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ABSTRACT A large part of the branching vasculature of the mammalian 

circulatory and respiratory systems obeys Murray's law, which states that the 

cube of the radius of a parent vessel equals the sum of the cubes of the radii of 

the daughters. Where this law is obeyed, a functional relationship exists between 

vessel radius and volumetric flow, average linear velocity of flow, velocity profile, 

vessel-wall shear stress, Reynolds number, and pressure gradient in individual 

vessels. In homogeneous, full-flow sets of vessels, a relation is also established 

between vessel radius and the conductance, resistance, and cross-sectional area 

of a full-flow set. 

I N T R O D U C T I O N  

The arrangement of vessels in the organism is influenced by general physical 

laws as well as by specific physiological requirements. In the physics of 

transport, dimension is of  great importance, as is portrayed in the equations 

for steady-state flow and diffusion in tubes. If  a given vascular volume within 

a given tissue space is divided into a small number  of large vessels or a large 

number  of small vessels (all in parallel along a given length), steady-state flow 

and diffusion are affected in opposite ways. For a given pressure difference 

along the tubes and a given concentration difference between the wails of the 

tubes and the spaces around them, the flow along the tubes and diffusion 

from the tubes are both dependent upon the second power of the tube radii, 

r, but oppositely so: flow is directly proportional to r 2, whereas diffusion is 

inversely so. For a fluid transport system involving both translational flow 

and transmural diffusion, a compromise must be found between large and 

small vessels. In animals this has been done through arrangements of large 

and small vessels in series, the former to minimize the costs of bulk flow across 

relatively large distances, the latter to minimize diffusion distances and 

maximize diffusion surfaces. 

For over a century now the physiologist has been working with the laws of 

Poiseuille and Fick, which have served him well at any particular level of a 

branching system of vessels. The pattern of the whole, however, has been more 

difficult to understand. How should large and small vessels be connected to 

one another? Refuge from such a general question can be taken in the great 
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diversity of  anatomical structures and physiological functions. But the suspi- 

cion remains that in the "ideal" tissue there should be an opt imum way to 

connect large and small vessels together to achieve the fastest transport for the 

least amount  of work. If  there is a general rule for such connections, even if 

imperfectly followed by "nonideal" tissues, the physiologist should know about 

it, for it would enable him to estimate such important variables as flow 

conductance and surface area at different stages of  a branching system. 

Such a problem was posed by Thomas Young in his Croonian Lecture in 

1808 (Young, 1809) when he wished to estimate the resistance of an arterial 

system: "In order to calculate the magnitude of  the resistance, it is necessary 

to determine the dimensions of the arterial system, and the velocity of the 

blood which flows through it." Starting with assumed dimensions for the aorta 

and for the capillaries, Young had to decide upon a probable branching 

pattern which would connect the one with the other. He chose a symmetrical, 

dichotomous system in which the diameter of each branch was "about  4/5 of 

that of  the trunk, or more accurately 1:1.26." By assuming this geometric 

ratio between the diameters of daughter and parent vessels, Young calculated 

that twenty-nine bifurcations were necessary to diminish the aorta to the size 

of  the capillaries. From estimates of the lengths of the aorta and capillaries, he 

constructed another geometric series for lengths of the thirty generations of  

vessels, and went on to calculate blood volumes, velocities of flow, and 

resistances in the different stages of  the system. Young does not say why he 

chose a ratio of  1.26:1 for the relative diameters of parent and daughter 

vessels, nor does he remark upon its being 21/3: 1, but it seems certain that he 

was familiar with a rule--ei ther  empirical or theoret ical--which favored this 

choice. 

Young's rule can be expressed in terms either of  a ratio of  radii or of a ratio 

of  areas, for if one vessel divides into two equal daughters, and if the radii (or 

diameters) of parent and daughters are related as 21/a: 1, the total cross- 

sectional areas of  parent and daughter vessels are related as 1 : 21/3: 

Parent Daughters Parent :daughters  ratio 

Radius 21/3 1 21/3:1 
Area 2~/%r 2~r 22/3 : 2 = 1 : 21/3 

That  is, as the radii get smaller, the cross-sectional areas get bigger by the 

same geometric factor. 

Expressed either as a ratio of radii or of  areas, Young's rule has appeared 

many times in this century but, as Zamir (1977) has remarked, it has usually 

been "surrounded by an air of  mystery," with little explanation of its basis. 

Weibel (1964) attributes the rule to D'Arcy Thompson,  but Thompson (1942) 

says only that it is a principle "familiar to students of  hydrodynamics."  

McDonald  (1974) attributes the rule to Blum (1919), who in turn refers us to 

Hess (1917). Hess did in fact at tempt to establish the rule by a theoretical 

argument. But the clearest and most general approach to the problem was 

made by Cecil D. Murray (1926a). Murray derived a relation, hereafter 

referred to as Murray's  law, which applied to asymmetrical as well as 

symmetrical branching systems. For symmetrical, dichotomous systems such 



T. F. SHERMAN The Meaning of Murray's Law 433 

as those of Young and Hess, Murray's  law reduces to their 21/3 rule. 

Murray's  law for connecting large vessels to small is as memorable as 

Pythagoras'  edict on right triangles, for Murray  states that the cube of the 

radius of a parent  vessel should equal the sum of the cubes of the radii of  the 

daughter  vessels. An alternative statement (employed here) is that an opt imum 

vascular system must have its vessels connected in such a way that the total 

flow of the system, wherever that flow is intercepted, is carried by a set of 

vessels whose radii cubed sum to a constant value. Murray  derived his law 

using a biological consideration, but it can be derived for non-living opt imum 

systems as well. Like the laws of Poiseuille and Fick, which also arose within 

a biological context, Murray's  law is a general physical principle of great 

utility in the description of biological bulk transport systems. 

Murray's  ideas went almost unnoticed for nearly half a century. They  have 

been rediscovered recently by many workers (Rosen, 1967; Kamiya and 

Togawa, 1972; Milsum and Roberge, 1973; Rashevsky, 1973; Kamiya  et al., 

1974; Hutchins et al., 1976; Zamir, 1976a and b, 1977, and 1978; Hooper, 

1977; Uylings, 1977). The purpose of this paper is to show that Murray's law 
can be derived for nonliving as well as living systems; that it is validated by 

considerable biological data, including the classical data of Mall which has 

been frequently tabulated (in altered form) in physiology textbooks; that it 

has great utility in predicting physiological parameters in the circulation; and 

that it is related in interesting ways to the growth of organisms and to the 

scaling of vascular systems in animals of different size. 

D E R I V A T I O N  O F  M U R R A Y ' S  L A W  

Murray supposed that physiological vascular systems, subjected through 

evolution to natural selection, must have achieved an opt imum arrangement 

such that in every segment of vessel, flow is achieved with the least possible 

biological work. He assumed that two energy terms contribute to the cost of  

maintaining blood flow in any section of any vessel: (a) the energy required to 

overcome viscous drag in a fluid obeying Poiseuille's law, and (b) the energy 

metabolically required to maintain the volume of blood and vessel tissue 

involved in the flow. These energy terms are related to the radius of the vessel, 

but in opposite ways: the larger the radius, the smaller is the power, Pf, 

required for flow, but the larger is the power, Pro, required for metabolic 

maintenance of the blood and vessel wall tissue. The vessel can be neither too 

large nor too small if the total power, Pt = Pf + Pm, is to be minimized. 

If  gravitational and kinetic energy terms can be neglected, a Newtonian 

fluid exhibits a volumetric flow rate, f, which is linearly proportional to the 

pressure difference, p, to which it is subjected: 

f = cp, 

where c is a conductance coefficient. In cylindrical tubes, the conductance is 
porportional (from Poiseuille's law) to r 4, the fourth power of the radius of the 

tube: 

q,Fr 4 

c 
87/l' 
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where 7/is the viscosity of  the fluid and  l is the length o f  the tube. For a tube 

of  unit  length, and  let t ing a = 8~//~r, 

a f  -= pr  4 

p = @-4. 

The  power required to ma in ta in  flow is 

Pf = p f  = af2r -4. 

