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Abstract.

Numerical analysts, physicists, and signal processing engineers have proposed algo-
rithms that might be called conjugate gradient for problems associated with the com-
putation of eigenvalues. There are many variations, mostly one eigenvalue at a time
though sometimes block algorithms are proposed. Is there a correct “conjugate gradi-
ent” algorithm for the eigenvalue problem? How are the algorithms related amongst
themselves and with other related algorithms such as Lanczos, the Newton method,
and the Rayleigh quotient?

1 Introduction

If we minimize y” Ay on the unit sphere, perhaps with conjugate gradient op-
timization, we compute the smallest eigenvalue of A (assumed to be symmetric).
Our objective function is quadratic, so we obtain the exact eigenvalue after n
steps of conjugate gradient. The computation is mathematically equivalent to
the Lanczos procedure. At the kth step, we obtain the optimal answer in a k
dimensional Krylov space.
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The above paragraph may sound correct, but it is wrong! The objective func-
tion is quadratic, but only because of the constraint. The Rayleigh quotient
r(y) = y'Ay/y"y can be minimized without constraint, but it is not quadratic.
The conjugate gradient link with the Lanczos process here is also dubious. How
tempting it is to hear “eigenvalue” juxtaposed with “conjugate gradient” and
instantly, almost by reflex, yell “Lanczos.” To add to the confusion, conjugate
gradient optimization of the Rayleigh quotient does compute an answer in a
Krylov space, but not the optimal answer.

Our purpose in this paper is to 1) dispel a common myth, 2) create an intel-
lectual framework tying together the plethora of conjugate gradient algorithms,
3) provide a scholarly review of the literature, and 4) show how the differen-
tial geometry point of view introduces new algorithms in a context that allows
intellectual ties to older algorithms. We believe each of these purposes is justi-
fied, but the most important goal is to show that the differential geometry point
of view gives idealized algorithms that unify the subject. Therefore in Section
1 we present the myth. In Sections 2 and 3 we dispel the myth and identify
the common features and design choices for a large class of algorithms. Section
4 reviews the literature in the context of this framework. Section 5 discusses
the differential geometry methods in this framework. Finally Section 6 presents
an entirely new perspective on Newton’s method and discusses connections to
previous work by Chatelin, Demmel, and others.

2 Conjugate Gradient: linear, nonlinear, and idealized

Our first task is to eliminate any confusion among the various conjugate gra-
dient algorithms with the Lanczos algorithm. This confusion has appeared in
the literature. We hope the naming convention of Table 1 will help distinguish
the algorithms in the future.

The three conjugate gradient algorithms are equivalent for the special case
of quadratic objective functions with positive definite Hessians. To say this
in a slightly different way, the LCG algorithm, already a special case of the
more general NCG algorithm, may be derived with the “one line minimization
per iteration” point of view, and nevertheless, the algorithm has the “global
k-dimensional” property of an ICG anyway.

To contrast, if the function is not quadratic with positive definite Hessian,
there is no expectation that the kth step of NCG will have the ICG property of
being the global minimum in a k-dimensional space. The best that we hope for
is that the ICG property holds approximately as we approach the minimum.

Similar to ICG is s-step steepest descent. This algorithm minimizes an objec-
tive function in the s-dimensional space spanned by the most recent s gradients.
If the gradients fall in a certain natural Krylov space, then there is no distinction
between ICG and s-step steepest descent.

The word conjugacy merits discussion. For LCGQG, all search directions are
all conjugate with respect to the Hessian matrix A, i.e., pZ»TApj =0,17 # j.
For NCG, consecutive directions are conjugate with respect to the function’s
Hessian matrix; Fletcher-Reeves and Polak-Ribiere approximate this conjugacy.



Conjugate Gradient-Like Methods for Eigen-Like Problems 3

Table 1.

CONJUGATE GRADIENT ALGORITHMS

LCG Linear Conjugate Gradient:

Standard method for solving Az = b, where A is a sym-
metric positive definite matrix. Found in all numerical
linear algebra references. May be viewed as minimizing

the objective function f(z) = %xTAx — z7b.

