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1. Introduction

The concept of multihop wireless communication is steadily
gaining importance and will be an integral part of future
wireless heterogeneous networking architectures. In this
paper we consider multihop ad hoc and sensor networks,
which operate without the help of any central entity in a
distributed manner. Network nodes can either communicate
via a direct link, if the two nodes are within communication
range, or via multihop, utilizing intermediate nodes as relays.
If the network topology does not allow for a path between
two specific nodes in the network, there will be no way
for these nodes to communicate, regardless whatever clever
routing or data forwarding algorithms are applied. Hence,
connectivity is of major importance in ad hoc or sensor
networks. Optimally, there exists a multihop path between
any node pair in the network. In this case the network is said
to be connected. However, due to the random nature of the
network topology in ad hoc networks, full connectivity is
not always achieved. In this case the degree of connectivity
can be expressed by the path probability, the probability
that any selected pair of nodes in the network can set up
a multihop path between them. For a random network
topology, this probability depends on a number of variables:
the spatial positions of the nodes, the transmit power, the

channel path loss, the transmit and receive antenna gains,
and the required receive power for successful decoding.
If all these parameters are fixed, the connectivity of the
given network cannot be improved. However, if we assume
that some of the described parameters can be adapted, we
can employ this to improve the network connectivity. This
approach is called connectivity shaping. The most obvious
parameter to change is the transmit power. This has been
investigated in the past and has shown interesting gains.
This connectivity shaping approach however inherits some
limitations. Obviously, it would be beneficial to allow each
node to choose an individual transmit power, that is locally
optimal. Unfortunately, this will yield directed links, which
is extremely undesired and will complicate both routing as
well as medium access significantly. Hence, all nodes should
agree on one common transmit power value. This does not
only limit the degree of freedom for connectivity shaping, it
also imposes signaling and protocol requirements, assuring
the network wide use of the same power value.

In this paper, we consider a different approach to
connectivity shaping. We fix the transmit power, but we
adapt the transmit and receive antenna gains. In order to
be able do this, the nodes must be equipped with adaptive
antennas, that is, with an antenna array and adequate signal
processing capabilities. By adapting the complex antenna
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gains appropriately, the main part of the power can be
radiated in a desired direction, while radiation into other
directions is significantly attenuated. Therefore, we can
without increasing the transmit power increase the range
of a node in some directions while decreasing the range in
others. Obviously, this can change the connectivity of the
network significantly. The options for receive and transmit
beamforming are manyfold. Depending on the number of
antennas and the available information (direction of arrival
from other network nodes), several different goals can be
achieved by means of beamforming: range maximization,
interference minimization, SINR maximization, nulling of
specific directions, to name a few. In the context of ad
hoc networks, we are especially interested in beamforming
approaches, which do not require frequent measurements,
estimations, or information updates on a packet basis. We
are rather interested in (semi-)static beamforming for con-
nectivity shaping. Specifically, we have considered maximum
gain phase shift beamforming; that is, the phase shift between
the array antennas is chosen such that the resulting gain in a
desired direction is maximized. Now, given the number of
antennas and the maximum gain beamforming approach,
the question arises, in which direction should any node in
the network steer their maximum power, that is, their main
beam, in order to maximize the path probability?

Several distributed approaches have been investigated. In
the Random Direction Beamforming (RDB) approach, each
node chooses a random direction and it could be shown that
this simple approach already achieves significantly higher
connectivity than omnidirectional networks with the same
transmit power. The Penrose theorem, which graph theo-
retically links the network connectivity with the minimum
node degree in random graphs and in geometric random
graphs, motivated the Maximum Node Degree Beamforming
(MNDB) approach. In this approach, each node performs
beam sweeping, overhearing beacons, and selects the main
beam direction, in which it identifies the maximum number
of direct neighbors. This approach can in fact further
increase the connectivity. The next logical step has been
the Two-Hop Neighbor Degree Beamforming (TNDB), which
maximizes the two-hop neighbors of each node locally, also
based on beam sweeping and the exchange of beacons.
This approach is further improving the connectivity. In
parallel, other distributed beamforming strategies have been
suggested in the literature. Performance comparison among
the distributed approaches can easily be made by computer
simulations. However, one important question remained
unanswered so far: How far away are the distributed
approaches developed up to now compared to the global
optimum? Answering this question is extremely important
in order to assess the quality of distributed algorithms and
in order to evaluate the potential of developing improved
distributed schemes. To this end, we develop a Mixed Integer
Linear Program (MIP) formulation. This is enabled by
applying a simplified yet meaningful smart antenna model,
namely, the brick wall or key hole model. With the given
optimization model, we are able to incorporate different
optimization goals, such that on top of the path probability,
other network properties can be optimized. To enable

fast convergence of the optimization when the number of
network nodes is increased, a column generation approach is
used. With this optimization methodology, we are now able
to identify performance limits of ad hoc networks in terms of
connectivity, which can be applied in order to assess current
and future distributed connectivity shaping approaches.

The reminder of the paper is organized as follows.
We present the previous work in the field of ad hoc
connectivity and Linear Programming in Section 2. Our
underlying network model is introduced in Section 3. Based
on this foundation, we develop our optimization model
comprised of the MIP formulation and problem-specific
solution methods in Section 4. In the following case study in
Section 5, we compare a heuristic method for connectivity
shaping to optimal results generated with our MIP model
and draw our conclusions in Section 6.

2. Related Work

In this section, we discuss related literature regarding ad hoc
network connectivity and linear optimization, respectively.

2.1. Connectivity of Ad Hoc Networks. Connectivity in ad hoc
networks has been studied analytically and by means of sys-
tem simulations. There is a body of research concentrating on
omnidirectional nodes, relating the statistical connectivity
to the node density and transmission range, for example,
[1–4]. Most studies focus on homogeneous spatial node
distributions, however, some investigate inhomogeneous
distributions. The analytical studies on connectivity are
mostly applying a theorem by Penrose [5] in order to
relate the connectivity to the minimum node degree in the
network. Penrose investigated random graph topologies and
was able to prove that, under certain circumstances, the
network becomes connected with high probability when
the minimum node degree in the graph becomes one.
Similarly, he could show that k-connectivity is achieved with
high probability, when the minimum node degree becomes
k [6]. Connectivity shaping by means of power control
has been proposed and investigated, for example, in [7–
11]. Connectivity studies considering adaptive beamforming
antennas are not so common but do exist [12–14]. Adaptive
antennas have been considered for connectivity shaping
in [15, 16] by applying heuristic distributed approaches.
To the best of our knowledge, an approach to determine
connectivity bounds for ad hoc networks with adaptive
antennas by means of optimization has not been provided so
far by other authors. However, parts of the work presented in
this paper have been published before in [17–19].