Hence,  the power required to ma in ta in  a given flow is d ramat ica l ly  reduced 

by small increases in the radius of  a vessel. Offset t ing this, however, is a 

metabol ic  power requirement ,  Pro, which increases linearly wi th  the volume 

of  the blood and  vessel 

Pm ---- m �9 volume----mr2l, 

where rn is a metabol ic  coefficient. For unit  length of  vessel, and  let t ing b -- 
' B ' m  ; 

Pm = br 2. 

The  total power required is then 

Pt = Pf + P m  = af2r -a + br 2. 

O f  the two coefficients in this expression, a depends upon the viscosity o f  

the flowing fluid, and  b upon the metabol ism of  blood and  vessel tissue. For 

given values of  a and  b, the power required for flow in a unit  segment  of  vessel 

depends only upon f ,  the flow, and  r, the radius of  the vessel. For a specified 

value of  f ,  the power, Pt, depends only upon r, and  Pt as a funct ion of  r will 

be minimized  by that  value of  r where d P t / d r  = 0 and  d 2 p t / d r  2 > O. To  find 

this o p t i m u m  value of  r: 

dPt _ d(af2r -4 + br 2) -= _4a f2r_  5 + 2br = 0 

dr dr 

d2pt___ d ( - 4 a f 2 r  -5 + 2br) = 20af2r -6 + 2b. 

dr 2 dr 

Since a, b, f ,  and  r are always positive, d 2 p t / d r  2 = 20af2r -6 + 2b is positive, 

and  any  point  for which d P t / d r  -- 0 is a m i n i m u m  (rather than  a max imum) .  

Hence  a m i n i m u m  for Pt exists where 

- 4 a f 2 r  -5 + 2br = 0 

2af2r -5 = br 

f 2  = b r 6  

2a 

f = kr3; 

b ~ i/2 
(I) 
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The new coefficient k depends only upon a and b (which, in turn, depend only 

upon viscosity and metabolic rate), so that if viscosity of  the fluid and the 

metabolism of the blood and vessel tissue remain constant throughout all 

parts of a vascular system, k remains constant as well. Then Eq. 1 expresses, 

for any vessel that is minimizing energy requirements, a constant relation 

between flow and vessel radius. As Murray  put it, "We see one of  the simplest 

requirements for maximum efficiency in the ci rculat ion--namely that the 

flow of blood past any section shall everywhere bear the same relation to the 

cube of  the radius of  the vessel at that point." 

I fEq .  1 applies to every vessel in a branching system (e.g., to all the arterial 

vessels of an organ), then it can be applied to a sum of such vessels. We have 

only to add the flows on one side and the cubes of  the radii on the other side. 

In general, 

X f = Z k r  s -- kZr  3. 

In particular, if we add together a group of  vessels whose flows add up to the 

total flow, j~, through the organ, we have 

= k ( X r 3 ) t  

( X r 3 ) ,  - -  k -- a constant, (2) 

where (Zr3)t is the sum of the cubes of  the radii of  any set of  vessels which 

carry' the full flow of fluid. For any such set (hereafter referred to as a full-flow 

set), the cubes of  the radii add up to f t / k ,  and hence the sums of  the cubes of 

the radii for all such sets are equal. 

Murray  himself concentrated upon the application of  his equation (Eq. 1) 

to individual branchings of  parent to daughter vessels. Because flow is 

conserved at any branching, j~ = f l  + ~ ,  where f0 is the flow in the parent 

vessel and f l  and J~ are the flows in the daughters, hence 

kro 3 .= krl 3 + kr23 

r03 -- rl 3 + r23, (3) 

where r0 is the radius of  the parent vessel and rl and r2 are the radii of  the 

daughters. Eq. 3 was used by Murray (1926b) to derive expressions for the 

opt imum branching angles of  vessels of  different size. But if Eq. 3 applies to 

every branching, it can be applied to a series of  branching, with the result 

that every set of  subsequent daughter vessels that accommodates without 

duplication the full flow of the original parent vessel has a (Zr3)t equal to r03 

= f t / k  (Eq. 2). 

Eqs. 1-3 are alternative expressions of  Murray's  law. Eq. 2, which does not 
seem to have been used previously, will be employed below in the empirical 

testing of  Murray's  law, and in the discussion of its significance. 

Murray  derived his law without any assumptions regarding the form of the 

branching system: whether it was symmetrical or not, dichotomous or not. It 
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is therefore a general law which, within the confines of  its assumptions,  applies 

to b ranch ing  systems of  all forms. Applied to symmetr ical  d ichotomous 

systems, it reduces to Young's  21/3 rule: 

7.03 ~ 7"13 ~ ~'23 ~ 27"13 ' 

when rl -- r2, so that  

ro = 21/ari  or r l  ---- 2-X/ar0. 

For repeated bifurcations within a symmetr ical  system 

rz = 2-Z/aro ,  

where r, is the radius of  a vessel which is z bifurcations removed from a parent  

vessel of  radius r0. (Weibel [1964], taking Young's  rule from Thompson ,  tested 

his da t a  on the airways of  the lung against equat ions of  this form.) Since the 

number  of  daugh te r  vessels after z bifurcations is 2 *, the sum of  the cubes of  

their  radii is ~rz 3 = 2~7"~ 3 - 2~(2-~/ar0) 3 ---- 2z(2-~ro 3) = r03, which is Murray ' s  

law expressed as Eq. 2. 

In the derivat ion of  Murray ' s  law, a question arises about  the vessel radius, 

r. The  power required for laminar  flow depends upon the internal  radius only, 

whereas the metabolic  requirement  depends more nearly upon the external 

radius (because it depends upon the volume of  vessel as well as the volume of  

conta ined  fluid). In the expressions above, the same radius has been used in 

both  terms, which suggests tha t  the derived law is appropr ia te  only for thin 

vessels whose internal  and  external radii are nearly the same. However,  the 

thickness of  a vessel wall tends to be a linear function of  internal  r ad ius - -  

because of  Laplace 's  relation that  states that  for a given t ransmura l  pressure, 

the tension in the wall is proport ional  to r - - so  that  wall thickness increases 

with r to counteract  tha t  tension. I f  wall thickness is wr, where w is a constant  

and  r is internal  radius, the external radius of  the vessel, R, is also a linear 

funct ion o f r ,  s i nceR  = r + w r - -  (1 + w)r. For a unit  length of  vessel, the 

volume of  the conta ined  fluid is ~rr 2 and  that  of  the vessel tissue is ~rR 2 - r  z 

---- 7r(l + w)2r 2 -- ~rr 2 = 7rrZ(2w + w2), so that  the volume of  vessel wall is 

proport ional  t o  r 2, as is the volume of  conta ined fluid. I f  vessel and  conta ined  

fluid have the same metabolic  energy cost, they can be jo ined as a single term, z 

with volume ~rR 2 and  energy requirement  rn~rR 2 ffi b R  2 = brZ(1 + w) = b r , 

where b' = b(l + w) z. Unde r  these conditions, only the coefficient b changes 

by inclusion of  the vessel wall; the overall derivation remains the same, and  

Murray ' s  law still holds. In addi t ion,  the law can be expressed for external as 

well as internal  radii,  because ifro 3 = rl a + r~ 3, then roa(1 + w) 3 ---- r13(1 + w) 3 

+ r23(1 + w) 3 and  Ro a = R13 + R2 a. This, of  course, is not to claim tha t  vessel 

walls are invariably proport ional  to internal  radius: as t ransmura l  pressures 

decrease in the circulatory system, the walls tend to become thinner,  as they 

need to sustain less tension (witness the difference between arteries and  veins). 

Further ,  changes in vessel muscle tone (vasoconstriction and  dilation) cause 

changes in internal  radius wi thout  a corresponding change in wall thickness. 
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Murray's  law will not always hold exactly, but  it is far less approximate than 

might, at first sight, seem to be the case. 

If  the volume of vessel tissue is proportional to the square of the internal 

radius (as when wall thickness is proportional to r), then Murray's  derivation 

can hold for a biological vasculature even when the flowing fluid itself is inert 

and nonliving, as in the airways of the lungs, where the vessels are filled with 

air (of no metabolic cost) rather than with blood. For Murray's  law derives 

from the assumption that the total power requirement of the system is the 

sum of two factors, which are proportional to f2r-4 and to r 2, respectively. A 

factor proportional to r 2 can be given by the volume (per unit length of tube) 

of (a) the flowing fluid alone, if the vessels are very thin-walled; (b) the vessels 

alone, if the fluid has no power cost associated with its maintenance; or (c) the 

fluid and vessel combined. 

