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1. Introduction

The relational data model has been widely accepted over
the last decade as a way for looking at and interacting with
databases. Codd”s relational algebra and calculus [Codd]
have been used as the formal basis for many real query
languages (e.g., [SWKH], [DaGK]). At the same time, there
has been much work in the theoretical aspects of relational
database systems (see, e.g., [Ullm], [BeBG]). In particu-
lar, the problems of containment, equivalence, and minimiza-
tion of queries have received considerable attention
[AhSU781, [ChMe]l, [JoR1], [Sagi]. The equivalence problem
is that of deciding whether two queries always retrieve the
same data. The containment problem is to determine if the
results of one query are always a subset of the results of
another query. The minimization problem is the problem of
finding a query equivalent to a given one and having the

fewest possible number of joins.

These problems are important for a number of reasons:

Joins are among the most expensive relational operations to
perform, and unnecessary joins may be present in a query due
to the presence of views or the inexperience of the user,
and so minimizing the number of joins can greatly decrease

query execution cost.

Equivalence algorithms can be used for minimization (see

section 4).



Containment can be used for dependency verification [YaPal.

For arbitrary relational calculus or relation algebra
queries, these problems are undecidable [Solo]. However, a

more restricted class of queries, the class of conjunctive

queries, (or tableaux) has been studied by Chandra and Mer-
lin [ChMe], by Aho, Sagiv, and Ullman [AhSU78] [AhSU79], by
Sagiv [Sagil, by Sagiv and Yannakakis [SaYa], and by Johnson
and Rlug [JoR1l1l] [JoKl2]. Chandra and Merlin give an algo-
rithm for the containment, equivalence, and minimization
problems and show that the problems are NP-complete. Aho,
Sagiv and Ullman give a polynomial-time algorithm for minim-
ization and equivalence of "simple tableaux". Sagiv gives
several polynomial-time algorithms for a number of other
subclasses of tableaux. Johnson and Klug [JoK1ll] look at
another class, the "fanout free" queries and give

polynomial-time algorithms for minimization and equivalence.

None of the classes of conjunctive queries studied so
far have allowed inequality comparisons between data values.
For example, a simple query such as, "get names of employees
whose salaries are less than $18,000" is not included in any
of the previously studied classes. Since such "inequality
queries" are important and occur frequently in practice, it
is desirable to consider the containment, equivalence and

minimization problems for them; and this is what we do in

this paper.



This paper is structured as follows: Section 2 con-
tains the necessary definitions for relations, databases,
and queries. Section 3 considers the containment problem,
and Section 4 treats the minimization problem. Section 5
provides a summary and lists some problems for future con-

sideration.

2. Basic Definitions

This section contains the basic definitions for rela-

tions, databases, and queries.

A relation R can be viewed as a finite two-dimensional

table with columns labeled by distinct attributes. Each

attribute Ai has a domain D(Ai) and entries in a column
labeled by by Ai must be elements of the domain D(Ai). The
relation scheme for a relation consists of the relation”s
name along with the sequence of attributes labeling its
columns. Since the order of the rows in a relation has no
significance, we can view a relation with scheme
R(Al’A2’°"'Ak) as a finite subset of the Cartesian product
D(Al) < D(A,) > ... X D(Ap). For simplicity, we will assume
that each domain D(Ai) is the set QO of rational numbers.
The rational numbers form a suitable generic data domain
with respect to studying queries containing inequalities
because they are totally ordered and dense. (String spaces

also have these properties.) A database D 1is a finite

sequence of tables, and the table in D for relation R is



denoted DR' The relation schema for a database is the
sequence of relation schemes for the tables it contains. 1In
what follows we shall assume that all databases under con-

gsideration have the same relation schema

1

A conjunctive query Q (of degree p) can be specified by

the following: (1) A set X

variables, the sequence Kqg..

row, or just the summary;

non-distinguished (existentially quantified) variables;

Q -

. ¢ X

{xl ,.,n,xp} of distinguished

p> being called the summary

(2) a set Y, = {yl,,.,,yq} of
(3)

a set CQ = {cl,.,.,cr} of distinct conjuncts, each conjunct

i
is a

tinguished or

of

{11,...,1u} inequalities,

atomic formula of the form zy 2] Zoy

either variables or constants

e is =, <, or <,

For later convenience, we will

stants appearing in Q and

appearing in equalities of the
because

"conjunct constants"

inated by placing the constant

1

nondistinguished);

As in [JoKl1l], we shall also assume that there

c. being an atomic formula of the form R(zl,,,.,zm), where R

relation name, and each z; is a variable (either dis-

set L =
Q

inequality 1y being an

and (4) a

each

where and are

21 Z2

(but not both constants), and

let KQ denote the set of con-

CKQ the set of constants of Q

form x = ¢. ("CKR" stands for

such equalities can be elim-
the

c directly in conjuncts

are no

data dependencies to be considered.



where x appears.)
Example 1. Given the schema

emp (eno,sal,dno)

dept (dno,status),

the query "give the names of employees who earn less than
$25000 and who work 1in departments with status 10"
corresponds to the following conjunctive query:

e}

s,d,t}

emp (e,s,d), dept(d,t)}
s<25000, t=10}

B X

From now on we will use a more intuitive set-theoretic nota-
tion for queries, and this example becomes:

{e : (Js,d,t) (emp (e,s,d) & dept(d,t) &
s < 25000 & t = 10)}

When we wish to distinguish between the «class of
gqueries defined above and the original class of conjunctive
queries, we will refer to the former as "inequality queries"
and the latter as "equality queries." "Query" by itself will

mean inequality query.