In contrast to these results, in this paper we consider
additional optimization goals on top of the path probability
maximization, like node degree maximization or minimiza-
tion of the required capacity. Additionally, we provide a
formulation and results for k-connectivity. Furthermore, the
applied methods have been extended (including column
generation) in order to be able to solve the more complex
optimization problems within reasonable computational
time for networks with a significant number of nodes.
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2.2. Linear Optimization. Linear Optimization is a relatively
young field. Although Fourier studied linear inequalities at
the beginning of the 19th century, Linear Programs (LPs)
began to attract widespread attention with the development
of the Simplex Method by Dantzig in 1947 to solve military
planning problems. (A verbose introduction to Linear Pro-
grams and the basic Simplex Algorithms can be found in
[20]. More recent introductory texts are in [21, 22] while [23]
offers a comprehensive overview of the field). A further boost
in popularity was fueled by the availability of well performing
and easy to use LP solvers such as ILOG CPLEX [24].

In addition to pure LP solvers, implementations of
branch-and-bound algorithms to solve LPs with integer
variables, so-called Integer Linear Programs (ILPs) or Mixed
Integer Programs (MIPs), have become available, with ILOG
CPLEX being again a high-performance commercial solution
and SCIP developed by the Zuse Institute Berlin [25] offering
more flexibility for advanced solution methods, like column
generation or branch-and-cut.

The use of LPs in the context of network planning prob-
lems has a long and both scientific as well as commercially
successful history (for an overview of standard network
planning problems, formulations, and solution methods, we
refer to [26]). Outstanding examples are capacity planning
for fixed-networks [27] and radio network planning in GSM
networks [28, 29]. Due to the sheer size of real-life problems
(the necessary number of variables and constraints), the
application of problem-specific solution algorithms such as
column generation [30], Bender’s decomposition [26, page
192ff], and branch-and-cut [31] gained considerable atten-
tion in the optimization community.

One of the most important properties of MIPs is
information about the solution quality; that is, an optimal
solution is a provable optimum in the mathematical sense.
However, if an optimum could not be found (e.g.; due to
time limitations), a solution gap between valid lower and
upper bounds would be provided. This feature makes MIPs
an extremely valuable tool for benchmarking heuristics and
gaining provable knowledge about network properties as we
will show in this paper.

3. Network Model

This section covers our network model which comprises the
spatial node distribution, the wireless channel model, the
link model, and the adaptive antenna model. Additionally,
we briefly discuss connectivity measures and their relevance.

3.1. Node Placement. We consider random network topolo-
gies, generated by placing n nodes randomly in a two-

dimensional system area of size (1000 m)2. We are specifically
interested in inhomogeneous node distributions because
they are more realistic than homogeneous distributions and
also more challenging with respect to connectivity. For
this purpose, we first determine five cluster centers. The
positions of the cluster centers are randomly chosen from a
uniform distribution within the system plane. The n nodes
are then split evenly among the cluster centers. Finally the

node positions are chosen according to a spatial Gaussian
distribution relative to the respective cluster center. The
standard deviation of the Gaussian distribution is 10% of the
area length.

3.2. Wireless Channel. We describe the wireless channel by
the distance dependent path gain between transmit and
receive antennas. We do not consider fast or shadow fading.
Therefore, we assume a modified free space path loss model
with attenuation exponent a. Thus, the received power at the
receiver n2 of a given link ln1,n2 can be expressed as

pr = pt · g
(

γn1

)

· g
(

γn2

)

·

(

λ

4π · dn1,n2

)2(

d0

dn1 ,n2

)a−2

, (1)

where pt is the transmission power, λ is the carrier wave-
length (center frequency of the band used for transmission),
dn1,n2 is the distance between n1 and n2, and d0 is a
reference distance. The factor g(γn1 ) is the antenna gain of the
transmitter n1 in the direction of the receiver n2, and g(γn2 )
is the antenna gain of n2 in the direction of n1.

With the reference distance of d0 = 1 m, the received
signal power pr can now be written as

pr = pt · g
(

γn1

)

· g
(

γn2

)

·

(

λ

4π

)2
(

1

dn1 ,n2

)a

(2)

for readability reasons, we ommit the 1/m multiplications
necessary to remove the unit metres.

Moving to the dB-domain, the received signal power level
becomes

Pr = Pt + G
(

γn1

)

+ G
(

γn2

)

+ 10 · log

(

λ

4π

)2

+ 10 · log
(

d−an1,n2

)

,

(3)

with upper case variables denoting logarithmic scale. For
the numerical results provided in this paper the attenuation
exponent is chosen as a = 3.

3.3. Adaptive Antenna. We assume that each node in our
network is equipped with an array of antennas, which can
be used for adaptive beamforming. Specifically, we consider
Uniform Circular Array (UCA) antenna configurations and
maximum gain phase-shift beamforming; that is, the phase
shift between neighboring antenna elements is chosen such
as to maximize the antenna gain in a given direction. This
type of beamforming applied to a UCA typically produces a
single mainlobe and a number of sidelobes with significantly
lower gains. Figure 1(a) illustrates the antenna gain of such a
phased array with a circular arrangement of eight antenna
elements, as a function of the angle in a two-dimensional
plane. The antenna elements are modeled as ideal isotropic
point radiators.

The resulting beamforming patterns are appropriate for
simulative analysis. However, in this work it is our goal
to optimize the connectivity in our network and for this
purpose we are striving to formulate the problem as a Mixed
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(a) Realistic pattern
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(b) Keyhole pattern

Figure 1: Antenna patterns.

Integer Linear Program (MIP). This would be extremely
difficult for antenna patterns as in Figure 1(a).

Therefore, we require an antenna model, which is simpler
and more abstract but still reflects the main characteristics of
a realistic antenna pattern. A perfect fit to these requirements
is the so-called keyhole model, which is commonly used in
the literature (e.g., by [32]). Within this model, the gain
pattern is described by an angular range with high antenna
gain GM (main lobe), and a low antenna gain GS in the
remaining directions (Figure 1(b)). GS models the side lobes
of a realistic antenna.