The derivation of Murray's  law involves two assumptions of a biological 

nature: (a) that optimality (a minimum energy condition) is sought, as by the 

action of natural selection, and (b) that a maintenance energy term is required 

for the volume of some material involved. The derivation could of  course be 

applied also to nonliving opt imum vasculatures formed from a material that 

had an initial power cost associated with it, a cost to be amortized over a 

given period of operation even if no further maintenance was to be required. 

Thus Murray's  law would hold for civil engineering projects involving pipes 

of  iron or concrete as well as for vasculatures of  living tissue. Thus D'Arcy 

Thompson 's  "students of  hydrodynamics" may well have derived the 21/a rule 

from assumptions similar to Murray's,  but  Murray seems in any case to have 

been the first to derive it for asymmetrical as well as symmetrical systems. 

In Murray's  opt imum system, flow and vessel radius are functionally 

related: an opt imum radius is found for a given flow. For a given metabolic 

coefficient, m, the volume of a vascular system in an organ or organism will 

depend upon the flow required of it: an opt imum vasculature for high flows 

will have larger vessels than one for low flows, the cubes of  the vessel radii 

being proportional to the flows required. 

An interesting alternative system is one that is to be opt imum within the 

confines of a given total volume of vascular tissue. If, for example, an organism 

has grown to a fixed adult size, with a vasculature that is opt imum for some 

average flow that is required of it, does that vasculature remain for its volume 

the opt imum one for other flows as well, or would some other arrangement be 

better for conditions of increased or decreased flow? Considering the great 

changes in flow required in an organism of fixed size moving from rest to 

maximum activity, etc., such a question is an important one. The answer (as 

shown below) is that the system obeying Murray's  law is the opt imum one, 

for its volume, at all levels of total flow. 

One way to demonstrate that this is so is to characterize a branching system 

that has, for a given total volume, the least resistance to flow. If  the resistance 

is minimum at one rate of  flow, it will be so at all flow rates, and so too will 

be the power required for any given flow. We seek then a rule for branching 
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in a system of  given volume of  material ,  M, such tha t  the resistance to flow 

will be minimal .  Such a system has been studied in detail by Cohn  (1954 and  

1955), by Rashevsky (1960), and  by Horsfield and  C u m m i n g  (1967), but  only 

for symmetr ical  branchings.  A simple demonst ra t ion  is given here that  applies 

to asymmetr ical  branchings as well. 

Let us look at any  b ranch ing  in a system of  fixed volume. We will neglect 

the precise geometric form of  the junc t ion  itself and  consider unit  lengths of  

a parent  vessel and  two daughters ,  wi thout  s t ipulat ing whether  the daughters  

are of  equal  radii or not, where 

radius of  parent  vessel 

radius of  daugh te r  vessel 1 

radius of  daugh te r  vessel 2 

volume of  the system (where "sys tem" denotes the sum of  unit  lengths of  

parent  and  daugh te r  vessels, neglect ing the region of  junc t ion  itself) 

resistance to flow in the parent  vessel 

resistance to flow in the parallel daughte r  vessels 

total resistance of  the system (parent and  daughters).  

R1 - -  87/ 1 a - 4  

where a -- 8~/~r 

R2 _ (8_~) (  1 ) a arl-4r2 -4 

r l  4 ..[_ r2 4" ---- - -  --4 r l  4 + r2 4 r 1 - 4  + r2 

R - -  a to -*  + rx-  4 + r z _ 4 ]  = a x +  = a y+z yYz 

where x = r0 -4, y -- r1-4, z - -  r2 - 4 .  Also 

M = rr(r0 z + rl 2 + r2 2) -- "/r (x -1/2 + y-1/z + z-1/2). 

Since a and  ~r are constants,  for convenience we seek to minimize a normal ized 

resistance R'  = R / a  = (xy + xz + yz) / (y  + z) subject to the condi t ion that  a 

normal ized a m o u n t  of  material  M '  = M/~r is fixed and  is equal  to x -1/2 + 
- -1/2 .4_ z - l / 2 .  

Y 
Using the me thod  of  Lagrang ian  multipliers,  we seek to minimize  

(F) xy + xz + yz y-1/2 Z1/2 M '  = -[- ~k(X - 1 / 2  -1- "l- - -  ) ,  

y + z  

where 2~ is an arbi t rary,  non-zero constant.  For this funct ion to be a m i n i mu m,  

its derivatives with respect to x, y, z, and  ~ must be zero. The  differentiat ion 
of  (x -1/2 + y-X/2 + z-1/2 _ M') is s t raightforward.  The  differentiat ion of  (xy 

+ xz + yz) / (y  + z) is facil i tated by sett ing u -- xy + xz + yz and  v -- y + z, 

and  not ing  tha t  d u / d x  -- y + z, d u / d y  -- x + z, d u / d z  = x + y, d v / d x  --- 0, 
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d v / d y - -  1, d v / d z - -  1. 

Since d ( u / v ) / d x  -- (v �9 d u / d x  - u �9 d v / d x ) / v  2, this leads to: 

OF (y + z)(y + z) - (xy + xz + yz)(0) _ _l~Lx_3/2 

Ox (y + z) 2 2 

---- 1 -- lykx-3/2 = 0 at m i n i m u m  

OF (y + z)(x + z) - (xy + xz + yz)(l)  

Oy (y + z) 2 

---- 0 at m i n i m u m  

OF 

0z 

I _ -3 /2  Z2 l 3/2 

-7Sy --(y+z) 2-Txy- 

y2 1 ~kz_3/2 

(y + z) z 2 

= 0 at m i n i m u m  

OF 
~__. x - l / 2  .~. y - l / 2  4- Z -1 /2  - -  M '  - 0 at m i n i m u m  

0h 

From the first three of  these equat ions 

- -  ~ ,  X -~- 

Xy-3/2 (y ~ z) 2 \ h ]  \ y  + z /  

1 Xz-3/2 y2 z (~)x/2  

2 (y + z) 2 '  \ ~ - - ~ ]  " 

Hence,  x -3/4 -- y-3/4 + z-3/4. M i n i m u m s  for the funct ion (xy + xz + yz) / (y  

+ z) subject to the condi t ion that  x -1/2 + y-i/2 + z-1/2 _- M'  therefore exist 
r 3 where x -3/4 ffi y-3/4 + z-3/4 or (replacing x, y, and  z by ro, rl, and  r2) whe e ro 

r l  3 + r2 3. 

I f  in the above derivat ion we start wi th  vessel segments not o f  uni t  length 

but  ra ther  of  similar shape to one another  (i.e., wi th  len}ths P3r~176176 to 

their  radii), min imal  resistance is again achieved when  r0 - -  r l  -t- r2 3. 

W h e n  the parent  vessel is assumed to divide into three daugh te r  vessels 

instead of  two, min imal  resistance can be shown to occur where ro 3 = rl 3 + 

r2 3 + r3 3 (r3 being the radius of  the thi rd  daugh te r  vessel). Likewise, wi th  four 

daugh te r  vessels resistance is minimized  when the sum of  the cubes of  the 

radii is conserved. Conservat ion of  the sum of  the cubes of  the radii is the 

condi t ion for min imal  resistance whether  the parent  vessel divides symmetri-  

cally or asymmetr ical ly ,  and  whether  it divides into two, three, four, or, 

presumably ,  any  n u m b e r  of  daugh te r  vessels. 

439 

(y + z)(x + y) - (xy + xz + yz)(1) _ 1Xz_3/2 = _ _  

(y + z) 2 2 
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Hence, Murray's law seems to hold for a system of fixed volume seeking 

minimum resistance just as it holds for a system seeking, within a flexible 

volume, an optimum compromise between volume and resistance (i.e., be- 

tween work associated with volume and that associated with flow itself). A 

system obeying Murray's law during growth, when vessel size is increased to 

meet increased flows, will continue to be optimum when, having achieved a 

fixed size, the system is subjected to variable flows. Since there is nothing in 

this derivation that assumes that the vasculature is living, Murray's law will 

hold for any branching vascular system that, within a given volume, requires 

minimum flow resistance. For symmetrical, dichotomous systems, this leads 
again to the 21/3 rule. 