Inequality queries are equivalent to relational algebra
expressions containing the operators selection (with ine-

guality comparisons), projection, and join (including ine-



quality Jjoins) [Codd] [ChMe]. To get the equivalent of the
union operator, we use sets (or unions) of queries: A query

set Y 1is a finite set {Ql,..,,Qk} of queries of the same

degree.

A query can be viewed as a function from databases to
relations. To define the value of a query on a database we
use the idea of a valuation assigning data values to vari-
ables in the query [Shoe]. A valuation P for a query Q is a
function from XQ U YQ to Q. For convenience, valuations are
also considered to be defined on constants c with P(c)=c and
on tuples Zigeeerzg> with P(<Zl'°°°'zn>) =

<P(Zl)’°“’P(Zn)>‘ A wvaluation P is order preserving with

respect to a query Q if for all inequalities z, © z, in LQ,
P(zl) 2] P(ZZ) holds (under the usual ordering of Q). Then,
given a database D and a conjunctive query Q, the relation

constructed when Q is applied to D is

Q(D) = {P(<xl,,..,xp>) P p is an order

preserving valuation wrt Q
such that for all conjuncts R(zl,...,zm) in CQ,
P(<Zyrennrzp) is a tuple of Dy }

We will say that P gets the tuple <P(xl),...,P(xp)> into
Q (D).

Given a database D and a query set Y = {Ql,,.,,Qk}, the

relation constructed when Y is applied to D is



Y(D) = Ql(D) U ... 0 Qk(D).

Finally in this section we describe without proof a
simple method for inferring new inequalities from a given

set of inequalities:

Let L. be a set of inequalities as above. We define the

graph of L, denoted G(L), as follows:

(1) The nodes of G(L) are the variables and constants

appearing in L.

(2) There is a directed arc from node z, to node Zg if the
inequality Z, < 25 Or zy < Z, is in L, or if Zq and Zq
are both constants and Zq is less than z,. Such an arc
is labeled "<" or "<" according to whether the inequal-

ity is strict (<) or nonstrict (<).

(3) If an equality Z, = 2z, is in L, G(L) has a <-arc in

each direction between zq and Zg.

The set L of inequalities derives an inequality 1 as
follows: L derives the inequality x < y, where x and y are
both variables, if G(L) has a directed path from x to vy.
The inequality x < y is derived if there is a directed path
from x to y having at least one <-arc. An inequality c¢ < x,
where ¢ 1is a constant and x is a variable, is derived if

there is a directed path from some constant ¢” to x and c is

less than or equal to ¢”. An equality ¢ < x is derived if
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there is a path from some constant ¢ to x, where c¢ < c7,

and the path has at least one <-arc or c¢ is less than c”.

Inequalities of the form x < ¢ and x < ¢ are derived in a

similar fashion. An equality

il

2 Zq is derived if both

Zq1 < 2z, and z, < 2z are derived.

Using the above derivation rules, we can assume that
the inequality sets for all queries are reduced. That is,
all inequalities zq 2] Z, such that L—{zlezz} derives zlez2
have been removed, and all pairs of inequalities 2y < Zg,

2o < 29 have been replaced by equalities Z1 = Zg. We will

also assume that all gueries are consistent, that is, that

they cannot derive contradictory inequalities such as x < 2
and x > 3. (The wvalue of an inconsistent query is always

the empty set.)

3. Containment and Equivalence

In this section we consider the containment and
equivalence problems for inequality queries. Fbrmally,
given two queries Ql and Q,, we say Q1 is contained 1in Qs
written Ql C Q2, if for all databases D, Ql(D) is a subset

of 0Q,(D). We say that Q; is equivalent to 0Q, if

Ql(D) = QZ(D) for all databases D. Our goal in this section
is to find an algorithm for testing containment (which will

also yield an algorithm for equivalence).



For equality queries Ql and Qo s it has been shown that
the containment Ql C Q, holds if and only if there is a
homomorphism from Q2 to Ql [ChMe], a homomorphism being a
function on the symbols of Q2 to those of Qq that maps dis-
tinguished variables to corresponding distinguished vari-
ables of Ql’ that 1is the identity on constants, and that
induces a mapping from the conjuncts of Q2 to those of Ql’
Proving the "if" part is quite simple. To prove the
"only if" part, we are required to consider the query Ql
itself to be a database. Formally, this is done by applying
a one-to-one valuation P to Ql' More precisely, P(Ql) is
the database D such that for each relation R, Dp is the set
of tuples <P(Zl)"'°’P(Zn)>’ for all conjuncts R(Zy/,.00r2)
in CQl. If Ql c QZ' then Ql(P(Ql)) C QZ(P(Ql))’ Let Sy be
the summary of Q. We always have P(Sl) € Ql(P(Ql)) (P
itself gets P(sl) into Ql(P(Ql))), so P(sl) e QZ(P(Ql))‘
The valuation which gets P(Sl) into QZ(P(Ql)) becomes a

homomorphism Q,—>Q, by composing it with P"l.

If we were to attempt this same procedure for inequal-
ity queries, the one-to-one valuation P would assign unique
rational numbers to the variables in Ql‘ Since the set of
rational numbers is totally ordered, every pair of distinct
values in the database will be involved in a less-than rela-
tionship. That 1is, 1if P(x) # P(y), then P(X) < P(y) or
P(Y) < P(X) regardless of what inequalities are in LQ.
These spurious inequalities can cause P(sl) to appear in
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QZ(P(Ql)) even though containment fails:

Example 2. Consider the following two queries and a valua-

tion on the first:

{x : Fv,2)R(x,7,2)}
{x : (Fy,2) (R(x,7,2) & y < 2)}
{x=>0, y=>1, z=>2}

Q
Q,

P

We see that P(Sl) € QZ(P(Ql)). But the containment Q1 C Q2

i

does not, of course, hold. [

Thus a single "canonical" database does not provide a
correct test of containment for inequality queries. The
correct approach is to use several (exponentially many, in

fact) representative databases in place of the single data-

base P(Ql). Each representative database will represent a
different allowable arrangement of variable assignments

along the rational number line.