NCG Nonlinear Conjugate Gradient:

A well-known algorithm often used for unconstrained
minimization. Found in all numerical optimization texts.
May be used to minimize very general objective functions.
Each step in the algorithm requires the solution to a one
dimensional line minimization problem.

ICG  Idealized Conjugate Gradient:

A fictional algorithm introduced here for purposes of ex-
position. We define ICG as an algorithm whose kth iter-
ate x, satisfies f(xy) = mingex, f(x), where K, denotes
ak cllimensional Krylov space. The Krylov spaces are
nested.

Generally, ICG search directions are not conjugate; perhaps a different name is
appropriate. However, ICG can be viewed as an extension of LCG.

Block versions of NCG and ICG may be defined. A block NCG replaces a 1-
dimensional line search with a p-dimensional line search. A block ICG maximizes
over block Krylov spaces of size p, 2p, 3p, etc.

Consider the case when the objective function is the Rayleigh quotient, f(y) =

(y"Ay)/ (y"y).

e An NCG algorithm for Rayleigh quotient optimization computes an an-
swer in a Krylov space. This answer is not the optimal choice from that
subspace. Therefore the NCG algorithm is not an ICG algorithm. The
exact eigenvalue will not be obtained in n steps. Such an algorithm is not
equivalent to Lanczos.

e The Lanczos algorithm (including the computation of the tridiagonal’s
smallest eigenvalue) is an ICG algorithm for the Rayleigh quotient. Lanc-
zos does compute the exact eigenvalue in n steps. This algorithm is not an
NCG algorithm because it is not equivalent to an algorithm that performs
line searches.
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e There is also the LCG link with Lanczos through tridiagonalization. The
residual vectors computed by conjugate gradient are (up to normalization)
Lanczos vectors that tridiagonalize the matrix. The link is through the
tridiagonalization and not the eigenvalue computation. There is no link to
the NCG algorithm for eigenvalue computation.

Also we note that

e any algorithm that requires that the symmetric matrix A be positive def-
inite is not a correct NCG algorithm for the Rayleigh quotient. Since all
derivatives of the objective function are invariant under shifts, so should
be the algorithm.

Understanding this last point clearly is the key sign that the reader understands
the distinction between NCG for the Rayleigh quotient and LCG which is an
optimization on quadratic functions. LCG requires positive definite quadratic
optimization functions so that a minimum exists. The Rayleigh quotient always
has a minimum for symmetric A; no positive definite condition is needed.

The first choice in our design space for algorithms is to consider whether to
include the constraints or work with the Rayleigh quotient. The second choice
is whether to have a one eigenvalue algorithm or a block algorithm. We indicate
these choices below:

RAYLEIGH QUOTIENTS

Unconstrained one eigenvalue Rayleigh quotient
r(y) = (v Ay)/(y" v)
Constrained Rayleigh quotient r(y) = yTAy (yT'y =1)
Unconstrained block Rayleigh quotient
R(Y) =tr(YTAY)(YTY)~!

Constrained block Rayleigh quotient
R(Y)=tYTAY (YTY =1,)

In the above box Y denotes an n X p matrix. Of the four choices, only the con-
strained r(y) = yT Ay is (generically) non-degenerate in that the global minima
are points in n dimensions, as opposed to lines or subspaces.

The third choice in our design space for an NCG eigenvalue algorithm is how
to pick the new search direction. The various options are
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NCG SEARCH DIRECTION CHOICES
FR The Fletcher-Reeves approach

PR The Polak-Ribiére approach
CA Conjugacy through the matrix A
CSH  Conjugacy through the singular free space Hessian H

CCH Conjugacy through a non-singular constrained Hessian H

All of these choices, except for CA, are reasonable. There is no sound mathe-
matical justification for CA, though it has been proposed in the literature.