V A L I D A T I O N  O F  M U R R A Y ' S  L A W  

Do biological vessels actually conform to Murray's law? Quantitative studies 

of the vessels of whole organs have been conducted by Mall (1888) on the 

small intestine of the dog, by Miller (1893 and 1937) on the dog lung, and by 

Weibel and Gomez (1962), Weibel (1963 and 1964), Horsfield and Cumming 

(1968), and Horsfield (1978) on the human lung. 

Mall's histological study was inspired by the physiologist Carl Ludwig, and 

he aimed to estimate, for different parts of the circulation, such physical 

characteristics as the total cross-sectional area of vessels. His data are still the 

basis of tables found in most present-day physiology textbooks, but the tables 

appearing today have passed through modifications made by Schleier (1919) 

or by Green (1944). Whereas Schleier merely edited the data, leaving out the 

inconvenient categories of vessels, Green drastically altered them by extrapo- 

lating from the dog intestine to the whole human body. Zamir (1977) 

attempted to compare Murray's law with Green's extrapolation. A valid 

comparison can only be made by means of a statistical test applied to the 

complete original data. For this purpose, Mall's original data are reproduced 

in Table I. 

Mall himself noted that his data were approximate. Although he could 

directly count the number of large vessels over the entire organ, smaller vessel 

numbers were estimates based upon small samples, so that the number of 

capillaries, for example, might be in error by 30-50% or more (Mall sometimes 

employed far too many significant figures in tabulating his data). Vessel radii, 

which presumably are external radii, are also approximate, and there is 

probably a systematic distortion in the sizes of some of the small arteries, since 

the dogs were killed by bleeding with the result that vasoconstriction was 

probably pronounced. 

Nevertheless, Table I displays in an approximate way how the blood 

brought in by the superior mesenteric artery is carried throughout the intes- 

tine. Five capillary beds are supplied: in the villi of the mucosa, around the 

crypts of the mucosa, in the circular muscle, in the longitudinal muscle, and 
in the peritoneum. Schleier (and subsequent textbooks) tabulated only those 

vessels involved with the circulation to the villi, because only by eliminating 

the other beds can a uniform progression from large vessels to small be 
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Description of vessel Number Radius Probable rank 

Superior mesenteric artery 

Main branches of mesenteric art. 

Final branches of mesenteric art. 

Short intestinal arteries (s.i.a.) 

Long intestinal arteries (l.i.a.) 

Last branches of s.i.a. 

Last branches of l.i.a. 

Branches to crypts 

Branches to villi 

Arteries of the villi 

Capillaries of the villi (upper 2/3) 

Capillaries of the villi (lower 1/3) 

Veins at base of villi 

Veins between villi & submucosa 

Last branches ofsubmucosal veins 

Anastomoses of submucosal veins 

Last branches of s.i.v. 

Long intestinal veins 

Short intestinal veins (s.i.v.) 

Last branches of mesenteric veins 

Branches of mesenteric vein 

Mesenteric vein 

p-m 

1 1,500 0 

15 500 1 

45 300 2 

1,440 40 3 

459 96 3 

8,640 25 4 

18,000 26.5 4 

4,000,000 4 5, 6, 7 

328,500 15.5 5 

1,051,000 11.25 6 

31,536,000 4 7 

15,768,000 2.5 x 

2,102,400 13.25 6' 

131,400 37.5 5' 

18,000 64 4' 

2,500,000 16 xx 

28,800 32 4' 

459 220 3' 

1,440 56 3' 

45 750 2' 

15 1,200 1' 

1 3,00O 0' 

Muscle layers 

Direct muscle arteries 1,800 15 3, 4, 5, 6 

Indirect muscle arteries 3,600 20 3, 4, 5, 6 

Capillaries of circular muscle 27,000,000 1.5 7 

Capillaries of longitudinal muscle 9,000,000 1.5 7 

Veins 3,600 56 3', 4', 5', 6' 

Peritoneum 

Arteries 360 24 3, 4, 5, 6 

Capillaries 36,000 9 7 

Veins 360 40 3', 4', 5', 6' 

Data of F. P. Mall (1888). Most of the data is also available in English in a later article by Mall (1905-06). 

The vessels are tabulated exactly as Mall presented them, except for the following changes: (a) names are 

translated from German, (b) vessel radii are given in #m instead of vessel diameters in cm, (c) a printer's 

error in assigning the decimal point in the size of the capillaries of the circular muscle has been corrected. 

In addition, the vessels are assigned to a probable rank (see text). Each rank is a group of vessels carrying 

the full flow of blood originating in the superior mesenteric artery. Two groups of vessels have not been 

assigned a rank: x, capillaries of the villi (lower one-third) represent a partial channel intermediate between 

ranks 7 and 6'; xx, anastomoses ofsubmucosal veins represent cross channels within rank 4'. 

displayed. Although the capillary bed of  the villi is more extensive than the 

other four beds combined, all must be included if the total carriage of  blood 

is to be portrayed. In addition, Schleier combined the upper capillaries of  the 

villi with the lower. These channels are probably in series rather than in 

parallel, so that they should be regarded as separate stages of the system. 
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In analyzing these data, we seek to establish sets of  vessels that carry, 

without duplication, the full flow of blood brought in by the superior 

mesenteric artery. These full flow sets have been tabulated as ranks in Table  

I. In passing from the superior mesenteric vein, a particle of blood must flow 

through the following sequence of ranks: arteries 0, 1, 2, 3, 4, 5, 6, capillaries 

7, veins 6', 5', 4', 3', 2', 1', 0'. In some cases a vessel must be assigned to more 

than one rank. The branches to the crypts, for example, carry blood from 

arteries of rank 4 directly into veins of rank 6', so that these vessels achieve the 

same connection that vessels of ranks 5, 6, and 7 do in the villi. The ranks also 

represent the number  of major branching processes that Mall detected down- 

stream from the superior mesenteric artery (or upstream from the mesenteric 

vein). The actual number  of dichotomous branchings is obviously far higher 

than the number  of ranks. 

The ranks have been brought together in Table  II, where each vessel listed 

T A B L E  II 

V E S S E L S  I N  T A B L E  I G R O U P E D  A C C O R D I N G  T O  R A N K  

Vessel r a n k  Z r  2 Xr  a Z r  4 

m m  2 tom 3 rrtm 4 

0 2.2 3.4 5.1 

1 3.8 1.9 0.94 

2 4.0 1.2 0.36 

3 8.6 0.54 0.043 

4 2(I 0.51 0.013 

5 140 1.5 0.021 

6 200 1.8 0 .019 

7 650 2.4 0 .0095 

6'  380 5.5 0.10 

5 '  200 7.6 0.30 

4 '  120 6.3 0.37 

3 '  39 5.8 i. 1 

2' 25 19 14 

I '  22 26 31 

0 '  9 27 8l  

T h e  vessels o f  T a b l e  I have  been g r o u p e d  a c c o r d i n g  to r a n k  a n d  the  sums  o f  r 2, r ~, 

a n d  r 4 have  been  c a l c u l a t e d  for e ach  rank .  

in Table  I has been assigned to its appropriate rank or ranks. For each rank, 

a sum of radii squared (Y~r2), of radii cubed (~r3), and of radii to the fourth 

power (Zr 4) have been calculated. For homogeneous ranks (ranks with only 

one set of similar vessels), ]~r 2, ]~r 3, and ~r  4 are nr 2, nr 3, and nr 4, respectively, 

where n is the number  of vessels of  radius r. 

It is evident from Table II that in moving from rank 0 (the superior 

mesenteric artery) to rank 7 (the capillaries), Zr 2 increases dramatically and 

Zr 4 decreases to a similar degree. Since Y~r z is proportional to cross-sectional 

area of  the vessels and Zr 4 is proportional to their conductance to flow, Table  

II displays the striking manner in which area increases as conductance 

decreases in moving from the larger to the smaller vessels. It was this sort of 
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insight that Mall hoped to gain from his studies, and although he (and later 

authors) failed to group the vessels together correctly, the general trend of his 

findings has been well known to physiologists since. 