We begin the development of representative databases

with some definitions and lemmas:

Two valuations Pl’ py are order equivalent with respect
to a query Q if for all symbols Z1129 in Q (including con-
stants), Pl(zl) < Pl(z2) if and only 1if PZ(ZL) < PZ(ZZ)'
Order equivalence (with respect to a given query) is clearly
an equivalence relation, and we let WQ be the set of all

equivalence classes of order preserving valuations on Q. W

0

is finite. Also note that for order equivalent valuations
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and ' (z,) © (z,) 1iff (z4) © (z,) for all sym-
1 Par P1t%1 P1(Z2 P22y P2lza

bols z4 and Zq and for © equal to = or <.

Now, given dquery Q with WQ = {El,...,Ek}, let
{rl,.,.,rk} be a set of representatives, one from each

respective equivalence class. A representative database set

(r.d.s.) for Q is the set of databases {rl(Q),...,rk(Q)}.
We will assume there is some arbitrary selection rule which
picks the representatives {rl,...,rk} for a given query, and
unless other special choices are needed, we will refer to

the r.d.s. and denote it DQ.

The next lemmas provide some tools for the main theorem to

follow which relates containment and r.d.s”s.

Lemma 1. Let Q be a query, and let P1r P2 be order preserv-
ing and order equivalent valuations with respect to Q. Then

there exists a strictly increasing function £ on Q such that

f o Pl = PZ and f is the identity on the constants in Q.

Proof. Note that the images Pl(XQ U YQ U KQ) and
PZ(XQ U YQ U KQ) have the same number of elements; say the
former is A = {al,,..,am}, and the latter is B =
{bl'°‘°'bm}' where the indices are such that i < j implies

a; < aj and b; < bj. Because order equivalence takes into

account the constants in the query, if ¢ is a constant in Q

and ¢ = aj, then ¢ = b,

je Begin the definition of £ by

specifying f(ai) = bi for i=1,...,m. Now simply extend the

domain of f to all of Q in a piecewise-linear fashion. Each
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piece of f has a positive slope. Also, since all constants

c in Q appear in the same position in A and B, f(c) = c. ﬁ

Lemma 2. Let Q be a query, D a database, and f a strictly
increasing function on Q which is the identity on constants

in Q. Then £(Q(D)) = Q(£f(D)).

Proof. If t € f(Q(D)), then t=f(u) for some u € Q(D). Let
P be the valuation which gets u into Q(D). Then we have
£f(u) = f(P(s)), f(P(<zl,...,zn>)) e f(DR) for all conjuncts
R(zl,.,.,zn) in CQ, and f(P(x)) 2] f(P(y)) for all (x©y) in
LQ, the last condition holding because £ is strictly
increasing. But this means that fOP gets f(u) into Q(£(D)).

Conversely, if t € Q(f(D)), then there is a valuation P
such that t = P(s), P(<Zl"°°’zn>) e f(DR) for all conjuncts

R(zl,...,z Y in CQ, and P(x) <] P(Y) for all (xOYy) in L

n Q.
Since f is strictly increasing, £l is also strictly increas-
ing. Thus we get f”l(t) = f'l(P(s)), f"l(P(<zl,.,.,zn>)) e DR

for all conjuncts R(zl,.,.,zn) in C

R and f'l(P(x)) e

f'l(P(y)) for all (x0y) in LQ. In addition, f"lOP is a legal
valuation since P and £~1 both map constants of Ql to them-

selves. Hence £ l(t) € 0(D), and t = £(F L (t)) e £(o(D)). H

Lemma 3. All inequality queries are monotonic. That is, 1if

database Dl is contained in database D2 (relation by rela-

tion), then for any query Q, Q(Dl) C Q(Dz).

Proof. Easy.
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We are now ready to give the fundamental theorem relat-
ing containment of inequality queries to a (testable) pro-

perty of r.d.s. s:

Theorem 1. Let Q;, Q, be queries. Then Q, C Q, if and only
if for each Di = ri(Ql) in DQl, ri(sl) e Qz(Di)' where sy is

the summary of Ql'

Proof. (=>) If Ql C Q2, then for each Di in DQ, Ql(Di) c
QZ(Di)‘ Since it is also the case that ri(sl) € Ql(Di) by
using the identity valuation, we get ri(sl) e Qz(Di),

(<=) Let D be any database, and suppose t € Ql(D). Let P be
a valuation which gets t into Ql(D). We may consider the
image P(Ql) itself to be a database D (a subset of D), and
we still have t € Ql(D’) by the same valuation. Since P is
order preserving wrt Ql' P e Ei for some equivalence class
E, in WQl. Lemma 1 gives us a strictly increasing function
f such that P = f o r;. By our hypothesis, ri(sl) < Q2(Di),

so by the lemmas above, t = P(Sl) = £(r;(sq)) € £(Q,(D;)) =

Q,(£(Dy)) = 05(£(r;(Q1))) = Qy(P(Qy)) = Q,(D7) C Oy . H

Theorem 1 provides us with an algorithm for containment
and equivalence between inequality queries. However, since
there can be exponentially many representative databases in
DQ to check, this algorithm is not in the complexity class
NP. (We do know it is NP-hard since it generalizes an NP-
hard problem: containment for equality conjunctive queries

[ChMe].) The containment problem could be shown to be in NP
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if we had the following property holding: Ql c Q, if and
only if there exists a homomorphism h:Q2—>Ql, a homomorphism
in this case being a function on the symbols of Q2 to those
of Ql that maps distinguished variables to corresponding
distinguished variables of Ql’ that induces a mapping from
the conjuncts of Q2 to those of Qq and that sends inequali-

ties in LQ2 to inequalities derivable from LQl’ Such a sym-

bol mapping can be guessed in polynomial time, and each of
the required properties can be checked in polynomial time.
While this homomorphism property holds for equality queries
(see the beginning of this section), only the "if" part

holds in general for inequality queries:

Lemma 4. For any queries Ql and QZ’ if there is a homomor-

phism h:Q2—>Ql, then Ql c Q2.

