + (r � 2n)g(Y; Z)

+ S(Z; �)� (Y ) + S(Y; �)� (Z)g (3.8)

for Y; Z 2 TM . In particular, if M is quasi conharmonically 
at then (3.8) reduces to

S (Y; Z) = (r � 1)g(Y; Z)� (2n� 1)� (Y ) � (Z) + � (Y )S(Z; �) + � (Z)S(Y; �)
(3.9)

for Y; Z 2 TM . Putting Z = � in (3.9) and using (2.11) and �(�) = 1 we get (3.5) and
consequently (3.6). �

Corollary 3.3 If a (2n+ 1)-dimensional K-contact manifold is quasi conharmonically

at then

S('X;'Y ) = � g('X;'Y ); (3.10)

for all X; Y 2 TM:

Remark 3.4 In [11, Theorem 3.3], it is proved that a quasi projectively 
at K-contact
manifold is Einstein. But from equations (3.6) and (3.10), it seems that the same result
is not true for a quasi conharmonically 
at K-contact manifold.

Next, we prove the following:

Lemma 3.5 A (2n+1)-dimensional quasi conharmonically 
at Sasakian manifold M
is �-Einstein.
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Proof. Let M be a (2n+ 1)-dimensional Sasakian manifold. Using (2.6 ) in (3.6) we
get

S = � g + (2n+ 1)� 
 �: (3.11)

Theorem 3.6 A Sasakian manifold M is quasi conharmonically 
at if and only if

R(X; Y )Z = � 2

2n� 1 fg (Y; Z)X � g (X;Z)Y g

+
2n+ 1

2n� 1 f�(Y )�(Z)X � �(X)�(Z)Y g

+
2n+ 1

2n� 1 fg (Y; Z) �(X)� � g (X;Z) �(Y )�g (3.12)

for all X; Y; Z 2 TM .
Proof. Let M is quasi conharmonically 
at using (3.2), (3.11) and replacing W by
'W in (3.7 ), we get

g
�
R (X; Y )Z;'2W

�
=

1

2n� 1 f2g (Y; Z) g ('X;'W )� 2g (X;Z) g ('Y; 'W )

� (2n+ 1)�(Y )�(Z)g ('X;'W )
+ (2n+ 1)�(X)�(Z)g ('Y; 'W )g ;

where X; Y; Z;W 2 TM; now using (2.1), (2.2) and (2.4) in above equation we get
(3.12). The converse is straightforward. �
In [11, Theorem 3.5], it is proved that a K-contact manifold is �-projectively 
at if

and only if it is Einstein Sasakian. Unlike to this result, here we have the following

Theorem 3.7 If a K-contact manifold is �-conharmonically 
at then

R(X;Y )� =
1

2n� 1 fS(Y; �)R(X; �)� � S(X; �)R(Y; �)�

+ � (X)Y � � (Y )Xg (3.13)

for all X; Y 2 TM:
Proof. Putting Z = � in (3.1) and g (X; �) = � (X) we get

g (K (X; Y ) �;W ) = g (R (X; Y ) �;W )

� 1

2n� 1 fS (Y; �) g (X;W )� S (X; �) g (Y;W )

+ � (Y )S (X;W )� � (X)S (Y;W )g (3.14)

for all X; Y;W 2 TM . For a local orthonormal basis fe1; : : : ; e2n; �g of vector �elds in
M , from (3.14) we get

2nX
i=1

g (K (ei; Y ) �; ei) =

2nX
i=1

g (R (ei; Y ) �; ei)

� 1

2n� 1

2nX
i=1

fS (Y; �) g (ei; ei)

� S (ei; �) g (Y; ei) + � (Y )S (ei; ei)g
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for all Y 2 TM . If M is �-conharmonically 
at using (3.3), (2.7), (2.8), (2.11), (2.15)
and (2.13) in above equation we get (3.5). Now putting Y = � in (3.14) and using
(3.3), (2.1), (2.3), (2.10) and (2.11) we get

S (X;W ) = � g (X;W ) + S (X; �) � (W )
+ � (X)S (�;W )� (2n� 1) � (X) � (W ) (3.15)

using (3.15) in (3.14) we get (3.13). �
Now, we have the following

Theorem 3.8 A (2n+1)-dimensional Sasakian manifold M is �-conharmonically 
at
if and only if it is �-Einstein.