Unlike Y~r 2 and 5It 4, ]~r 3 has no obvious physiological significance and has 

therefore been ignored. However, it is this quant i ty  that, according to Murray's  

law, should be conserved. Table II shows that it remains fairly constant 

throughout the arterial system (from ranks 0 to 7) and even through the first 

one-half of the venous system as well (ranks 6' to 3'). In the larger veins Zr 3 

tends to increase somewhat, though the changes in Zr 3 are far less than those 

for ~r  4 and about the same as those for ~r  z. 
If  Zr z, ~,r 3, and 53r 4 are plotted against rank, it becomes evident that the 

values for ranks 3 and 4 are altogether too low. The deviations of these ranks 

from a line of best fit for the other ranks is greatest for ~r  4 values, and least 

for 5~r 2. If  the mean value of r is raised by a factor of 1.5 for ranks 3 and 4, not 

only are the aberrant points for Y~r ~ brought close to their line, but the 

corresponding points for ~r z and ~]r 4 are restored to their lines as well. This 

suggests that there is a systematic underestimation of the value of r for these 

ranks, an error that might easily arise as a result of the preparation of the dog 

by bleeding, with the resultant vasoconstriction of the arteries of these ranks. 

There is reason therefore to suppose that ~2r 3 is normally conserved even better 

than portrayed in Table II. 

If  ~r  3 is constant for ranks (full-flow sets) of the arterial system and much 

of the venous system, then for any homogeneous, full-flow set of this region 

where Zr 3 - nr 3, we have a functional relation between n and r, namely, nr 3 

--- K, or n - Kr -3, where K is a constant. If  the vessels of every rank were 

homogeneous (i.e., had the same radius), we could check the nr 3 = K rule by 

fitting a power curve of the form nr m - K to the data (or by finding the 

regression line for I n n  ffi - m  In r + In K). A value of m "-3 would support the 

rule. Because ranks 3, 4, 5, 6, 7, 6', 5', 4', and 3' are not homogeneous, the test 

cannot be done without first converting these ranks to equivalent homogeneous 

ranks. To do this, the radius of the vessels that contribute the largest nr 3 

component to the rank is taken as the radius of the rank, and the number  of 

those vessels is recorded. To this number  is added a calculated number  of 

vessels of that radius needed to give an nr 3 value equal to that of the lesser 

groups of vessels in the rank. Table III shows the radii and numbers of vessels 

for homogeneous ranks created from Mall's data in this way. The conversion 

introduces a bias in favor of  the nr 3 rule, since this rule has been used in the 

transformation of the ranks from nonhomogeneous to homogeneous. However, 

because the original ranks are only slightly nonhomogeneous, the bias is very 

small; it can be eliminated to any degree required by making successive 

approximations in the determination of the regression line. 

When the data  for ranks 0-3' in Table III are fitted to a regression line, a 

value of 2.984 is found for the exponent, m, with a coefficient of determination 

of 0.971. If  the questionable ranks 3 and 4 are eliminated, m is found to be 

3.006, with a coefficient of determination of 0.987. If  only the arterial data 

(ranks 0 to 7) are fitted, the exponent is 2.947 (coefficient of determination 
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0.988) or, without ranks 3 and 4, the exponent is 2.972 (coefficient of 

determination 0.998). In any case, throughout the vascular system of the 

intestine--until  the large veins are reached--the classical data for Mall falls 

very close to the line predicted by Murray's law. 

The data of  Miller (1893) for the dog lung also conform fairly closely to 

Murray's law, though not so closely as Mall's data for the small intestine. The 

exponent m is 2.61 for the arteries and 2.76 for the veins. For all the veins 

except the final four large pulmonary veins, however, the exponent is 3.01. 

Weibel and Gomez (1962) in their study of  the human lung fitted their 

data for arteries to an equation of the form rz = r02 -z/3' where z is the number 

of bifurcations, assumed in their model to be symmetrical. This equation is 

T A B L E  I n  

D A T A  O F  F. P. M A L L  (1888) M O D I F I E D  T O  F O R M  H O M O G E N E O U S  R A N K S  O F  

V E S S E L S  

Radius of predominant Equivalent number  of 

Vessel rank vessels of rank (r) vessels for homogeneous rank (n) 

/J,?t/ 

0 (parent artery) 1,500 1 

1 500 15 

2 300 45 

3 96 608 

4 26 27,400 

5 16 408,000 

6 11 1,260,000 

7 (capillaries) 4 37,800,000 

6' 13 2,380,000 

5' 37 144,000 

4' 64 24,100 

3' 220 544 

2' 750 45 

1' 1,200 15 

0' (end vein) 3,000 1 

The vessels of Table I have been grouped according to rank, the radius of the predominant group has been 

taken as the radius of the rank, and the number  of vessels for the rank has been calculated to give a value 

of nr :~ (for the homogeneous rank) equal to the original Y~r 3, 

derived from Thompson's  21/3 rule, and hence, the line of  best fit of Weibel 

and Gomez (1962) has the slope predicted by Murray's  law. 

Horsfield and Cumming (1968), Singhal et al. (1973), and Horsfield (1978) 

do not assume a symmetrical branching pattern in their studies of  the lung, 

but  order the lung vessels by a modification of methods introduced by Horton 

(1945) and Strahler (1953 and 1957) for analyses of river systems. Since the 

Horsfield orders do not necessarily correspond to full-flow sets of vessels, 

however, they do not lend themselves easily to the present analysis. 

Suwa et al. (1963) concluded that human arteries, over a wide range of 

sizes, preserve a constancy of ~']r 2"7 for full-flow sets, but that in the largest 

arteries ~]r  2 is nearly constant in such sets. Patel et al. (1963) and Mall (1905- 
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06) also found that the largest vessels tend to maintain a constant total cross- 

sectional area, so that Murray's  law is not followed in the most immediate 

branchings of  the aorta, the pulmonary trunk, the venae cavae, and the 

pulmonary veins. Iberall (1967) concluded from a study of  the data  of Mall 

(1905-06), Patel et al. (1963), and Suwa et al. (1963) that "the cross-sectional 

data  does not change much until arterial diameters of the order of 1/2 mm 

are reached; then an approximately uniform increase in area per level for 

arterial sizes down to about  20-30 #m occurs, after which a large increase in 

area down to capillary sizes of  the order of  8/~m takes place." Iberall thus 

divides the arterial tree into three regions; the most extensive (middle) region 

shows, in his view, a linear relation of  some sort between Yr 2 and r x. An 

inspection of  Iberall's graph shows that he has chosen to make ~r  2 proportional 
- - 0 7  �9 2 7  �9 

to r ", and, hence, has acceptcd thc conclusmn of Suwa et al. that r �9 is 

constant in this middle region. 

Blum (1919) estimated cross-sectional area ratios for a great many artcrial 

branchings. He  concluded that his results were scattered around a mcan of 

1.26, a result which, for symmetrical branching, is that predicted by Murray's  

law. 

Hutchins et al. (1976) found a constancy o f ~ r  a for branch points in normal 

coronary arteries. In diseased arteries they found the exponents to be <3. 

In summary,  arteries and veins, excluding only the largest, follow Murray 's  

law very well. Estimates of  exponents, m, for a relation nr TM --- K, fall mostly 

in the range of  2.7-3.0. The capillaries of  the small intestine seem also to obey 

the relationship, but  capillaries of  many tissues cannot be expected to do so 

(see below). 