It can be argued that the fixed sidelobe level of the
keyhole pattern does not reflect the fact that realistic beam-
patterns have distinct nulls between the lobes. This means
that in a real system communication in this null directions
will hardly be possible, even if the nodes are very close. A way
to acknowledge this within the usage of the keyhole pattern
would be to set the sidelobe gain to zero. However, this seems
to be too extreme since in this case two nodes can only estab-
lish a link, if both main lobes are steered towards each other.
A more moderate approach is to choose the sidelobe gain GS

low enough (however, not zero in linear notation), such that
links will hardly be established between nodes which are both
steering away from each other, even if they are close together.
We choose to apply the latter approach. Throughout this
paper, we assume GM = 10 = 10 dBi within an antenna aper-
ture of α = 30◦, and GS = 0.1 = −10 dBi outside the aper-
ture. (It should be noted that Figure 1(b) depicts an example
pattern with different parameters than used for our inves-
tigations, just for illustration of the typical keyhole shape.)
With those parameters, links between nodes which are both
steering away from each other can only be established if the
nodes are very close and we find from our numerical results
that these cases are very rare. The fact that we are not com-
pletely eliminating this case, however, seems to be justified.
From simulative investigations of connectivity with realistic
beamforming we find that sometimes indeed links are
established through sidelobes on either side (see, e.g., [13]).

3.4. Wireless Link. In order to determine the connectivity in
a given network, we assume that a signal can be decoded,

and thus a link can be established, if the received power Pr

exceeds a receiver-dependent minimum signal power level
Pr,min. Therefore, two nodes will be within communication
range if the following link budget inequation is fulfilled:

0 ≤ Pt + G
(

γn1

)

+ G
(

γn2

)

− PL,n1 ,n2 − Pr,min. (4)

In (4) we used the logarithmic path loss, which is defined as

PL,n1,n2 = −10 · log

(

λ

4π

)2

− 10 · log
(

d−an1,n2

)

. (5)

With (4) and (5) we can now express the maximum
communication range dr for given angles γn1 , γn2 and
respective antenna gains G(γn1 ), G(γn2 ) as

dr = 10(1/10·a)·(−Pr,min+Pt+G(γn1 )+G(γn2 )+10·log (λ/4π)2). (6)

Using this expression, we calculate the largest possible
distance dmax of two nodes, which are still able to commu-
nicate (both keyholes pointing to each other)

dmax = 101/10·a·(−Pr,min+Pt+2GM+10·log (λ/4π)2), (7)

whereas two nodes being not farther away than dmin will be
always able to communicate according to our keyhole model

dmin = 101/10·a·(−Pr,min+Pt+2GS+10·log (λ/4π)2). (8)

In our network model, we assume that all nodes apply the
same antenna pattern for both transmission and reception.
Together with the channel model, this yields symmetric, that
is, bidirectional links in our system.

3.5. Connectivity. The focus of our work is on the connectiv-
ity of the network. The connectivity is an important property
because it describes the reachability of the nodes in the
network. A classical communication network will always be
planned such that each node pair can communicate, that is,
is connected. Ad hoc networks cannot be planned and there-
fore full connectivity cannot be guaranteed; consequently
some or many node pairs cannot communicate. Obviously
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we would like to minimize the number of node pairs that are
unable to communicate by means of connectivity shaping.
An appropriate measure for the connectivity of a given
network is the path probability Ppath. It is defined as the
probability that any randomly chosen node pair in the
network can establish a multihop path between them. In a
network of N nodes the path probability is computed as

Ppath =
2npath

N(N − 1)
, (9)

where npath is the number of node pairs in the network that
can establish a multihop path between them. The network is
connected if and only if Ppath = 1. The goal of connectivity
shaping is to maximize Ppath. Once we have shaped the
connectivity of our network, common MAC and routing
protocols can be applied, operating on top of the given
connectivity graph. Since we are dealing with connectivity
shaping only, interference does not play a role in our model.
Parallel transmissions generating interference in the network
will depend on traffic demands at a certain time instant
and the respective protocols for MAC and routing. However,
regardless which type of communication protocols will be
applied, a maximized path probability will always be desired,
as discussed above.

However, often it will be possible to connect the network
(Ppath = 1) with many different realizations of antenna
directions. In these cases we have the freedom to optimize
additional objectives on top. Specifically, we will discuss
three additional properties which will be incorporated in our
optimization model as described in Section 4:

(a) maximal average node degree,

(b) minimal average node degree,

(c) minimal average path length (in terms of hop
counts).

These objectives are not as generally useful as the path
probability. Therefore, we will discuss briefly under which
traffic assumptions which of them can be beneficial. (a)
Maximal average node degree: in a low load scenario with
large packet interarrival times, interference will not be a
major issue, since parallel transmissions in closeby nodes are
unlikely. In this case high node degrees can help against path
breaks. Additionally, high node degrees can help broadcast
messages to be flooded through the network with fewer
steps and thus faster. (b) Minimal average node degree:
in a high load scenario interference plays a major role.
Each transmission will cause major interference at each
direct neighbor, amounting to high interference levels at
each node. Under this assumption, a lower node degree
seems to be beneficial. (c) Minimal average path length: in
a homogeneous traffic scenario, in which we have traffic
demand for each node pair with a similar likelyhood,
minimizing the average number of hops will be beneficial
for end-to-end delay. It also minimizes the average number
of required channel uses (necessity to access the channel),
which will help to reduce the number of failed MAC attempts
due to collisions on the medium. The minimal average path

y

x

γn2

Node n2
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γn1

Node n1
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Figure 2: Example configuration.

length is achieved within the optimization framework by
minimizing the used capacity, which will be introduced as
part of the optimization model in Section 4.

4. Optimization Model

4.1. Link Indication. Inspecting (3) and (4) closely shows
that the existence of a link between two nodes depends
on the distance dn1 ,n2 between them and their antenna
orientations γn1 and γn2 in relation to the angle βn1,n2 between
them. Figure 2 shows an example configuration. We have to
distinguish three cases.

4.1.1. Always in Range. If two nodes are so close that,
regardless of the orientation of their main lobe, a link
between them will exist, we can set ln1,n2 = 1 without further
computation (dn1,n2 < dmin). This will be the case if and only
if dn1,n2 is so small that even the low antenna gain GS at both
nodes is sufficient to compensate for the path loss between
them.

4.1.2. Out of Range. The other extreme is two nodes being so
far apart that, not even by pointing their main lobes at each
other and thus amplifying the signal with the highest possible
gain, the signal power level at the receiver Pr will exceed Pr,min

(dn1,n2 > dmax). In this case, we can set the according link
variables to zero or simply drop them completely from our
problem formulation.