Proof. For a (2n + 1)-dimensional �-conharmonically 
at Sasakian manifold M , in
view of (2.6) and (3.15) we get

S = � g + (2n+ 1) � 
 �;

that is M is �-Einstein. The converse is easy to follow. �

Remark 3.9 In [7], it is shown that a conharmonically 
at (that is, K = 0) Ein-
stein Sasakian manifold of dimension (2n+ 1) is locally isometric to the unit sphere
S2n+1(1). However, in view of Theorem 3.8, it follows that a conharmonically 
at
Sasakian manifold can not be Einstein.

4 '-conharmonic 
atness

Theorem 4.1 A (2n + 1)-dimensional K-contact manifold M is '-conharmonically

at if and only if

g(R('X;'Y )'Z; 'W ) = � 2

2n� 1fg('Y; 'Z)g('X;'W )

�g('X;'Z)g('Y; 'W )g (4.1)

for all X; Y; Z;W 2 TM:

Proof. Let M be a K-contact manifold of dimension (2n+ 1). From (3.1) we get

g (K ('X;'Y )'Z; 'W ) = g (R ('X;'Y )'Z; 'W )

� 1

2n� 1 fS ('Y; 'Z) g ('X;'W )� S ('X;'Z) g ('Y; 'W )

+S ('X;'W ) g ('Y; 'Z)� S ('Y; 'W ) g ('X;'Z)g (4.2)

for allX; Y; Z;W 2 TM . Let fe1; : : : ; e2n; �g be an orthonormal basis then f'e1; : : : ; 'e2n; �g
is also an orthononmal basis. Putting X = W = ei and taking summation over i in
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(4.2) we get

2nX
i=1

g(K('ei; 'Y )'Z; 'ei) =

2nX
i=1

g(R('ei; 'Y )'Z; 'ei)

� 1

2n� 1fS('Y; 'Z)g('ei; 'ei)� S('ei; 'Z)g('Y; 'ei)

+S('ei; 'ei)g('Y; 'Z)� S('Y; 'ei)g('ei; 'Z)g

for all Y; Z 2 TM . Suppose M is '-conharmonically 
at. Then using (3.4), (2.15),
(2.7), (2.9) and (2.13) in the previous equation we get

S ('Y; 'Z) = (r � 1) g ('Y; 'Z) ; Y; Z 2 TM:

Putting Y = Z = ei and taking summation over i and using (2.13) and (2.7) we get
(3.5) therefore from above equation we get (3.10). Now using (3.10) and (3.4) in (4.2)
we get (4.1). The converse is straightforward. �

Theorem 4.2 Let M be a (2n+ 1)-dimensional Sasakian manifold. Then the follow-
ing statements are equivalent :

(1) M is conharmonically 
at (that is, K = 0).

(2) M is '-conharmonically 
at.

(3) The curvature tensor of M is given by

R(X; Y )Z = � 2

2n� 1 fg (Y; Z)X � g (X;Z)Y g

� 2n+ 1

2n� 1 fg (X;Z) �(Y )� � g (Y; Z) �(X)�

� �(Y )�(Z)X + �(X)�(Z)Y g (4.3)

for all X; Y; Z 2 TM .