There is evidence that the larger airways of  the lungs also follow Murray's  

law. A test of  the data  of  Miller (1893) gives an exponent of 2.71 for all the 

airways down to the alveolar sacs. Weibel and Gomez (1962) found a difference 

between the first ten generations of airways (starting with the trachea) and 

the finer airways beyond. The first ten generations followed the 21/3 rule (and 

hence Murray's  law), whereas those beyond deviated increasingly from the 

theoretical line. Wilson (1967) also noted the correspondence between the 

data of  Weibel and Gomez and the 2 x/3 rule, and independently gave a 

theoretical argument,  very similar to Murray's,  for the optimality of such a 

rule. Hooper  (1977), realizing that the lung branches asymmetrically (not 

symmetrically, as Weibel and Gomez's model assumes), made resin casts of 

the airways and, cutting the casts, compared the weight distal to a cut with 

the radius of the airway at the cut. From a regression line fitted to 79 

observations, he found that the weight was proportional to r 2"9s. Using an 

argument adopted from a study of  trees by Murray (1927)--that  the weight 

supported by a parent branch is the sum of the weights supported by its 

daughters, Hooper  concluded that for his airways (which were of fairly large 
size), r02"9s -- ra 2'9s + r22'9s. This confirms Murray's  law for the larger airways 

in a more direct way than do the earlier studies, because it does not require 

that da ta  from an asymmetrical branching system first be fitted to a sym- 

metrical model. 
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L I M I T A T I O N S  O F  M U R R A Y ' S  L A W  

Murray's  law will usually apply only to branching systems for which the 

original assumptions leading to the law are valid. These assumptions are: (a) 

that the system is arranged to minimize energy output ,  and (b) that the energy 

output  is that which results from two terms associated with (i) Poiseuille flow, 

where energy output  is proportional to f2r-4; and (ii) volume of the system, 

where maintenance energy is proportional to r 2. Alternatively, the law applies 

to a system of given volume that is arranged to minimize resistance, where 

resistance is proportional to r -4. 

An electrical conduit system would be expected to obey some other law, for 

resistance in such a system is proportional not to r -4 but  to r -2. It is easy to 
~ , , ,  �9 �9 �9 2 2 

show that the Murray  s law for branching electrical systems is ro -- rx + 

r2 2. A branching system of wires, made from a given amount  of  material that 

is to minimize resistance, should have a constant ~r  2 for all full-current sets of 

wires. Throughout  the system the current, I, in any segment of wire of  radius 

r, should be I = Kr 2, where K is a constant. Since current is proportional to 

voltage gradient times conductance, and since conductance in a wire is 

proportional to r 2, this means that the o~t imum electrical system has a 

constant voltage gradient (proportional to r ). In contrast, the opt imum flow 

system has a pressure gradient that is not constant with changes in vessel size, 

but is proportional to r -1 (see bclow). 

A diffusion conduit system would follow the same law as the electrical 

system, for diffusion, like electrical current, has a conduction proportional to 

r 2 for a given cylindrical segment, or to Y~r 2 for a sum of parallel segments. 

Although diffusion in a biological conduit system requires no work from the 

organism (the work is supplied by the free energy gradient), the minimization 

of resistance within a given volume will lead to the same result as for the 

electrical system, namely Y~r 2 = K. Krogh (1920, also described in Krogh 

[1941]) has studied terrestrial insect larvae that show no respiratory move- 

ments and hence rely upon diffusion to supply oxygen through their tracheal 

systems. In Cossus (goat moth) larvae, Krogh found that the tracheal system 

maintained a constant cross-sectional area (~6.7 mm 2) in branching from 

larger to smaller vessels. This curious fact, recently described by Schmidt- 

Nielsen (1979), is now seen to be predicted by a model analogous to Murray's.  

The fundamental  limitation of  Murray's  law itself (]~r 3 ---- K) is that it 

applies only to branching conduction systems in which conduction is propor- 

tional to r 4. Analogous laws, however (such as ]~r z -- K for the electrical or 

diffusion systems) apply to other cases. That  the diffusion system of insects 

follows an analogue of  Murray's  law supports the appropriateness of Murray's 

approach. 

Should Murray's law hold for fluid flow systems in which the work required 

to drive the flow is only partially accounted for by the frictional drag in the 

tubes themselves? In the lung, for example, the work used in overcoming 

frictional resistance in the airways is, in quiet breathing, only one-fourth to 

one-third of the total work of breathing, the balance being required to 

overcome the elasticity of  the lungs and thoracic wall (Comroe, Jr. 1974). 
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Such factors may influence the total volume of the vessel system, but  they do 

not affect the optimal branching rule for the system; Murray's  law would still 

hold as the result of  minimizing resistance in whatever volume was available 

for the branching system. 

On the other hand, a system would not be expected to obey Murray's  law 

where flow is turbulent  instead of  laminar, so that the work for propelling the 

fluid in the tubes is not proportional to f2r-4.  Uylings (1977) showed that 

optimality for a turbulent system requires that ro 7 / a =  ra 7/3 + r27/a. The 

turbulence of  flow in the aorta and pulmonary trunk may help to explain 

why the immediate branchings of  these vessels seem to conserve Zr 2 more 

nearly than Zr a. The  occurrence of  pulsatile plug flow in the aorta would also 

tend to limit Murray's  law to the lesser arteries. 

In the smallest blood vessels, Murray's  law might be limited by the changes 

in blood viscosity noted by Fahraeus and Lindqvist (1931), since the derivation 

of Murray's  law assumes a constant viscosity coefficient. The decrease in blood 

viscosity in the small vessels, although important  in decreasing circulatory 

energy requirements, is nevertheless small compared with the decrease in 

vessel radius required to bring it about.  If blood viscosity, T/, were to be 

approximated by a single-power term in vessel radius, r, the relation would be 

no stronger than 7/ffi k r 1/6 (Fahraeus and Lindqvist, 1931; Haynes,  1960). If  

Murray's  assumption that 7/ is independent of  r, that is, that ~ -- kr ~ is 
changed to "q ---- kr 1/6, then his law is altered only to ~,r 3s/12 - -  ~ ] r  2"92 ---~ K from 

Y~r 3 ---- K. The  Fahraeus-Lindqvist effect has therefore rather little effect upon 

the Murray  system. 

Various specific physiological requirements may be expected to limit ad- 

herence to Murray's  law. The capillary beds of  certain tissues may require 

vascular surface areas (and numbers of  capillaries) unusually large compared 

with the dimensions of  the arteries supplying them. Such arrangements allow 

rates of transmural diffusion to be unusually rapid, as at the alveoli of  the 

lungs. In skeletal muscle the capillaries are arranged so as to allow large 

changes in the conductance of  the system, so that greatly varying flows can be 

driven by a relatively constant pressure gradient. In the resting muscle only a 

minority of  the capillaries are utilized at any given moment,  so that the ~r  3 

for the total capillary bed could be expected to exceed the Y.r 3 for a full-flow 

set of arterial vessels supplying the bed. 

In any vessel segment (of unit length) obeying Poiseuille's law, the flow 

through the segment is proportional to the pressure difference and to the 

fourth power of  the vessel radius. If  that vessel segment is part of  an opt imum 

system (obeying Murray's  law as well as Poiseuille's law), the flow through 

the segment is still proportional to the pressure difference and to the fourth 

power of the radius, but, because the pressure difference in the segment (given 

a constant overall pressure difference for the system) is proportional to the 

vessel radius (see below), these two factors combine to give a flow in the 

segment that is proportional to the cube of  the vessel radius. O f  the total flow 

of  a system, the portion that flows through a given segment is given by ri3/ 
3 ~r  ~, where r i  is the radius of  the segment and ~r  refers to the whole system. 
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If the portion flowing to a given region is to be changed, the value of ri 3 must 

be changed. If  the system is to remain optimal, the radii of all vessels upstream 

that carry flow to that segment must also change, as must some of the vessels 

downstream from the segment. In the end the maintenance of optimality for 

all the physiological patterns of distribution would require vasomotor control 

of nearly all the arterial vessels. Since this is unlikely to be the case, Murray's 

law can be expected to hold only for the most common distribution patterns. 

In vessels of the body where functions other than bulk flow become 

significant, Murray's  law again may not hold. That  the large veins act as 

blood reservoirs as well as flow channels may explain why they are somewhat 

larger than Murray's  law would predict. The small airways of  the lung tend 

also to be larger than predicted, and this is probably because, as noted by 

Weibel and Gomez (1962) and West (1979), diffusion becomes more important 

than bulk flow in the transport of gases in the terminal airways. 

M E A N I N G  O F  M U R R A Y ' S  L A W  

By establishing a relation between flow and vessel radius in a vascular system, 

Murray's  law enables one to predict a number  of other interesting features of 

the system. The following characteristics hold for a system obeying Murray's 

l a w ;  

Volumetric Flow 

In every vessel of a Murray system, flow is proportional to r a (Murray's law). 