3 Comparison between NCG and Lanczos

Since Lanczos is an ICG algorithm for the Rayleigh quotient, why would any-
one consider the construction of an NCG algorithm which is guaranteed to give
a worse answer for the same number of matrix vector multiplies? Ignoring the
extra storage that may be needed in the Lanczos algorithm, the more practical
point is that in many algorithms it is not the eigenvalues of a matrix that are
desired at all.

In the applications of interest, a matrix may be changing in “space” or time.
What we want from an algorithm is to be able to track the changes. In many
such applications, the problem sizes are huge so computational efficiency is of
utmost importance. We have two particular examples in mind. In the Local
Density Approximation (LDA) to Schrodinger’s equation, the function to be
minimized is not the Rayleigh quotient at all, but rather the LDA energy. In
many applications, the energy function has the same degeneracy as the Rayleigh
quotient in that it depends only on the span of the columns of Y rather than all
elements of Y. Lanczos would not directly apply unless one wants to pretend that
the function really is the Rayleigh quotient for a few iterations. Such pretense
has lead to instabilities in the past.

Another class of problems arise in signal processing where the matrix is chang-
ing in time. Once again, Lanczos does not directly apply, unless one wants to
pretend that the matrix is constant for a few intervals.

4 A History of CG for eigen-like problems

The purpose of this section is to demonstrate the need for a unifying theory
of conjugate gradient algorithms for the eigenproblem by giving an annotated
chronology of the references. We note that algorithms have been proposed by
researchers in a number of disciplines, so it seems likely that researchers in one
field may well be unaware of those from another.

In order to keep the chronology focused, we only included papers that linked
conjugate gradient to eigenvalue or eigenvalue-like problems. We found it con-
venient to divide the papers into five broad categories:
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e Single Eigenvalue (NCG) Algorithms This refers to the one eigenvalue
at a time algorithm that was originally proposed by Bradbury and Fletcher
[4]. This algorithm minimizes r(y). Other eigenvalues may be obtained
by deflation. The historical development covers a number of points in the
design space.

e Block (NCG) Algorithms These are attempts at computing multiple
eigenvalues simultaneously using a conjugate gradient style algorithm. The
objective function is R(Y). It is our point of view that none of these al-
gorithms are a true conjugate gradient algorithm, though many important
features of a true algorithm may be recognized in either explicit or rudi-
mentary form in the proposed algorithms. The block case exhibits diffi-
culties not found in the single eigenvalue case, because not only is there
the orthogonality constraint Y7V = I, but also there is the “Grassmann
equivalence” R(Y) = R(Y Q) for orthogonal matrices ). This degener-
acy may well be overcome without differential geometry, but one effective
and beautiful theoretical approach towards working with these equivalence
classes is the total space/base space viewpoint from differential geometry.

e ICG: The Lanczos Link Here our goal was not to mention papers that
were connected to the Lanczos algorithm, but papers that looked at the
Lanczos algorithm as an optimization algorithm with something of a con-
jugate gradient flavor. As mentioned earlier, the famous link between
Lanczos and LCG is of no relevance here and is not included.

e Differential Geometry Viewpoint These papers make the link between
numerical linear algebra, optimization, and differential geometry. They
give a new theoretical viewpoint on the algorithms discussed in the other
areas. This viewpoints shows that constrained algorithms may be imple-
mented without explicit constraints. Ultimately, they answer the question
of what it means to do conjugate gradient minimization for the eigenvalue
problem.

e Application I: LDA Schrodinger’s Equation Rightly or wrongly, con-
jugate gradient has become an extremely popular new method for scientists
working with the local density approximation to Schrodinger’s Equation.
Here the problem is akin to minimizing the block Rayleigh quotient, but
it is in fact more complicated. Many researchers are currently trying vari-
ations on the same theme. We only need to list the few that we were most
aware of. One point of view is that they are computing eigenvalues of a
matrix that is in some sense varying with space.

e Application II: Adaptive Signal Processing Here the algorithm is
an eigenvalue algorithm, but the matrix may be thought of as changing
with time. The goal is to do subspace tracking. All the papers in this
category have already been listed in a previous category, but we thought
it worthwhile to collect these papers under one heading as well.
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Chronology of Algorithms
Key to search direction choices: FR=Fletcher-Reeves, PR=Polak-Ribiere,
CA=Conjugacy through A, CSH=Conjugacy through singular Hessian H,
CCH= Conjugacy through constrained Hessian H.