4.1.3. In Range in Case of Proper Steering. The most impor-
tant case to take into consideration for our optimization
problem will occur, if the existence of a link depends on the
steering γ of the main lobes of the two nodes (dmin ≤ dn1 ,n2 ≤

dmax). Given the aperture α, the locations of the two nodes,
and the angle βn1,n2 between them, we have to distinguish
three cases for which the signal is amplified by the high gain
GM at node n1 due to the angle discontinuity at 0 and 2π.
Therefore, G(γn1 ) = GM holds, if and only if

(i) for α/2 ≤ βn1,n2 ≤ 2π − α/2,

γn1 ≥ βn1,n2 −
α

2

∧

γn1 ≤ βn1,n2 +
α

2
, (10)
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(ii) for 2π − α/2 ≤ βn1,n2 ≤ 2π,

γn1 ≥ βn1,n2 −
α

2

∨

γn1 ≤ βn1,n2 − 2π +
α

2
, (11)

(iii) for 0 ≤ βn1,n2 ≤ α/2,

γn1 ≥ βn1,n2 −
α

2
+ 2π

∨

γn1 ≤ βn1,n2 +
α

2
. (12)

Using the first case (10) as an example, we will show in
the following how to set up a set of inequalities to formulate a
conditional link budget with binary indicator variables which
finally depend on the antenna orientation γ. For notational
convenience, we construct a graph G(N , E), where an edge
e ∈ E exists for every possible link between any node-pair
e := {n1,n2} ⊂ N (i.e., the first and the last case). For
the optimization problem, we choose binary link variables
le to indicate whether a link between n1 and n2 is established
(le = 1) or not (le = 0). Since we assume symmetric antenna
configurations (i.e., sending and receiving lobe cannot be
steered individually), it is sufficient to consider undirected
edges.

First, we introduce two continuous variables a′n1 ,n2
∈] −

βn1,n2 + α/2 + 1, 2π − βn1,n2 + α/2 + 1] and a′′n1 ,n2
∈] − 2π +

βn1,n2 +α/2+1,βn1,n2 +α/2+1] for the first and second part of
(10), respectively. Using the following equalities, a′n1,n2

≥ 1,
indicates that we meet the first part of (10), whereas a′′n1 ,n2

≥

1 indicates the same for the second part

a′n1 ,n2
= γn1 − βn1,n2 +

α

2
+ 1,

a′′n1 ,n2
= −γn1 + βn1,n2 +

α

2
+ 1.

(13)

a′n1 ,n2
and a′′n1 ,n2

will then be used to set two binary
variables b′n1 ,n2

and b′′n1 ,n2
to zero, if a′n1 ,n2

≥ 1 and a′′n1 ,n2
≥ 1,

respectively. This is achieved by the following constraints.
Obviously this could have been done in one single step
without the use of the variables a′n1,n2

and a′′n1,n2
. We will

use these variables as a notational convenience to influence
the link setup. The performance penalty for our MIP is
negligible, because even simple presolvers are able to change
the necessary expressions:

(

−βn1,n2 +
α

2

)

· b′n1,n2
− a′n1 ,n2

+ 1 ≤ 0,

(

−2π + βn1,n2 +
α

2

)

· b′′n1,n2
− a′′n1 ,n2

+ 1 ≤ 0.

(14)

Equation (10) requires both of its inequalities to be
fulfilled at the same time. If this is the case, the main lobe
of n1 will point into the direction of n2, which we once
more indicate by a binary variable bn1,n2 . It will become 1 in
the following constraint, if and only if both inequalities are
fulfilled, that is, b′n1,n2

= b′′n1,n2
= 0, and zero otherwise

bn1,n2 ≤
1

2
·
(

1− b′n1 ,n2

)

+
1

2
·
(

1− b′′n1,n2

)

. (15)

In a similar way, we formulate constraints for the
inequalities (11) and (12) which are stated in the appendix.
Finally, this allows for a conditional formulation of the link
budget (4):

(

Pt − Pr,min − PL,n1,n2 + 2 ·GS

)

le

+ bn1 ,n2 · (GM −GS) + bn2,n1 · (GM −GS) ≥ 0.
(16)

This constraint describes the possible configurations of a
node pair by either taking the high gain GM or the low gain
GS at the nodes into account, depending on the orientation
of their main lobes. Consequently, the binary link indicator
variable le for a connection between n1 and n2 can only be
set to 1, if the link budget is sufficient and has to be zero
otherwise.

Note that in the end, the value of the le’s and subsequently
the associated indicator variables determine the steering γ of
the main beam of the nodes. Our model was developed in a
bottom-up manner here. In contrast, during the upcoming
optimization, the values of γ will be determined top-down,
by requiring certain links to be established in the solution.

4.2. Optimization Goals. In this section, we will formulate
a variety of optimization goals on top of the previously
described network model.

4.2.1. Node Degree. One of the first applications of the
optimization model developed above was a benchmark
for the MNDB heuristic [17]. As this heuristic tries to
maximize the node degree, our first cost function is a simple
maximization of the number of links

max
∑

e∈E

le. (17)

4.2.2. Connectivity. One of the most obvious questions
arising from a given scenario as described in Section 3.1
is whether a steering configuration of the beamforming
antennas exists, so that the network is connected. Despite
the simplicity of the question, this cannot be answered via
readily available algorithms. Furthermore, in cases where full
connectivity is not possible, the highest path probability is of
similar interest.

In order to answer this question, we introduce a demand
set D with a demand Dd = 1, for all d ∈ D for every node
pair {ns,nt} ⊂ N (i.e., a fully meshed demand matrix).
Using a node-link flow-formulation, we use flow-variables
f dn1,n2

∈ R
+
0 denoting the flow for a given demand d on a

link between nodes n1 and n2. Quite obviously, this very link
has to be existing; that is, the link-indicator value le from the
previous section has to be 1

∑

d∈D

f dn1,n2
≤ le · |D|, ∀{n1,n2} ⊂ N . (18)
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A demand d will only be satisfied, if and only if the sum of
the outgoing flows from the source node of the demand ns is
as large as the demand Dd:

∑

n2∈Nns

f dns,n2
= Dd, ∀d ∈D , (19a)

where Nns represents the set of adjacent nodes of ns.
Similarly, the sum of all incoming flows for the demand d
at the target node nt has to be as large as Dd as well

∑

n1∈Nnt

f dn1,nt = Dd, ∀d ∈D . (19b)

In any other (intermediate) node n, all incoming flows have
to be as large as the outgoing flows for this demand (flow
conservation), which follows the philosophy of Kirchhoff ’s
current law, namely,

∑

n1∈Nn

f dn1,n −
∑

n2∈Nn

f dn,n2
= 0, ∀n ∈ N \ {ns,nt},∀d ∈D .