Proof. The idea is that if a valuation P gets a tuple into
Ql(D), then the composition POh will be a valuation getting

t into Q, (D). i

A counterexample to the converse of this lemma is given

by the next example.

Example 3. Consider the queries Ql and Q2 as follows:

0;: {u: @&k,y,2)(S(w) & R(x,y) & R(y,2) & x < 2)}
0,: {u: E,Y(S(W) & R(x,y) & x < ¥}

If there are two tuples (a,b) and (b,c) in R such that

a <c, then either a < b or else a>b and b < a < c.
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Hence, Ql C Q2, but every mapping of the variables of Qs to
those of Ql will either fail to be a conjunct mapping or
will not map the inequality in Q2 to an equality derivable
from LQl. We must sometimes map the conjunct of Q, to the

first conjunct of Ql and sometimes to the second. H

The question now arises of which subclasses of inequal-
ity queries possess the homomorphism property. We know the
equality queries have it. We will show that the homomor-
phism property also holds for two other subclasses: the

left semi-interval queries, where inequalities are all of

the form x © c, where x is a variable and c is a constant,

and the right semi-interval queries, where inequalities are

all of the form ¢ © x, where x is a variable and c is a con-
stant. In addition, it will be convenient to assume that a
query 1in one of these classes does not contain two equali-
ties x = ¢, y=c¢ (or ¢ = x, ¢ = y) where x and y are dis-

tinct variables.

Theorem 2. The homomorphism property holds for left and

right semi-interval queries.

Proof. We will give a proof only for left semi-interval
queries since the proof for right semi-interval queries is
analogous. In light of the previous lemma, we also only

need to show that containment implies the existence of a

homomorphism.
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Suppose Ql and Q, are left semi-interval queries and
Ql C Q,. Since LQl is reduced, any variable will occur in
at most one inequality of LQl, We can therefore find a
valuation P on Qq with the following properties: (a)
P(x) © ¢ holds for all inequalities (x ©® ¢) in LQl, and

-~

P(x) > max{c’ € K U K,y : c” <cl, (b) is one-~to-one, and
0 Q, P

1
(c) for all wvariables x not appearing in LQ , P(x) >

max (K
Ql §) KQZ).

Note that for any variable x of Ql and constant c¢ of Q or
Q2' P(x) ® ¢ holds if and only if x appears in an inequality

x 8 ¢ of LQ and ¢© < ¢. In other words, P(xec) is true if
1

and only if (x ©® ¢) is derivable in LQ .
1

Now let D = P(Q). We have P(sl) e Ql(D), so P(Sl) e QZ(D)‘
Let r be a valuation getting P(Sl) into QZ(D), and consider
the composition P"l Or. We claim that this is the desired
homomorphism. That P‘l Or maps s, to s; and that it maps the
conjuncts of Q2 to those of 0 is easy to see. Let (x © c)
be in LQZ, We have r(xX) © ¢ holding in D, but we can
rewrite this inequality as P(P“l (r(x))) © c. As the note

above states, this means that P“l (r{x)) © ¢ is derivable from
Ly . O
R

The following example shows how the homomorphism pro-

perty fails for a class of queries somewhat more general
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than the semi-interval queries.

Example 4. Consider the following queries (which are also

represented more pictorially in Figqure 1):

0.: {u : (Ja,b,c,d,e)(S(u) & R(a,b) & R(c,b) &
; R(c,d) & R(e,d) & 0 < a & a < 3 &
8 <e&e<9%9 &§d4d<ca&c <o)
0,: {u : (F,y,2) (8(u) & R(x,y) & R(z,y) &
0 <x &§x <5 &5<2z &2z <29)
These queries are typed [JoKRl1l]: each wvariable appears

under just one attribute of a relation; the inequalities
only specify intervals (there are no inequalities of the
form %0y, where x and y are variables); and the intervals in
each query are disjoint. However, there are two symbol map-

pings Q2—>Ql that induce conjunct mappings:

hlz x->a, y->b, z—>c, and

h2: x-=>c, y=>d, z—>e.

For hl’ the image of (5 < z) is (5 < ¢) which is not deriv-
able in Ll; and for h2, the image of (x < 5) is (¢ < 5)
which is also not derivable. However, the containment

Q; C Q, does hold. |

Of course, the failure of the homomorphism property
does not imply that the problem is not in NP, but it does
mean that a different approach must be taken if an NP algo-

rithm is to be found for containment of inequality queries,



18

ol Rlab E‘**a'-~*§ E-~c~~§ E@ﬁi
c b 2 " s " s 1 2 N "
c d R R D - R A A
e d
z2 Y + i : t 4 4 A 4 ; 4
0 1 3 4 5 6 7 8 9
Figure 1.