1 Single Eigenvalue Algorithms

1966 Bradbury and Fletcher  Notes degeneracy of Rayleigh quo-
[4] tient. Proposes projection to oo-
and 2-norm unit spheres. FR.

1969 Fox and Kapoor [15] Application in Structural Dynam-
ics. Downplays importance of the
constraint. FR.

1969  Fried [16] Application in Structural Dynam-
ics. FR.

1971  Andersson [2] Compares two norms mentioned
above [4].

1971  Geradin [20] Unconstrained CSH.

1972 Fried [17] Unconstrained FR.

1974  Ruhe [30] Systematically compares above

CG algorithms with other non-CG
algorithms. For CG, prefers un-
constrained approach in [15] and
[20]. Observes spectral influence
on convergence.

1984 Fuhrmann and Liu [19]  Precursor to intrinsic geometry:
Searches along geodesics. FR.

1986 Perdon and Gambolati CA with a proposed precondi-
[29] tioner.

1986 Chen, Sarkar, et al. [7]  Rederives known algorithms. CA.

1987 Haimi-Cohen and Cohen Rederives results such as those in

[23] [4].
1989 Yang, Sarkar, and Arvas Considers effect of normalization.
[39] Concludes that their 1986 pro-

posal is not competitive with CSH
or other choices. FR or PR style.
[38].




Edelman and Smith

2 Block Algorithms:

1971 Alsén [1]

1982 Sameh and Wisniewski
[31]

1995 Fu and Dowling [18]

Assumes A positive definite. Ex-
act line maximization (not mini-
mization) replaced by one step of
orthogonal iteration. Correspond-
ing minimization algorithm would
require orthogonal inverse itera-

tion. FR.

Not exactly a CG method but
very similar. Constrained objec-
tive function with unconstrained
block line searches. Section 2.3
suggests block line minimization
on unconstrained function as a
least squares problem to be solved
with LCG. Makes the
style link through simultaneous
iteration.

Lanczos

Optimization of unconstrained
R(Y). Block search directions
arranged column by column.

Projects back to constraint sur-

face with Gram Schmidt. CA.

3 ICG: The Lanczos Link:

1951 Karush [24]

1974  Cullum and Donath [9,
10]

1978  Cullum [§]

1985 Cullum and Willoughby

[11]

An ICG algorithm (with restarts)
for the Rayleigh quotient. Not ex-

plicitly identified with Lanczos or
CG.

Identifies block Lanczos as a block
I1CG.

Shows that block NCG on the
Rayleigh quotient computes a
(generally non-optimal) answer in
the block Krylov space over which
the ICG would finds the mini-

muim.

Chapter 7 summarizes optimiza-
tion interpretation. CG used at
times to mean NCG and other

times ICG.
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4 Differential Geometry Approach:

1993 Smith [32, 33]

1995 Edelman, Arias, Smith
[14]

Introduces Differential Geometry
viewpoint.
with
tive. Line searches replaced with

Hessian is replaced

second covariant deriva-

geodesic searches.

Works out details of the Grass-
mann manifold and Stiefel mani-
fold approaches, including the to-
tal space-base space formulation,
parallel transport, differing met-
rics, and the linear algebra links.

5 LDA Schrodinger’s Equation

1989 Gillan [21]

1989  Stich, Car, et al. [35]

1989 Teter, Payne, and Allan
[37]

1992 Arias [3]

1992 Payne, Teter, Allan
et al. [28]

1993 Kresse and Hafner [25]

1994

Sung, Kawai, and Weare

[36]

Projects onto constraint space,

search in tangent space, suggests

NCG preconditioning, FR.