(19c)

It is worth noting that the constraints above can only
be fulfilled if and only if the network can be connected.
Since this can be by no means guaranteed, we keep the
set of constraints feasible, by adding a so-called dummy
variable δd ∈ R

+
0 to the sink and source constraints, which

consequently are transformed to

∑

n2∈Nns

f dns,n2
+ δd = Dd, ∀d ∈D , (20a)

∑

n1∈Nnt

f dn1,nt + δd = Dd, ∀d ∈D . (20b)

No changes to the flow conservation constraint (19c) are
necessary, because zero-valued flow variables will always
meet this constraint. Our objective is to satisfy as many
demands as possible without using the dummy variables δd

min
∑

d∈D

δd . (21)

Solving the presented MIP now causes the MIP solver to
minimize the number of dummy variables with nonzero
values, that is, by using the flow-variables. However, the flow-
variables f dn1,n2

can be used if and only if the associated link-
indicator variables le are set to 1, which in return requires a
suitable antenna configuration.

An interesting possibility of this formulation is, to gain
a k-connected steering configuration, by imposing an upper
limit of 1 to the flow-variables ( f dn1,n2

∈ [0; 1]) and increasing
the demand per node pair Dd to k.

While the presented formulation will gain the desired
result (a network with the highest possible path probability),
we are able to improve the performance (i.e., solution time
and memory consumption) of the formulation notably by
reducing the number of variables and constraints. For our

purposes it is not necessary to differentiate between demands
originating from one source node ns, hence we simplify our
demand set D , by aggregating the demands for one source
ns, that is, we have a d ∈ D ′ for every node ns ∈ N and
Dd = |N | − 1. It is worth noting however, that it is not
sufficient to generate demands from one single node to all
remaining nodes, since this one node could reside within an
island. In this situation the resulting antenna configuration
would only affect nodes reachable within the same island.
With this modification we only need one source constraint
per source node, namely,

∑

n2∈Nns

f dns,n2
+ δd = Dd, ∀d ∈D . (22a)

However, since all nodes in N are also sinks, the flow
conservation and target node constraint are merged to

∑

n1∈Nn

f dn1,n −
∑

n2∈Nn

f dn,n2
+ δd = 1, ∀n ∈ N \ {ns},∀d ∈D ,

(22b)

which means that a demand of 1 has to end at every node
(with the exception of ns) for every demand d.

Connectivity and Auxiliary Constraints. Close inspection of
the computational results of the MIP formulated above
reveals that in many of our scenarios, a larger number of con-
figurations exist, which share the same degree of connectiv-
ity. Consequently, we can formulate additional optimization
goals to further differentiate among these solutions.

(a) Used Capacity Minimization. We introduce a new
variable un1,n2 ∈ R

+
0 which will measure the capacity

necessary on a link between n1 and n2, if we add the following
constraint:

∑

d∈D

f dn1,n2
≤ un1,n2 , ∀{n1,n2} ⊂ N (23)

to our MIP. Extending the objective function by the total used
capacity and weighting the dummy variables with C

min

⎛

⎝C ·
∑

d∈D

δd +
∑

{n1,n2}⊂N

un1,n2

⎞

⎠ (24)

will minimize the number of used dummy variables (i.e.,
maximizing the path probability) and then minimize the
used capacity in the network if C is chosen arbitrarily high.
An obvious minimal value of C would be, for example, the
number of links in the network; that is, using a capacity of
1 on a dummy variable would be as expensive as using the
same capacity on every link in the network. Since all our
established links offer sufficient capacity to accommodate all
demands, demands will flow along the shortest possible path
to consume as little capacity as possible (i.e., 1 on every edge
their path traverses). Consequently, we minimize the average
shortest path length as discussed in Section 3.5. Naturally,
a solution of this MIP will also be a valid solution for the
previous “pure” model.



8 EURASIP Journal on Wireless Communications and Networking

(b) Number of Links. Depending on the specific scenario
Section 3.5, it could be desirable to either maximize the
number of links in order to ensure a densely meshed network
or to minimize the number of links (to reduce interference),
which can be achieved by another extension of the objective
function

min

⎛

⎝C ·
∑

d∈D

δd + B ·
∑

e⊂E

le

⎞

⎠. (25)

Again, we choose C arbitrarily high, so that the path
probability remains the primary objective. Setting B to
−1 will maximize the number of links while ensuring
connectivity. In contrast, setting B = 1, the MIP solver
will minimize the number of active links. Due to the use of
inequalities hower, this is not sufficient to force the solver to
steer keyholes away to prevent the creation of links.

4.3. Large-Scale Optimization Methods. During the addition
of the auxiliary constraints however, performance problems
of the node-link formulation became apparent. The large
number of variables and constraints even in the more
compact formulation in combination with the auxiliary con-
straints and relatively weak LP bounds makes the problem
very hard to solve; in some cases we were not able to
solve the 30-node scenario up to a reasonable optimization
gap (e.g., 5%) within two days. In order to overcome this
limitation we changed our formulation to the so-called path-
approach which allows the use of problem-specific, large-
scale optimization methods, such as in our case column
generation.

4.3.1. Path-Flow Formulations. Instead of considering the
node-link flows, we now introduce the notion of path-flows
on top of our network model. A path-flow variable fd,p ∈ R

+
0

denotes the flow (i.e., amount of traffic) for a demand d
along a path p. Satisfying a demand d therefore requires the
flow along all paths p ∈ Pd to be at least as large as the
demand Dd

[πd]
∑

p∈Pd

fd,p + δd ≥ Dd, ∀d ∈D . (26)

The demand set D is created similarly to the previous sec-
tion, a fully-meshed demand set with Dd = 1, for all d ∈ D .
The used capacity constraint of paragraph Section 4.2.2(a)
can be rewritten accordingly to

[σe]
∑

d∈D

∑

p∈Pd :
e∈p

fd,p ≤ ue, ∀e ∈ E . (27)

Again, in order to be usable for a path using a link from node
n1 to n2, the corresponding link indicator variable le has to
be 1

ue ≤D · le, ∀e ∈ E . (28)

The drawback of this approach is quite obvious. In order
to guarantee optimality, we have to precompute all possible
paths and create a path-flow variable fd,p, which generates a
huge number of variables.

4.3.2. Column Generation. Analysis of existing solutions
however reveals that only a small fraction of all possible
paths will be used in the solution; that is, only a very
limited number of path-flow variables have nonzero values.
As we can leave out zero vectors from our solution space,
without losing optimality, we could start our optimization
with exactly this (smaller) set of variables and would still
obtain the same solution.

The mathematical methodology to exploit this situa-
tion appeared implicitly in the Dantzig-Wolfe-Decomposition
[33]. This principle of (delayed) column generation. In
the standard matrix-vector notation of MIPs, variables
correspond to columns in the coefficient matrix, hence the
name was explicitly applied in [34, 35] for the cutting-stock-
problem. In cutting-stock problems, a single stock (paper,
fabric, etc) which comes in one width has to be cut according
to customer specifications with minimal waste.