Velocity of Flow 

Because the flow is proportional to r a and because the cross-sectional area of 

a vessel is proportional to r 2, the average velocity of flow in any segment must 

be proportional to r (Murray, 1926a). Since the maximum velocity (at the 

center of  the tube) is twice the average velocity in laminar flow, the maximum 

velocity of  flow is also proportional to the vessel radius. 

Velocity Profile 

Since the maximum velocity of flow (at the center) is proportional to the vessel 

radius in every vessel of a Murray system, it is evident that the parabolas 

describing velocity profiles in all the vessels are similar to one another. In this 

sense the flow has a similar shape in every vessel of a Murray system. 

Vessel-Wall Shear Stress 

Since the velocity-profile parabolas are all similar to one another, the rate of 

change (at the vessel wall) of velocity with distance from the wall (dv/dx) is 

the same for all vessels. This can also be seen because in laminar flow in tubes 

r 2 ' 

where v is the velocity at a distance x from the wall, vm is the maximum 
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velocity at center of the tube, and r is the radius of the tube. Then 

= Vm - - 7  = 4{- - - ~  , 

where b-is the average velocity (Vm/2). 

At the wall (x = 0), dv/dx = 4g/r. Since b-is proportional to r, dv/dx is 

independent of r and hence the same for vessels of all sizes. The shear stress on 

the vessel wall, T -  ~/dv/dx, where 77 is the viscosity of the fluid. Hence, the 

vessel-wall shear stress is constant throughout an opt imum vascular system. 

Rodbard (1975) proposed that shear stress detected by the vessel endothelium 

leads to vessel growth or contraction, and Zamir (1977) suggested that this 

leads to the development of the Murray system as vessels maintain a constant 

shear stress. 

Reynolds Number 

Since the average velocity is proportional to r in a Murray system, and since 

the Reynolds number  is proportional to velocity of flow times vessel radius, 

the average Reynolds number  is proportional to the square of the radius for 

vessels in an opt imum system. Caro et al. (1978) give estimates of the Reynolds 

numbers for flow in arteries of different sizes; their values closely conform to 

an r 2 proportionality. 

Pressure Gradient 

In a vessel segment where flow obeys Poiseuille's law, the flow is proportional 

to the pressure gradient (the pressure difference per unit length) times the 

fourth power of  the vessel radius. I f  Murray's law also holds, the flow is 

proportional to the cube of  the vessel radius, and the pressure gradient must 

therefore be proportional to r -a (neglecting the small effects from changes in 

kinetic energy of  the fluid). Zweifach (1974) has measured pressure gradients 

in small arterioles, capillaries, and venules of the cat mesentery. The pressure 

gradients reported by Zweifach are very nearly proportional to r -~, suggesting 

that the smallest vessels of the cat mesentery conform closely to Murray's law 

even though the flow in such vessels is not completely laminar. 

Conductance and Resistance 

The conductance of a full-flow set of vessels is proportional to Zr 4. If the full- 

flow set is homogeneous, the conductance is proportional to nr 4. Since nr 3 is 

constant (in an opt imum system), nr 4 must be proportional to r. Hence, 

conductance is proportional to r for homogeneous, full-flow sets in a Murr_a~ 

system. Resistance (the reciprocal of conductance) is proportional to r , 

which agrees with the long-established fact that the greatest part of the 

resistance of the arterial tree is in the smallest vessels. 

Cross-sectional Area 

The cross-sectional area of a full-flow set of vessels is proportional to ]~r 2. If  

the full-flow set is homogeneous, the cross-sectional area is proportional to nr 2. 
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If  nr 3 is constant, then nr 2 is proportional to r -1. Therefore, the cross-sectional 

area is proportional to r -1 for homogeneous full-flow sets in a Murray system. 

For similarly shaped vessels (where length is proportional to r) the wall surface 

of a homogeneous, full-flow set is also proportional to r -1. A Murray system 

therefore gives (as do actual vascular trees) much greater total surface areas 

in the small vessels (where transmural diffusion occurs) than in the large 

vessels. 

Murray's  law is therefore very useful in providing a functional relation 

between vessel radius and volume flow (ara), velocity of flow (ar), and vessel- 

wall shear stress (o~r ~ for all vessels of an opt imum system. Where vessels 

comprise homogeneous, full-flow sets, Murray's law also provides a functional 

relation between vessel radius and conductance (at), resistance (ar-l), and 

cross-sectional area (at-l) .  These relations can serve to predict, at least in an 

approximate manner,  properties of a vascular system at all its various levels. 

Murray's  law also provides an interesting perspective on the scaling of 

vascular systems in animals growing or evolving to different sizes. If  capillary 

densities and dimensions are to remain constant as an organ increases in size, 

the number  of capillaries must increase linearly with the mass or volume of 

the organ. Tha t  is, the number of capillaries, n, must be proportional to L 3, 

where L is the linear dimension of the organ. As an organ grows in size, its 

blood flow (increasing with L 2 to L 3) could be accommodated by increasing 

the radius of its parent artery to various degrees. There is only one increase, 

however, that will supply the organ at minimum cost: the increase that will 

keep the value of nr 3 for the parent artery equal to nr 3 for the capillaries it is 

supplying. Since the number of capillaries increases with L 3 and the capillary, 

radius is assumed to remain constant, nr 3 for the capillaries increases with L . 

The radius of the parent artery must then increase with L, so that nr 3 for the 

artery increases with L 3 and remains equal to that for the capillaries. Thus, 

minimum energy cost is maintained by having the artery grow in radius 

proportionally to the linear dimension of the organ. If  the organ is growing at 

the same rate as the animal itself, the radius of the artery should increase with 

the linear dimension of the whole animal. The proportion of space occupied 

by the blood vessels need not change therefore as the animal grows larger. It 

is well known that blood volume (unlike bone volume) remains a fairly 

constant percentage of body volume as animals increase in size (Sj/Sstrand, 

1962). 

If  minimum energy cost required any other than the inverse cubic relation 

between the radius and the number of arterial vessels (for example, a constancy 

of nr 2 or nr4), then the radii of supplying arteries would have to vary with 

some power of L other than unity if opt imum conditions were to be main- 

tained. Conversely, if a group of various-sized animals (or one individual at 

different stages of its growth) was to maintain a linear relation between r and 

L, and the nr a = K relation did not hold, then only one size or stage could 

maintain opt imum energy conditions. The nr a = K relation permits all sizes 

and stages to operate at minimum cost while maintaining a constant propor- 

tion between vessel and organ size. 
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T h e  constructs  o f  the h u m a n  mind  are no  doub t  always imperfect  ideali- 

zat ions of  nature, in physiology perhaps even more than in the purer realms 

of  physics and chemistry. Poiseuille's law of  flow is not obeyed by non- 

Newtonian fluids, or fluids in turbulence, or fluids in noncylindrical vessels, 

nor by red blood cells undergoing tank-track roller motion in small capillaries. 

Fick's law of diffusion requires amendment  even in some very dilute nonliving 

molecular matrices (as in hyaluronic acid gels; see Ogston and Sherman 

[1961]), as well as in cellular barriers with selective pores and solubilities and 

active transport systems. But Poiseuille's law and Fick's law have been useful 

idealizations nevertheless. We may find that Murray's law has considerable 

uti l i ty  as well. 

Received for publication 3January 1981. 

R E F E R E N C E S  

BLUM, E. 1919. Die Querschnittsbeziehungen zwischen Stamm und Asten im Arteriensystem. 

Pflugers Archiv Gesamte Physiol. Menschen Tiere. 175:1-19. 

CARO, C. G., T. J. PEDLEY, R. C. SCHROTER, and W. A. SEED. 1978. The Mechanics of the 

Circulation. Oxford University Press, Oxford. 

COHN, D. L. 1954. Optimal systems. I. The vascular system. Bull. Math. Biophys. 16:59-74. 

COHN, D. L. 1955. Optimal systems. II. The vascular system. Bull. Math. Biophys. 17:219-227. 

COMROE, J. H., JR. 1974. Physiology of Respiration. Year Book Medical Publishers, Inc., 

Chicago. 2nd ed. 78; 120. 