Minimizes Rayleigh quotient only
(not LDA energy) for simplicity.

Forms unconstrained analogue of

Rayleigh quotient for LDA.

Survey of minimization in LDA.

Molecular dynamics of liquid met-
als.

Computes structure of Lithium.

6 Adaptive Signal Processing

1986
1989

Chen, Sarkar, et al. [7]

Yang, Sarkar, and Arvas

[39]

1995 Fu and Dowling [18]

See above.

See above.

See above.
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There are many closely related ideas such as steepest descents or coordinate
relaxation that are not discussed here. It is instructive to consider the subtle
variations between similar algorithms, as well as the key differences between
algorithms that sound the same, but are quite different.

Almost all the algorithmic ideas carry over to the generalized eigenvalue prob-
lem, as was recognized by most of the authors. For purposes of exposition, we
will only discuss the ordinary eigenvalue problem in this paper. We have chosen
to confine our discussion to conjugate gradient methods for the general eigen-
problem. The larger history of conjugate gradient methods may be found in the
survey by Golub and O’Leary [22]. The search direction choice(s) appear in the
annotations.

5 The Differential Geometry Viewpoint for NCG

In a recent paper [14], we proposed an algorithm to perform minimization on
the block Rayleigh quotient that has appealing theoretical properties. Our algo-
rithm takes into account both the constraints Y7Y = I, and the degeneracy of
the function (R(Y) = R(Y Q) for orthogonal px p matrices Q) in a clean manner.
Following the lead proposed by Smith [32, 33], we derived an algorithm based
on intrinsic geometry that is practical when expressed in extrinsic coordinates.

Like French-English false cognates (fauz amis), there are a few terms used both
in optimization and differential geometry with somewhat different meanings.
This may cause confusion to readers of our paper [14] who are specialists in
optimization.

Optimization vs. Differential Geometry

Metric

Optimization: Sometimes the inner product defined by the Hes-
sian or its inverse.

Diff. Geom.: Any positive definite inner product defined on a
tangent space from which all geometrical informa-
tion about a space may be derived.

Curvature

Optimization: Hessian. Usage refers to non-linearity of the graph
of a function with nonzero Hessian.

Diff. Geom.: A rank four tensor that refers roughly to the non-
flatness of a space.

The Grassmann algorithm [14] does not suffer from any of the deficiencies of
the other block algorithms for the eigenvalue problem. There is no requirement
that the matrix be positive definite, there is no theoretical difficulty related to
the singular Hessian, and the algorithm converges quadratically.
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Figure 5.1: Conjugate gradient on Riemannian manifolds.
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Figure 5.2: Riemannian conjugate gradient, unconstrained block Polak-Ribiére, and
the A-conjugacy algorithms compared.
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The key components of the Grassmann algorithm are the total space/base
space point of view, the following of geodesics, and the parallel transportation
of tangent vectors. Below we plot a schematic figure that describes conjugate
gradient on a Riemannian manifold:

In Figure 2, we show convergence curves in exact arithmetic for three block al-
gorithms. The A-conjugacy algorithm is clearly inferior and not worth consider-
ing. The Riemannian algorithm and our own unconstrained version of the block
Polak-Ribiere algorithm, which approximates the Riemannian CG algorithm up
to second order and is less computationally intensive than the full-blown Rie-
mannian algorithm, are quadratically convergent.

6 Beyond Conjugate Gradient

Potential users of a conjugate gradient algorithm may well consider the view-
point expressed by Jorge Nocedal [26]:

The recent development of limited memory and discrete Newton
methods have narrowed the class of problems for which conjugate
gradient methods are recommended. Nevertheless, in my view, con-
jugate gradient methods are still the best choice for solving very large
problems with relatively inexpensive objective functions. They can
also be more suitable than limited memory methods on several types
of multiprocessor computers.