In column generation the path-flow formulation above
with all possible paths is called Master Problem (MP).
We start our optimization with a restricted master problem
(RMP), with a very limited number of path variables, the
only requirement being, that the MIP is feasible (which in
our case is true without any of the path-flow variables due
to the dummy variables). Our task is now to find variables,
or in other words paths, which will improve the current
solution, that is, gain a “better” solution once we resolve the
program with the new additional variables. We solve this so-
called pricing problem by inspection of the dual system. The
dual system can be easily constructed by using Lagrangean
Relaxation [22, page 140ff]. For this, we associated every
primal constraint with exactly one variable (denoted in
angular brackets in (26) and (27)). Since every variable in the
primal system (the RMP denoted above) is associated with
exactly one constraint in the dual, we acquire the following
constraints for the variables in question (namely, fd,p):

πd −
∑

e∈p

σe ≤ 0, ∀d ∈D , ∀p ∈ Pd . (29)

Now every primal variable not (yet) in the solution base,
which would improve the solution, will violate this dual
constraint. We can easily acquire the value of the dual
variables in most modern LP solvers without any additional
overhead, because they employ a refinement of the original
simplex algorithm, the dual-simplex algorithm. Hence our
task of finding improving variables consists of finding those
paths for every demand d, which would violate the previous
constraint. Due to the structure of our MP, both πd ∈ R

+
0 as

well as σe ∈ R
+
0 . With this, we can view our task as a shortest

path problem: find the shortest (cheapest) path with link-
weights σe. This problem can be solved in polynomial time by
Dijkstra’s algorithm [36]. If the total cost is smaller than πd,
this path will improve the solution, otherwise no improving
variables for demand d exist. After this we will resolve the
new RMP (with additional paths) and repeat the path search
until no improving variables can be found any more, which
means that we have found the optimal solution.

It is important to note however that our problem
contains integer variables which implies that we have to
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(a) MNDB (b) Maximum sum node degree

Figure 3: 40-node example network.

run the column generation algorithm in every node of the
branch-and-bound tree [37], stressing the importance of an
effective pricing algorithm.

5. Case Study

In the following, solutions from the optimization will be
depicted and an evaluation of the computational perfor-
mance will be presented. The previously described model
was implemented using SCIP 1.1 [25] with CPLEX 9.13 [24]
as LP-solver backend. The same tools were employed for a
flow-based approach [18] which was used as reference for the
performance evaluation. We will discuss some distinct results
for specific scenarios first. This can give some insight into the
different properties of the discussed optimization objectives.
Subsequently, we present numerical results on the path prob-
ability averaged over 100 random scenarios. In both cases
we compare the results of the optimization to a distributed
heuristic, namely, Maximum Node Degree Beamforming [15].
Three speciffic node scenarios are considered which differ
in the number of nodes: n = {30, 40, 50}. Each scenario is
randomly generated as described in Section 3.1.

5.1. Node Degree Maximization. Let us begin with the max-
imization of the sum node degree. The motivation for the
sum node degree optimization was to find a bound which can
be used to assess a specific heuristic beamforming approach,
namely, Maximum Node Degree Beamforming (MNDB).
The MNDB algorithm has been proposed in [15] and was
developed to allow for connectivity shaping in a distributed
decentralized manner. In MNDB, each network node starts
by performing beam sweeping, determining the number
of neighbors in each direction by means of overhearing
periodical beacons. The sweeping is performed in discrete
steps of γsweep degrees. Once the full 360◦ have been sampled,
the node chooses the beamdirection, in which the maximum
number of neighbors is seen. Obviously, MNDB attempts to
maximize the local node degree. The idea behind MNDB was

clearly to make use of the connection between the minimum
node degree and the connectivity which could be proven for
geometric and pure random graphs by Penrose in [5, 6].
For our 40-node example network, the result of MNDB is
depicted in Figure 3(a). As a comparison, the network with
maximized sum node degree is shown in Figure 3(b). It
can be seen that even though the MNDB already provides
good connectivity. In [15] it could be shown that MNDB
in fact significantly improves the connectivity as compared
to Random Direction Beamforming (RDB) and even more
compared to omnidirectional antennas. The optimized net-
work shows better connectivity. However, looking at the
resulting connectivity in both cases in Figure 3, we observe
disconnected clusters, which obviously is unfavorable.

5.2. Path Probability Maximization. While the node degree
maximization is specifically interesting to assess MNDB,
we should bear in mind that performance measures like
connectivity or path probability are much more important
for the functionality of an ad hoc network. Therefore, we
are interested in optimized results for such properties, in
order to be able to assess the performance of distributed
realistic algorithms. The most important measure is the
connectedness of the network. If the network is connected, all
participants can communicate with each other. If a network,
due to its node distribution cannot be fully connected,
we prefer the path probability to be as high as possible.
Therefore we choose path probability maximization to be
our prime optimization criterion. For networks with a
relatively high node density, many solutions exist that yield
a connected network. This leaves room to include additional
optimization goals that can further improve the network
performance in practice. (Note that the results obtained from
the optimization with additional criteria are valid for pure
path probability optimization also.)

Figure 4(a) depicts an optimized result for the 40-node
scenario which was achieved by path probability maximiza-
tion. It can be seen that the resulting network is connected.
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(b) Path probability optimization and node degree maximiza-
tion, davg = 3.80

Figure 4: 40-node example network.
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Figure 5: 50-node example network.

5.2.1. Auxiliary Objectives. (a) Node Degree Maximization.
The depicted solution in Figure 4(a), however, is just one of
many solutions yielding full connectivity. A different solution
achieving a connected network is shown in Figure 4(b).
This network configuration is obtained, when in addition
to the prime optimization goal of path probability maxi-
mization, the additional goal of node degree maximization
is considered in the optimization model as described in
Section 4.2.2(b). Note that node degree maximization comes
at the expense of higher interference, but results in a network,
which is more robust against node failures inside the clusters.

(b) Capacity Minimization. Another desirable objective
in order to improve network throughput is the minimization
of packet collision probability on the MAC level. This

can be achieved by minimizing the used capacity in our
optimization model following Section 4.2.2(a), which yields
a connected network with minimum total hop count. This
minimizes the number of channel access attempts and
thus the MAC level collision probability. Figures 5(a) and
5(b) show the optimization results for a 50-node example
network, comparing pure path probability maximization to
used capacity minimization as additional objective.

(c) 2-Connected Network. Finally, we present an opti-
mization result for the 30-node network scenario. In this case
the optimization objective is to achieve two edge-disjoint
paths between any node pair in the network. As can be seen
from Figure 6, this yields a 2-connected network, increasing
the robustness.
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Figure 6: Path probability optimization for 2-connected network.
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Figure 7: Path probability optimization versus MNDB.