Containment for Query Sets

The containment problem for query sets immediately
reduces to the problem of containment of a query Q in a
query set Y: Yl C Y2 if and only if Q C Y2 for each Q 1in
¥y In [SaYal, it was shown that if Q is an equality query
and Y is a set of equality queries, then Q C Y if and only
if there is a Q" in Y such that Q C Q°. We can think of
this result as saying that equality queries "overlap" only
in trivial ways. The result follows from the existence of a
single canonical database for equality queries. Since ine-
quality queries do not have single canonical databases
(rather, representative database sets), we are not surprised

that this containment property fails for them:

Example 5. Consider the queries Ql’QZ' and Q3 defined as

follows:
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Qs {x : (y) (R(x,y) & S(y) & T(y) & 4<y & y<9)}
Q,: {x : (Fy) (R(x,y) & S(y) & y<7)}
05: {x : (Ty) (R(x,y) & T(Y) & 6<y)}

We have Ql C Q2 U Q3, but tuples in Ql are sometimes in Q2
and sometimes in Q3, i.e., neither the containment Ql C QZ

nor the containment Q; C 0, holds. -

The containment problem for a query in a query set can
still be solved, however, and the solution is a straightfor-

ward extension of Theorem 1l:

Theorem 3. Let Q be a query and let Y be a query set. Then

Q CY if and only if for each D, in DQ there is a Q7 in Y

such that r.(s) € Q7 (D;).
Proof. Left to the reader. [{

Since the homomorphism property does hold for left and
right semi-interval queries, we might expect better behavior

for query sets over these classes. This is correct:

Theorem 4. If Q9/Qq,...,9, are left (right) semi-interval
queries, then Q C Ql U ... UQ if and only if for some i,

QgQi-

Proof. Construct a wvaluation P and database D as in
Theorem 2. In place of the constant set KQ U KQ ;, use the
1 2

set K. U K
Q QlU...UKQk. H
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4., Minimization

In the relational data model, it 1is easy to express
queries whose implementation can be gquite expensive. Thus
it is worthwhile to find a method for converting queries
into equivalent ones with more efficient implementations.
For conjunctive (equality and inequality) queries, the main
factor in the efficiency of the implementation is the number
of "joins" contained in the query. The the query minimiza-
tion problem therefore becomes the problem of finding an
equivalent query involving the minimum possible number of
joins. Since the number of Jjoins 1is one less than the
number of conjuncts, query minimization is the problem of

removing unnecessary conjuncts.

The first result on minimization of conjunctive (equal-
ity) queries was given by Chandra and Merlin [ChMe]. They
gave an algorithm for minimizing arbitrary equality queries,
and they showed that the problem is NP-complete. Others
([AhSU78], [Sagil, [JoKll]) have studied restricted classes
of conjunctive equality queries and have derived polynomial
time algorithms for the minimization problem. In other
variations, the minimization problem is actually more diffi-

cult than the original problem. For example, Johnson and

Klug [JoK1l2] have looked at query minimization in the pres-
ence of functional and inclusion dependencies. For these
harder problems, even non-deterministic or exponential time

solutions for minimization are welcomed. One kind of
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solution is to generate a minimization algorithm from an
equivalence algorithm. The idea is that to find a minimal
version of a query Q, we "guess" a minimal query Q" from a
set K of queries equivalent to Q and having no more con-
juncts than Q. In order for this procedure to define a
minimization algorithm, the search space K must be finite
and we must know that a minimal query exists somewhere in K.
If the original query Q has m total occurrences of variables
and constants, then we will not need more than m distinct
variables in our supply of "raw materials" from which to
form K. If we can show that we also do not need any more
constant symbols than those occurring in Q, then we add
these constants to get a complete and finite set of raw
materials for K. We get K itself by forming all possible
queries from the raw materials having no more conjuncts than

Q.

Showing the existence of an algorithm for inequality
query minimization thus boils down to showing that new con-
stant symbols are never needed 1in 1looking for a cheaper
query. In the case of equality queries, this is trivial to
show: If Q = Q°, then there are homomorphisms f:0->Q" and
£f7:0°>Q. The first homomorphism shows that the constants in
Q are also in Q°, and the second one shows that the con-
stants in Q° are also in Q. Thus equivalent equality
queries always have the same set of constants. Another way

of putting this is that every constant in an equality query
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contributes in some way to the results defined by the query.
With inequality queries, however, not only have we lost the
nice homomorphism property of equality queries, but, in
fact, constants 1in inequality queries may occur in ways

which add nothing to the query:

Example 6. Consider the queries Ql and Q, defined as fol-

lows:

Q: {x : (Fp) (R(x,¥) & y<2 & y<3]}
Qy: {x : &y,2) (R(x,y) & R(x,2) & y<5 & z<6) }

In Q,, the second inequality (and therefore the constant 3)
is not needed. In QZ’ the constant 6 (and the inequality
z<6 and the conjunct R(x,z)) do not contribute anything to
the query. While the first case 1is handled by having
removed redundancies from LQl, the second query shows that
the reason for a constant being unnecessary may involve the

conjuncts rather than redundancies in LQ‘ E

Because of these inconvenient ways in which constants
may appear in inequality queries, most of this section does
not deal with minimization per se but with the problem of
determining what set of constants are necessary in guessing

minimal gueries. Once we have solved this problem, we will

have a minimization algorithm as indicated above.

We will introduce the concepts of essential and

nonessential constants. FBssential constants will be ones
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which cannot be varied or removed without altering the mean-
ing of the query. Nonessential constants will be ones which
can be varied within limits without changing the query at
all. Our strategy is the following: We ignore constants
which appear in equalities x = c (the members of CKQ), since
we will show that they are always essential. For a constant
¢ which does not appear in CKQ, we define an interval Ab of
@ such that either ¢ may replaced by all values in Ab
without affecting Q, or any substitution of a value in A%
for ¢ changes the meaning of Q. In the former case, ¢ is
nonessential, and in the latter case, c is essential. The
endpoints of Ab are other constants appearing in Q (or ),
and we effect the removal of a nonessential constant ¢ by
replacing it by an endpoint of Ab'

This procedure for determining essential and nonessen-
tial constants may seem overly complicated when compared the
more obvious one where a constant c¢ is said to be nonessen-
tial in query Q when Q minus all inequalities containing c
is still equivalent to Q. However, this simpler definition
does not help to show that two equivalent queries must have
the same set of essential constants. One may think of our
approach as being more useful because it is more "gradual":

we remove a nonessential constant by "sliding" it into an

adjacent constant.