Proof. The statement (2) follows from the statement (1) obviously. In a Sasakian
manifold, in view of (2.5) and (2.4) we can verify

R
�
'2X;'2Y; '2Z;'2W

�
= R (X;Y; Z;W )

� g (Y; Z) � (X) � (W ) + g (X;Z) � (Y ) � (W )
+ g (Y;W ) � (X) � (Z)� g (X;W ) � (Y ) � (Z) (4.4)

for all X; Y; Z;W 2 TM . Replacing X; Y; Z;W by 'X;'Y; 'Z; 'W respectively in
(4.1) and using (2.3), (2.1) and (4.4) we get (4.3). Hence, the statement (2) implies
the statement (3). Now, we assume the the statement (3). From (4.3) it follows that

S = � g + (2n+ 1) � 
 �: (4.5)

Using (4.5) and (4.3) in (3.1) we get the statement (1). �
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5 Compact regular K-contact manifolds

A (2n+ 1)-dimensional K-contact manifold M is said to be regular if for each point
p 2M there is a cubical coordinate neighborhood U of p such that the integral curves
of � in U pass through U only once. Moreover, if M is compact also, the orbits of � are
closed curves. Let the space of orbits of � be denoted by B. Then we have the natural
projection � : M ! B and B is a 2n-dimensional di�erentiable manifold such that
� is a di�erentiable map. In [3], Boothby and Wang proved that if M is a (2n+ 1)-
dimensional compact regular contact manifold, thenM is a principal S1-bundle over B,
where S1 is a 1-dimensional compact Lie group which is isomorphic to the 1-parameter
group of global transformations generated by �.

Now, we prove the following:

Theorem 5.1 A '-conharmonically 
at compact regular K-contact manifold is a prin-
cipal S1-bundle over an almost Kaehler space of constant holomorphic sectional curva-
ture

�
3� 2

2n�1
�
.

Proof. Let M be a compact regular K-contact manifold. Since in a K-contact mani-
fold � is a Killing vector �eld, the metric g is invariant under the action of the group
S1. Hence a metric ~g and a (1; 1) tensor �eld J on B can be de�ned by

~g (X; Y ) = g (X�; Y �) ; (5.1)

JX = ��'X
� (5.2)

for any vector �elds X; Y 2 TB, where � denotes the horizontal lift with respect to �.
It is well known that (J; ~g) is an almost Kaehler structure on B [8]. Let ~R denote the
Riemann curvature tensor on B. Then we have [4]

~R (X; Y; Z;W ) = R (X�; Y �; Z�;W �) + 2g (X�; 'Y �) g ('Z�;W �)

� g (Z�; 'X�) g ('Y �;W �) + g (Z�; 'Y �) g ('X�;W �)

for all X; Y; Z;W 2 TB. So from (5.2), we obtain [4]

~R (JX; JY; JZ; JW ) = R ('X�; 'Y �; 'Z�; 'W �)

+ 2g (X�; 'Y �) g ('Z�;W �)

� g (Z�; 'X�) g ('Y �;W �)

+ g (Z�; 'Y �) g ('X�;W �) : (5.3)

Moreover, ifM is '-conharmonically 
at then from Theorem 4.1 and the identity (5.3)
we have

~R (JX; JY; JZ; JW ) = � 2

(2n� 1) fg ('Y
�; 'Z�) g ('X�; 'W �)

� g ('X�; 'Z�) g ('Y �; 'W �)g
+ 2g (X�; 'Y �) g ('Z�;W �)

� g (Z�; 'X�) g ('Y �;W �)

+ g (Z�; 'Y �) g ('X�;W �) :
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In the above equation, replacing X and W by JX and JW respectively, we get

~R (X; JY; JZ;W ) = � 2

(2n� 1) fg (Y
�; Z�) g (X�;W �)� g ('X�; Z�) g (Y �; 'W �)g

+ 2g (X�; Y �) g (Z�;W �) + g (X�; Z�) g (Y �;W �)

+ g ('Y �; Z�) g ('X�;W �) ;

which for a unit vector �eld X 2 TB gives

~R (X; JX; JX;X) =

�
3� 2

2n� 1

�
:

Thus the base manifold B is of constant holomorphic sectional curvature
�
3� 2

2n�1
�
.

�

Remark 5.2 In [11, Theorem 4.1], it is proved that a '-projectively 
at compact
regular K-contact manifold is a principal S1-bundle over an almost Kaehler space of
constant holomorphic sectional curvature 4. Comparing this fact with Theorem 5.1,
we observe that for a compact regular K-contact manifold the conditions of being
'-projectively 
at and '-conharmonically 
at are quite di�erent.
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