5.3. Statistical Analysis. In addition to the specific examples
discussed previously, we have also obtained numerical results
for 100 different random scenarios, each with 30 nodes.
We discuss the results with respect to the path probability,
our prime objective. Figure 7 compares the path probability
averaged over all scenarios obtained with MNDB and with
optimization over the transmit power, which is varied
between 16 dBm and 20 dBm in steps of 1 dBm.

In both cases the obtained path probability grows with
increased transmit power, as expected. It can also be seen
that the MNDB approach on average gives results which
are far from the optimum. This is due to its limitation to
local information and local measures (local node degree).
Specifically in these relatively sparse scenarios with only 30
nodes, often clusters can only be connected if nodes from
both clusters cooperate and steer their beams towards each
other, as MNDB is not able to support systematically.
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Figure 8: Path probability optimization versus MNDB per scenario,
Pt = 20 dBm.
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Figure 9: Path probability optimization versus MNDB per scenario,
Pt = 18 dBm.

Figures 8 and 9 depict the path probability for both,
optimization and MNDB for each scenario for the case of
transmit powers of Pt = 20 dBm and Pt = 18 dBm, respec-
tively. It can be observed that the achievable path probability
heavily depends on the specific scenario realization. Also
the gap between MNDB and the optimum varies strongly
between the different scenarios. In fact, in some cases MNDB
is able to generate a connected network, hence achieving the
optimum.

From the 100 investigated random scenarios, we also
generated CDF plots for the path probability. These plots
additionally contain the results in terms of path probabil-
ity in case the optimization model is used to maximize
the average node degree, only. Inspecting Figure 10 (Pt =

20 dBm) and Figure 11 (Pt = 18 dBm), we observe a huge
gap between path probability optimization and MNDB,
encouraging additional research efforts for improved local
heuristics. Even the optimization of the average node degree
achieves a better path probability with respect to the MNDB
heuristic. However, the performance gap between MNDB
and average node degree optimization is relatively small.
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Table 1: Performance data.

30 nodes 40 nodes 50 nodes

Path probability maximization Flow approach Path approach Flow approach Path approach Flow approach Path approach

Solving time 58 s > 1440 min 2 min 19 s > 1440 min 8 min 32 s 101 min 24 s

LP iterations 161 000 > 3 060 000 188 000 > 25 400 000 110 000 352 000

Maximum memory usage 89 MB > 885 MB 143 MB > 1670 MB 497 MB 158 MB

Node degree maximization

Solving time 69 min 19 s 21 min 37 s > 1440 min 69 min 34 s > 1440 min 775 min 30 s

LP iterations 205 000 000 732 000 > 217 000 000 944 000 > 13 700 000 2 630 000

Maximum memory usage 171 MB 107 MB > 9800 MB 182 MB > 522 MB 296 MB

Used capacity minimization

Solving time n/a > 1440 min n/a 353 min 37 s n/a 399 min 41 s

LP iterations n/a > 81 300 000 n/a 12 400 000 n/a 21 700 000

Maximum memory usage n/a > 453 MB n/a 336 MB n/a 287 MB
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Figure 10: CDF of path probability, comparison of MNDB,
optimization of path probability, and optimization of average node
degree, Pt = 20 dBm.

From this we conclude that aiming at maximizing node
degrees—even if done optimally and though motivated by
Penrose’s theorem as discussed above—will not be sufficient
in realistic networks if we want to achieve good overall
connectivity.

With the presented results, we have shown how we can
achieve performance bounds for many different connectivity
properties of ad hoc networks. These can serve as a means
to assess distributed connectivity shaping algorithms with
respect to various performance goals. The gap between the
optimization and available or novel heuristics can indicate
how much room there remains for improved heuristics. Our
results show that in fact there is great potential for advanced
heuristics. On the other hand, by inspecting and analysing
optimized results for different networks, the optimization
results can also be of help in developing better heuristics in
the future.

5.4. Computational Performance of the Optimization. An
evaluation of the computational complexity, in particular
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Figure 11: CDF of path probability, comparison of MNDB,
optimization of path probability, and optimization of average node
degree, Pt = 18 dBm.

execution time and memory usage in Table 1 shows that for
the path probability maximization the classic flow approach
(as presented in [18]) performs better than a path approach
with column generation. The latter was at its most impressive
when it came to additional node degree maximization or
used capacity minimization. Here, it outperforms the flow
approach by far. The 40 nodes and 50 nodes example
networks could not be solved to optimality with the flow
approach within a time limit of 48 hours when additional
objectives were applied. Note that we did not systematically
evaluate the performance of the flow approach for the
used capacity optimization, as tests did not perform very
promising. Performance data was collected on a dual Intel
Xeon X5260 machine with 16 GB of RAM.

6. Conclusion

We have provided an MIP formulation for the optimization
of an array of connectivity criteria for ad hoc networks
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with adaptive antennas, by choosing the optimal beamdi-
rections. Providing results for a sample of ad hoc network
scenarios, we could show how much potential still remains
for connectivity and performance improvements of ad hoc
networks with adaptive antennas. We believe that these
performance bounds can be very useful for the research
community interested in further improving the merits of
adaptive antennas in ad hoc networking. By applying a
column generation approach, the computation time for
finding the optimum could be significantly reduced, such
that the optimization of larger networks can now be achieved
in a reasonable amount of time, allowing for fast evaluation
of many different network scenarios and objectives. Future
work will focus on finding optimal beampatterns for ad hoc
connectivity.

Appendix

Complete Formulation

In this section we provide the complete formulation up to
the link indicator variables le. An edge e ∈ E exists for those
node-pairs {n1,n2} ⊂ N , where the distance dn1 ,n2 is smaller
than dmax

(i) ∀e = {n1,n2} ∈ E : dmin ≤ dn1 ,n2 ≤ dmax

∧

α/2 ≤
βn1,n2 ≤ 2π − α/2,

a′n1 ,n2
= −βn1,n2 +

α

2
+ 1 + γn1 ,

a′′n1,n2
= βn1,n2 +

α

2
+ 1− γn1 ,

(

−βn1,n2 +
α

2

)

· b′n1,n2
− a′n1,n2

+ 1 ≤ 0,

(

−2π + βn1,n2 +
α

2

)

· b′′n1 ,n2
− a′′n1 ,n2

+ 1 ≤ 0,

1

2
·
(

1− b′n1 ,n2

)

+
1

2
·
(

1− b′′n1,n2

)

− bn1,n2 ≥ 0,

(A.1)