We now start with some definitions.
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Given a query Q and constants ¢ and c¢”, we write

Q[c=>c”] to denote the query obtained from Q by making the

following replacements:
(1) If ¢ = ¢, do nothing.

(2) If ¢ < ¢, replace inequalities of the form x < ¢ or
X < ¢ by x < c¢’, and inequalities of the form c < x or

c < x by ¢ < x.

(3) If ¢ < ¢, replace inequalities of the form ¢ < x or
c <x by x< ¢”, and inequalities of the form x < c or

x < ¢ by x < c”.

-

(4) Replace equalities x = ¢ by x = c".

Note that ¢ need not appear in Q, in which case Qlc=>c”] is

the same as Q. In any case, c does not appear in Q[c—>c”].

The reasons for replacing some strict inequalities by non-
strict inequalities and vice versa will become apparent in

the proofs.

We will write Ql > Q2 if Qs is of the form Ql[c—>c’]
for some constants c,¢” and if one of the following condi-

tions holds:
(1) c does not appear in Q, or ¢ = ¢’ (so that 9 = Q,).

(2) ¢” < c and there is no variable x such that c¢” < x < ¢

can be derived from Ll’
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(3) ¢ < ¢” and there is no variable x such that ¢ < x < ¢’

can be derived from Ll,

The canonical interval, Ab 0 for a constant ¢ with
r

respect to a query Q is defined as follows:

(1) 1f {c¢” € Ry c”<c} is empty, then the lower bound for

Ab 0 is -a; otherwise the lower bound is cq = max{c’eQ
r

: c’<cl. If ¢ exists and Q %> Q[c—>c,], then Ao o is

closed on the left.

(2)y 1f {c” € KQ : c<c”’} is empty, then the upper bound for
D g is @ otherwise the upper bound is ¢, = min{c’eo :

4
c<c’}. 1If ¢, exists and Q ® Qlc>c,], then A, o is

closed on the right.
When Q is understood, we will write Ab for,Ab 0-
14

It is easy to see that Q&>Qfc—»c”] for every ¢’ € Ab'
We can think of going from Q to Q[c—>c”] as a perturbation of
the query, and we will be determining those constants c¢
whose values can be perturbed without affecting the query.
For our results, it will be important to know that the same
perturbation applied to a pair of equivalent queries will
preserve the equivalence. The next lemma and theorem prove

this property.
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Lemma 5. Let ¢ be a constant not in CKQ (and not necessarily

in KQ), and let ¢ be any constant in,Ab. Let Q° = Q[c=>c”].
We can choose the r.d.s.’s Dy = {Dl,...,Dm} and Dy~ =

{Di,...,Dé} so that for all i=1l,...,k, Di = D,

;» and D{ con-

tains no value in the semi-open interval [c,c”) (or (c”,c]

if ¢© < ¢).

Proof. We will assume that ¢~ > c¢. For ¢ = ¢, Q = 07, the
interval is empty, and there is nothing to prove; and for c”

< ¢, the situation is analogous to what we do.

Let E{ be an equivalence class in Wor and let r be a
member of Ei. It is possible to obtain a valuation r; from
r by "sliding" all values in the range of r 1lying in the
interval [c,c”) to the left out of the interval (see Figure
2). Note that, because there are no constants in KQ between
c” and c, and because c does not occur in Q7, r; is still in
the same equivalence class E] and is order preserving with
respect to Q7. We will show that Ly is also order preserv-
ing with respect to Q.

For an inequality (a © b) in Q where a # ¢ and b £ C,
the corresponding inequality in Q” is still (a © b). The
valuation r satisfies this inequality, and so ry also satis-—
fies it since the relative order of the r-values has not
changed.

By assumption, equalities of the form (x = c¢) do not

occur in Q.

Now consider an inequality (x © c¢) in Q, where & is <
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a b c d e £ g image (1)
At ¢ 4 + ¢ f t t
c" c c”
abcdefg image(ri)
e} +
c" c c”
Figure 2.

or <. The corresponding inequality (x < ¢”) in Q7 is satis-

fied by r, and r(x) < c¢” implies that r;(x) < c since r; has
no value in [c,c”), so (x © c¢) is satisfied by r..

Finally consider an inequality (c © x) in Q, where © is
< or <. The corresponding inequality in Q° is (c¢” < x).

Anything at ¢” or to the right of ¢” is also to the right of

¢ and r(x) = ri(x), sO ¢ © ri(x).

We have shown that in each Ei in WQ» there is a valua~-
tion £y which 1is also order preserving with respect to Q
(i.e., which is in some Ej in WQ) and whose image does not
intersect the interval [c,¢”). 1In fact, every Ej in WQ has
either zero or one of these special valuations r. This 1is
because being order equivalent with respect to Q and having
no values in the interval [c,c”) implies being order
equivalent with respect to Q°. Thus we may assume that W
and WQ, are consistently indexed, 1i.e., that WQ has n

members, WQ, has m < n members, and that r; = rz for
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i =1,...,m. Using these representatives, we get Di = D{
for i=1,...,m, and by construction, these databases have no

values in the interval [c,c”). [

Theorem 5. Let Q; and Q, be queries, and let c and c” be

constants (not necessarily in Ql or Qz) with ¢ not in CKQ
1
or CKQZ. If Qq = Q2, Qlw>Ql[c->c 1, and Q2%>Q2[c—>c 1, then

Ql[c—>c’] = Qz[c—>c’].