FAHRAEUS, R., and T. LINDQVIST. 1931. The viscosity of the blood in narrow capillary tubes. 

Am. J. Physiol. 96:562-568. 

GREEN, H. D. 1944. Circulation: physical principles. In Medical Physics. O. Grasser, editor. 

Year Book Publishers, Chicago. 210. 

HAYNES, R. H. 1960. Physical basis of the dependence of blood viscosity on tube radius. Am.J. 

Physiol. 198:1193-1200. 

HESS, W. R. 1917. Uber die periphere Regulierung der Blutzirkulation. Pflugers Archiv Gesamte 

Physiol. Menschen Tiere. 168:439-490. 

HoopER, G. 1977. Diameters of bronchi and asymmetrical divisions. Respir. Physiol. 31:291-294. 

HORSHELD, K. 1978. Morphometry of the small pulmonary arteries in man. Circ. Res. 42:593 

597. 

HORSFIELD, K., and G. CUMMINC. 1967. Angles of branching and diameters of branches in the 

human bronchial tree. Bull. Math. Biophys. 29:.245-259. 

HORSFIELD, K., and G. CUMMlNC. 1968. Morphology of the bronchial tree in man. J. Appl. 

Physiol. 24:373-383. 

HORTON, R. E. 1945. Erosional development of streams and their drainage basins: hydrophysical 

approach to quantitative morphology. Bull. Geol. Soc. Am. 56:275-370. 

HUTCHINS, G. M., M. A. MINER, and J. K. BOITNOT'r. 1976. Vessel calibre and branch-angle of 

human coronary artery branch points. Circ. Res. 38:572-576. 

IBERALL, A. S. 1967. Anatomy and steady flow characteristics of the arterial system with an 

introduction to its pulsatile characteristics. Math. Biosci. 1:375 395. 

KAMIYA, A, and T. TOGAWA. 1972. Optimal branching structure of the vascular tree. Bull. Math. 

Biophys. 34:431-438. 



452 THE JOURNAL OF GENERAL PHYSIOLOGY �9 VOLUME 78 �9 1981 

KAMIYA, A., T. TOGAWA, and A. YAMAMOTA. 1974. Theoretical relationship between the optimal 

models of the vascular tree. Bull. Math. Biol. 36:311-326. 

KROGH, A. 1920. Studien uber Tracheenrespiration. 2. Uber Gasdiffusion in den Tracheen. 

Pflugers Archiv Gesamte Physiol. Menschen Tiere. 179:95-112. 

KROGH, A. 1941. The Comparative Physiology of Respiratory Mechanisms. University of 

Pennsylvania Press, Philadelphia. 116-117. 

MALL, F. P. 1888. Die Blut und Lymphwege in Dunndarm des Hundes. Abhandlungen der 

Mathematisch-Physischen Classe der Koniglich Sachsischen Gessellschaft der Wissenscbaften 

14:151-200. (Mall's initials are incorrectly given as J. P. in the original article.) 

MALL, F. P. 1905-06. A study of the structural unit of the liver. Am.J.  Anat. 5:227-308. 

McDONALD, D. A. 1974. Blood Flow in Arteries. Edward Arnold (Publishers) Ltd., London, 

2nd ed. 

MILLER, W. S. 1893. The structure of the lung.J. Morphol. 8:165-188. 

MILLER, W. S. 1937. The Lung. Bailli~re Tindall. London. 

MILSUM, J. H., and F. A. ROBERGE. 1973. Physiological regulation and control. In Foundations 

of Mathematical Biology. R. Rosen, editor. Academic Press, Inc., New York. Vol. 3, 74-84. 

MURRAY, C. D. 1926a. The physiological principle of minimum work. I. The vascular system 

and the cost of blood volume. Proc. Natl. Acad. Sci. U. S. A. 12:207-214. 

MURRAY, C. D. '1926b. The physiological principle of minimum work applied to the angle of 

branching of arteries. J .  Gen. Physiol. 9:835-841. 

MURRAY, C. D. 1927. A relationship between circumference and weight in trees and its bearing 

on branching angles.J. Gen. Physiol. 10:725-729. 

OCSTON, A. G., and T. F. SHERMAN. 1961. Effects of Hyaluronic acid upon diffusion of solutes 

and flow of solvent. J .  Physiol. (Lond.). 156:67-74. 

PATEL, D. J., F. M. DE FREITAS, J.  C. GREENFIELD, and D. L. FRY. 1963. Relationship of radius 

to pressure along the aorta in living dogs. J .  Appl. Physiol. 18:1111-1117. 

RASHEVSKY, N. 1960. Mathematical Biophysics. Physico-Mathematical Foundations of Biology, 

Dover Publications, New York. Vol. 2, 3rd ed. 292-305. 

RASHEVSKV, N. 1973. The principle of adequate design. In Foundations of Mathematical 

Biology, R. Rosen, editor. Academic Press, Inc. New York. Vol. 3. 158-167. 

RODBARD, S. 1975. Vascular caliber. Cardiology. 60:.4-49. 

ROSEN, R. 1967. Optimality Principles in Biology. Plenum Publishing Corp., New York. 40 52. 

SCHLEIER, J. 1919. Der Energieverbrauch in der Blutbahn. Pflugers Archly Gesamte Physiol. 

Menschen Tier e. 173:172-204. 

SCHMIDT-NIELSEN, K. 1979. Animal Physiology. Adaptation and Environment. Cambridge 

University Press, Cambridge. 2nd ed. 52. 

SINGHAL, S., R. HENDERSON, K. HORSFIELD, K. HARDING, and G. CUMMING. 1973. Morphometry 

of the human pulmonary arterial tree. Circ. Res. 33:190-197. 

SJOSTRAND, T. 1962. Blood volume. In Handb. Physiol. 1 (sect. 2):51-62. 

STRAHLER, A. N. 1953. Revisions of Horton's quantitative factors in erosional terrain. Trans. 

Am. Geophys. Union. 34:345. 

STRAHLER, A. N. 1957. Quantitative analysis of watershed geomorphology. Trans. Am. Geophys. 

Union. 38:913-920. 

SUWA, N., T. NIwx, H. FUKASUWA, and Y. SASAKI. 1963. Estimation of intravascular blood 

pressure gradient by mathematical analysis of arterial casts. TohukuJ. Exp. Med. 79:168 198. 

THOMPSON, D. W. 1942. On Growth and Form. Cambridge University Press, Cambridge. 2nd 

ed. 948-957. 



T. F. SHERMAN The Meaning of Murray's Law 453 

UYLXNGS, H. B. M. 1977. Optimization of diameters and bifurcation angles in lung and vascular 

tree structures. Bull. Math. Biol. 39:509-519. 

WEmEL, E. R. 1963. MorphomeOy of the Human Lung. Academic Press, Inc., New York. 

WEmEL, E. R. 1964. Morphometrics of the lung. Handb. Physiology l(sect. 3):285-307. 

WEmEL, E. R., and D. M. GOMEZ. 1962. Architecture of the human lung. Science (Wash. D. C.). 

137:577-582. 

WEST, J. B. 1979. Respiratory Physiology--The Essentials. Williams and Wilkins, Baltimore, 2nd 

ed. p. 6. 

WILSON, T. A. 1967. Design of the bronchial tree. Nature (Lond.). 213:668-669. 

YOUNG, T. 1809. On the functions of the heart and arteries. Philos. Trans. Royal Soc. Lond. 1-31. 

ZAMm, M. 1976a. Optimality principles in arterial branching.J. Theor. Biol. 62:227-251. 

ZAMm, M. 1976b. The role of shear forces in arterial branching.J. Gen. Physiol. 67:213-222. 

ZAMXR, M. 1977. Shear forces and blood vessel radii in the cardiovascular system.J. Gen. Physiol. 

69:449--461. 

ZAMm, M. 1978. Nonsymmetrical bifurcations in arterial branching.J. Gen. Physiol. 72:837-845. 

ZWEIFACH, B. W. 1974. Quantitative studies of microcirculatory structure and function. I. 

Analysis of pressure distribution in the terminal vascular bed in cat mesentery. Circ. Res. 34: 

843-857. 