Though we believe that we have derived the correct NCG algorithm for func-
tions such as the block Rayleigh quotient, it is very possible that the best algo-
rithms for applications in the LDA community and the signal processing commu-
nity may well be a Newton iteration rather than an algorithm in the conjugate
gradient family. Rightly or wrongly, the CG algorithms may yet remain popular
for the largest problems because of the simplicity of programming and limited
memory requirements.

It is important to understand the relationship between preconditioned conju-
gate gradient and Newton’s method. We sometimes consider the ideal precon-
ditioner to be one that is easily computed, and yet closely resembles the inverse
of the Hessian. Multiplying the gradient by the exact inverse of the Hessian is
exactly the Newton method. Therefore the Newton method is equivalent to pre-
conditioned conjugate gradient without any use of a previous search direction.
One expects that taking advantage of Hessian information, if convenient, would
lead to superior convergence.

We now explore Newton’s method for invariant subspace computation more
closely. Suppose (for simplicity only) that A is symmetric. We would then wish
to find matrices Y and B such that

(6.1) AY —YB =0.

The above system is degenerate because there are more unknown variables than
equations; constraints of some form or another need to be imposed. One ap-
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proach is the general
(6.2) affine constraint ZTY =1

introduced by Chatelin [5, 6] in which case B = ZTAY. We observe that
the algorithms proposed by Dongarra, Moler, and Wilkinson [13] and Stew-
art [34]. represent two special choices for the affine constraint matrix Z. In
the Dongarra et al. case, Z may be obtained by inverting and transposing an
arbitrary p X p minor of the n x p matrix Y. In Moler’s Matlab notation,
Z=zeros(n,p); Z(r,:)=inv(Y(r,:))’, where r denotes a p-vector of row in-
dices. For Stewart, Z = Y(YTY)~1. Demmel [12, Section3] originally observed
that the three algorithms were related. Being linear, the affine constraint allows
a direct application of Newton’s method without any difficulty.
An alternative choice for the constraint is the

(6.3) orthogonality constraint Y7V = I.

Newton’s method with this constraint is slightly more complicated because of
the nonlinearity. The value of B is now YZAY. However the equation AY —
Y(YTAY) = 0, even with the orthogonality constraints, is degenerate. This
makes this problem even more difficult to handle.

The geometric approach to the Grassmann manifold gives an approach to
resolving this problem. We do not derive the details here, but the Grassmann
point of view on the Newton method starts with the second covariant derivative
of the block Rayleigh quotient (see [14]):

(6.4) Hess(Aq, Ag) = tr (A{AAZ - (A{AZ)YTAY).

From there to pick the Newton search direction, we must solve for A such that
YTA = 0 in the Sylvester equation

(6.5) M(AA — A(YTAY)) = -G,

where Il = (I — YY7) denotes the projection onto the tangent space of the
Grassmann manifold, and ¢ = ITAY is the gradient. We then may use this
search direction to follow a geodesic.

Equation (6.5) is really a column by column Rayleigh quotient iteration in
disguise. To see this, write Y7AY =: QOQ7, @ diagonal, and project Equation
(6.5) onto Tmage(IT). The projected equation is

(6.6) AA — AO = -G,

where the barred quantities are A = IIAIl, A = IIAQ is a column matrix of
Ritz vectors [27], and G = GQ. If A is any solution to the above equation, then
A = AQT is a solution to Equation (6.5). One way to interpret Equation (6.6)
is that we turned the orthogonality constraint Y7V = I into an affine constraint
ATY = 0 by differentiating.

Solving for A and exponentiating amounts to performing the Rayleigh quotient
iteration on each of the Ritz vectors associated with the subspace Y. Therefore,
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Newton’s method applied to the function trY”AY on the Grassmann manifold
converges cubically. This is a generalization of the identification between RQI
and Newton’s method applied to Rayleigh’s quotient on the sphere [32, 33].
This method also has very much in common with Chatelin’s method, yet it is
the natural algorithm from the differential geometry point of view given the
orthogonality constraints YTY = I.

1.
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