Proof. Let Qi be Ql[c—>c’], and Qé be Qz[c—>c’], and assume
that ¢ < ¢”. (The case c¢ = ¢ 1is trivial, and the case
¢’ < c is analogous to the one we consider.) We will only
show the containment Q] C Q5; the other one is analogous.
We assume that D, and Dos are as in the previous
=1 1
lemma. We show that ri(si) € Qé(DE) for each D] in WQi.
Since r, also generates D; for Q,, and since Q; C Q,,
we have r;(sy) € 0,(D;). Let P be the valuation which gets
ri(sl) into QZ(Di)' We will show that P also gets ri(sl)
into Qé(Di). Since the conjuncts and the summary of Qé are
52
to ri(sl). We must only show that P is order preserving

the same as those of QZ' P maps CQ, to tuples of D; and
2

with respect to Qé.

Consider an inequality (a © b) of Q2, where a # ¢ and
b # c. The corresponding inequality in Qi is still (a © b)
and is therefore satisfied by P.

For an inequality of Q2 of the form (x © c¢), where 6 is
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< or <, P(X) < c < c”, so P also satisfies the corresponding
inequality (x < ¢”) in Q3.

For an inequality of Q2 of the form (c © x), where O is
< or <, P(x) > c. Since there are no values in the interval
[e,c¢”), we know P(x) > ¢”. But the corresponding inequality
in Q5 is (c” < x), so P satisfies it.

LQ has no equalities of the form x = c.
2

All members of LQ, are generated by one of the above
2
cases, SO P is order preserving with respect to Qé. This

verifies that r;(s]) = r;(s;) is in Q5(D]). H

The first use of Theorem 5 is to show that when a con-
stant ¢ 1is replaced by other constants in.Ab, either the
query never changes in meaning, or else every substitution

has a different meaning.

Theorem 6. Let Q be a query with ¢ not in CKQ,

(i) If there is a constant c" # c iJlA% such that Q

Q[c—~c"], then for all ¢~ in.Ab, 0 = Qlec=>c”].
(ii) If there is a constant c" # c in,Ab such that Q #

Qic—=>c"], then for all c” # ¢ in Ab' 0 Z Q[c—=>c”].

Proof.

»

(i) Let ¢ be any other constant in Az° Since
Q = Q[c=>c"], and since Q®>Q[c—>c”] and Qlc—=>c"]~8>Q[c—>c"] [c=>c”]
(they are equal), we have by Theorem 5 Q[c—=>c”] = Qlc—>c"].

(ii) This is just the contrapositive of (i).
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If we get condition (i) above holding, then we will say

that constant ¢ is non-essential. Any other constants in Q

will be termed essential. Note that the theorem provides an
algorithm for testing the property of being essential or
nonessential, since we need only check if 9 = Q[c=>c”] for

any one arbitrary c”#c in the interval Ab‘

It will be convenient to introduce some notation for
these two classes of constants: EKQ will denote the essen-
tial constants in query Q, and NKQ will denote the nonessen-
tial constants. There 1is actually one detail to check
regarding this definition: that EKQ is a union of CKQ and
the constants described in (ii) of the previous theorem:

Lemma 6. For any query Q and constant ¢ € CK 0 £ Q[c=>c”]

Q’
for any ¢ # ¢ in A..

Proof. Let r be a valuation such that r(x) = ¢ only for
variables x such that (x = ¢) is in L, and let D be r(Q).
Let ¢” be a constant lying between ¢ and and the first image
value r(y) greater than c (if any). Then c” is iIlAb, Q (D)
is not empty, but Q[c—=>c”](D) is empty because x = ¢” is in

LQ[c—>c’]' but since ¢” does not appear in D, no valuation P

can satisfy p(x) = c. |

We next show that if the endpoints of A¥ are not in the

-

interval, then case (ii) of the last theorem applies.



31

Theorqm 7. If either end of Ab is bounded but not closed,

then there is a constant ¢~ inAb with Q £ Qlc=>c”].

Proof. Assume it is the left end that is bounded but not
closed. By definition, there are variables Xqya..rX, such

that for each i=1,...,n, the inequalities ¢ < x; < c. are
derivable from LQ. The variables of Q can be divided into
five groups as follows (see Figure 3), where 8 denotes < or

<z

(1) A set {ui} such that no inequalities u;0c or c,6u; are

derivable.

(2) A set {yi} such that inequalities y;6c are derivable,

but no inequalities cq8y; are derivable.

(3) A set {Zi} such that inequalities c10z; are derivable,

but no inequalities z;0c are derivable.

(4) A set {wi} such that Cqswy and w;<c are derivable, bhut

Wi<c are not derivable.
(5) The set {xi} defined above.

There may be arcs between these groups of variables, but as
a consequence of the definitions of the groups, only certain
kinds of such cross arcs can occur as indicated in the fol-

lowing table:



Figure 3.

Allowed

yiewj
yiexj

yiezj
yieuj
wiexj
wiezj

uiezj

Not Allowed

wjeyi

Thus it is possible to get an order preserving valuation P

such that: P(yi)<cl for all Yii P(wi)=cl for all Wi P(zi)>c

for all Z;i P(ui)>c for all uy (P(ui)<c is also possible);
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where k is a con-

P(xi)<c for all X;i P(Xi)>k for all X5

stant with ¢ > k > C;. Let D be P(Q)' Then Q(D) # &, but
Qfc—=k] (D) 1is empty since each Xy in Q[c—>k] has the con-

straint €1 < x; < k, but D does not even have any values in

this interval. [

Lemma 7. If c is the only constant in Q, then ¢ is essen-

tial.
Proof. Left to the reader. [

We now get to the main objectives of this section: The
next theorem shows that nonessential constants can be elim-
inated by "sliding" them into adjacent constants. The
theorem after that shows that equivalent queries always have

the same set of essential constants.