(ii) ∀e = {n1,n2} ∈ E : dmin ≤ dn1 ,n2 ≤ dmax

∧

2π −
α/2 ≤ βn1,n2 ≤ 2π,

c′n1,n2
= −βn1,n2 +

α

2
+ 1 + γn1 ,

c′′n1,n2
= βn1,n2 − 2π +

α

2
+ 1− γn1 ,

(

−βn1,n2 +
α

2

)

· b′n1,n2
− c′n1 ,n2

+ 1 ≤ 0,

(

−4π + βn1,n2 +
α

2

)

· b′′n1,n2
− c′′n1,n2

+ 1 ≤ 0,

1− b′n1,n2
+ 1− b′′n1,n2

− bn1,n2 ≥ 0,

(A.2)

(iii) ∀e = {n1,n2} ∈ E : dmin ≤ dn1,n2 ≤ dmax

∧

0 ≤
βn1,n2 ≤ α/2,

d′n1 ,n2
= −βn1,n2 +

α

2
− 2π + 1 + γn1 ,

d′′n1 ,n2
= βn1,n2 +

α

2
+ 1− γn1 ,

(

−2π − βn1,n2 −
α

2

)

· b′n1,n2
− d′n1,n2

+ 1 ≤ 0,

(

−2π + βn1,n2 +
α

2

)

· b′′n1,n2
− d′′n1 ,n2

+ 1 ≤ 0,

1− b′n1,n2
+ 1− b′′n1,n2

− bn1,n2 ≥ 0,

(A.3)

(iv) ∀e ∈ E : dmin ≤ dn1 ,n2 ≤ dmax,

(

Pt − Pr,min − PL,n1 ,n2 + 2 ·GS

)

le

+ bn1,n2 · (GM −GS) + bn2,n1 · (GM −GS) ≥ 0,
(A.4)

(v) ∀e = {n1,n2} ∈ E : dn1,n2 ≤ dmin,

le = 1, (A.5)

with

γn1 ∈ [0, 2π] ⊂ R,

fd,p, δd ∈ [0, 1] ⊂ R,

ue ∈ [0,H] ⊂ R,

le, bn1,n2 , b′n1,n2
, b′′n1,n2

∈ [0, 1] ⊂ N,

a′n1,n2
∈

[

−βn1,n2 +
α

2
+ 1,−βn1,n2 +

α

2
+ 1 + 2π

]

,

a′′n1 ,n2
∈

[

βn1,n2 +
α

2
+ 1− 2π,βn1,n2 +

α

2
+ 1

]

⊂ R,

c′n1,n2
∈

[

−βn1,n2 +
α

2
+ 1,−βn1,n2 +

α

2
+ 1 + 2π

]

⊂ R,

c′′n1,n2
∈

[

−4π + βn1,n2 +
α

2
+ 1,βn1,n2 − 2π +

α

2
+ 1

]

⊂ R,

d′n1 ,n2
∈

[

−βn1,n2 +
α

2
− 2π + 1,−βn1,n2 +

α

2
+ 1

]

⊂ R,

d′′n1 ,n2
∈

[

βn1,n2 +
α

2
− 2π + 1,βn1,n2 +

α

2
+ 1

]

⊂ R.

(A.6)
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[21] V. Chvátal, Linear Programming, W. H. Freeman, New York,
NY, USA, 1983.

[22] D. Bertsimas and J. N. Tsitsiklis, Introduction to Linear Opti-
mization, Athena Scientific Optimization and Computation
Series, Athena Scientific, Cambridge, Mass, USA, 1st edition,
1997.

[23] G. L. Nemhauser and L. A. Wolsey, Integer and Combinatorial
Optimisation, John Wiley & Sons, Atlanta, Ga, USA, 1st
edition, 1998.

[24] “ILOG CPLEX 9.0 User’s Manual,” ILOG, S. A., 2003.

[25] T. Achterberg, Constraint integer programming, Ph.D. disser-
tation, Technische Universität Berlin, Berlin, Germany, 2007,
http://opus.kobv.de/tuberlin/volltexte/2007/1611.

[26] M. Pioro and D. Mehdi, Routing, Flow, and Capacity Design
in Communication and Computer Networks, Elsevier, Amster-
dam, The Netherlands, 2004.

[27] K. Ambs, S. Cwilich, M. Deng, D. J. Houck, D. F. Lynch, and D.
Yan, “Optimizing restoration capacity in the AT&T network,”
Interfaces, vol. 30, no. 1, pp. 26–44, 2000.

[28] U. Türke, Efficient methods for W-CDMA radio network
planning and optimization, Ph.D. dissertation, 2007.

[29] H.-F. Geerdes, UMTS radio network planning: mastering
cell coupling for capacity optimization, Ph.D. dissertation,
Technische Universität Berlin, Berlin, Germany, 2008.

[30] C. Gruber and M. Kiese, “Optimization of resilient networks
with column generation,” in Proceedings of the 8th INFORMS
Telecommunications Conference, Dallas, Tex, USA, March
2006.

[31] A. M. C. A. Koster, S. Orlowski, C. Raack, G. Baier, and T.
Engel, “Single-layer cuts for multi-layer network design prob-
lems,” in Telecommunications Modeling, Policy, and Technology,
vol. 44, chapter 1, pp. 1–23, Springer, College Park, Md, USA,
February 2008.

[32] R. Ramanathan, “On the performance of ad hoc networks
with beamforming antennas,” in Proceedings of the 2nd ACM
International Symposium on Mobile Ad Hoc Networking and
Computing (MobiHoc ’01), pp. 95–105, New York, NY, USA,
2001.



EURASIP Journal on Wireless Communications and Networking 15

[33] G. B. Dantzig and P. Wolfe, “Decomposition principle for
linear programs,” Operations Research, vol. 8, no. 1, pp. 101–
111, 1960.

[34] P. C. Gilmore and R. E. Gomory, “A linear programming
approach to the cutting-stock problem,” Operations Research,
vol. 9, no. 6, pp. 849–859, 1963.

[35] P. C. Gilmore and R. E. Gomory, “A linear programming
approach to the cutting stock problem part II,” Operations
Research, vol. 11, no. 6, pp. 863–888, 1963.

[36] E. W. Dijkstra, “A note on two problems in connexion with
graphs,” Numerische Mathematik, vol. 1, no. 1, pp. 269–271,
1959.

[37] C. Barnhart, E. L. Johnson, G. L. Nemhauser, M. W. P.
Savelsbergh, and P. H. Vance, “Branch-and-price: column
generation for solving huge integer programs,” Operations
Research, vol. 46, no. 3, pp. 316–329, 1998.


	1. Introduction
	2. Related Work
	3. Network Model
	4. Optimization Model
	5. Case Study
	6. Conclusion
	Appendix Complete Formulation
	Acknowledgments
	References