Theorem 8.
(i) If c is nonessential in query Q, there is a query
Q” with the same number of conjuncts as Q such that Q97 = Q

and KQ) = KQ—'{C} °
(ii) For every query Q there is a query Q° such that O
= Q°, Q" has no nonessential constants, and |[Q"| < |0},

where |Q| denotes the number of conjuncts in Q.

Proof. (i) If c is nonessential, all queries in the set
{Qle=>c"1 C'Qﬁb} are equivalent, and by the last theorem,
both sides are either unbounded or closed. It is impossible

for both sides to be unbounded (the previous lemma would
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apply), so let c¢” be one of the endpoints. The Q° we want
is Qle=>c”].
(ii) Repeatedly apply part (i) until there are no more

constants in NKQ. ﬁ

Theorem 9. If ¢ is essential in Q and Q = Q°, then ¢ is

essential in Q7. In other words, equivalent queries have

the same set of essential constants.

Proof. Since c is essential in Q, no pair of queries in
[Qle=>c"] : ¢ € Ab Q} is equivalent. If ¢ is nonessential
14
in Q°” or does not appear in Q7, then all queries in
[0 [e=»c”] c’eﬁb Qn} are equivalent. Let ¢ be a constant
14
in both Ab,Q and Ab,Q’ and not equal to c¢. The equivalences
Q = Q° (by assumption), 0° = Q”[c—»c”] (by assumption), and
Qlc=>c”] = Q7 [c»c”] (by Theorem 5) contradict the assumption

Q £ Qle=»c”]. [

Putting the results above together, we get the follow-

ing:

Theorem 10. For any query Q, a minimal query equivalent to Q

lies within the set {Q” : Q°=0Q, |Q”|<|0], Ko- = ERgl

Proof, Follows easily from the previous lemmas and

theorems. [{
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5. Summary and Future Work

Summary

In this paper we introduced the class of conjunctive
inequality queries. These queries generalize the conjunc-
tive queries of Chandra and Merlin [ChMe]l and the tableaux
of Aho, Sagiv, and Ullman [AhSU79] by including inequality
comparisons among variables and constants. We showed how to
test containment of a query Ql in another query Q, by a fin-

ite procedure over a finite set of representative databases.

This containment problem is not known to be in NP, but we
did identify some simple subclasses of inequality queries,
the left and right semi-interval queries, whose containment
problem is in NP. Containment for wunions of conjunctive

inequality queries can also be tested.

Minimization of a conjunctive query (of any kind)
involves seeking to remove as many conjuncts (or tableau
rows) as possible without changing the query”s meaning. As
long as we know that a minimal query will not need any con-
stants other than those appearing in the original query,
minimization can always be effected by simply "guessing" the
minimal query and then using an equivalence algorithm to
deterministically check that the meaning has not changed.
For conjunctive queries having only equalities, it is
trivial to show that all constants in the original query are
needed in any minimal (or equivalent) query. Such 1is not

the case for conjunctive queries having inequalities. 1In
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section 4 we spent a considerable amount of time presenting
a method for determining> which constants in a query are
essential to it. We also showed that in guessing a minimal

query, only the essential constants are needed.

Future Work

There are a number of interesting problems left open by

this work:

(L) What is the complexity of the containment problem? The
algorithm we give does not run in even nondeterministic
polynomial time. The problem is in PSPACE, however,
and it is ©plausible that the containment problem is
PSPACE-complete. First, there is no homomorphism pro-
perty to provide short objects to guess. Secondly, it
seems that all possible relative orderings of wvariable
assignments (an exponential number) must be verified in

order to verify containment.

(2) If the answer to (1) is "PSPACE-complete", i.e., "not
likely to be in NP", then for what subclasses of the
inequality queries is the containment problem in NP?
(or in P?) We have shown that containment for left and
right semi-interval queries is in NP by showing that
the homomorphism property holds. For what other
classes does the homomorphism property hold? Are there
classes for which the homomorphism property does not

hold but for which the containment problem is still in
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NP?

Given any query Q, can Q be minimized simply by remov-
ing conjuncts? That 1is, does a minimal query always
exist within the "rows" of the given query? This prob-
lem is related to the existence of query homomorphisms.
The property holds for equality queries [AhSU78] and
the proof uses a composition of two homomorphisms. We
have no homomorphism property for containment of ine-
quality queries, but we also do not have examples of
minimization which do not amount to simply removing
rows. A related gquestion is whether two minimizations
of the same query are isomorphic. This has been shown

to hold for equality queries [ChMe].

What is an appropriate definition for minimization for
unions of inequality queries? What are some algorithms
for minimizing these unions? We can identify two rea-
sonable definitions: (1) Since the number of joins
needed to execute a query is directly proportional to
the number of conjuncts, we should minimize the total
number of the number of conjuncts in a union. (ii) We
should minimize each component of the union separately
and then minimize the number of components in the
union. Are these definitions equivalent? Are there
more appropriate concepts of minimality for wunions of

queries? For example, consider the union
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[x ¢« R(x) & %<5} U {x : R(x) & x>7}

One could think of evaluating this query by making one
pass through relation R and evaluating the condition
(x<5 OR %>7). Perhaps we should allow disjunctions of

inequalities in inequality queries.
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