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I. N. Baker established the existence of Fatou component with any given 	nite connectivity by the method of quasi-conformal
surgery. M. Shishikura suggested giving an explicit rational map which has a Fatou component with 	nite connectivity greater
than 2. In this paper, considering a family of rational maps �(�, �) that A. F. Beardon proposed, we prove that �(�, �) has Fatou
components with connectivities 3 and 5 for any � ∈ (0, 1/12]. Furthermore, there exists � ∈ (0, 1/12] such that �(�, �) has Fatou
components with connectivity nine.

1. Introduction and Main Results

By Sullivan’s theorem [1], each Fatou component of a rational
map is eventually periodic. Moreover, for periodic Fatou
components, there are only four possibilities: attracting basin,
parabolic basin, Siegel disk, and Herman ring. Attracting
basins and parabolic basins are either simply connected or
in	nitely connected, a Siegel disk is simply connected, and a
Herman ring is doubly connected. However, for nonperiodic
Fatou components, the corresponding connectivity may be
bigger than two.

For any given � ∈ Z
+, Baker et al. [2] proved that there

exists a rational map � which has a Fatou component with
connectivity � by the method of quasiconformal surgery. M.
Shishikura suggested giving an explicit example such that it
has a Fatou component with 	nite connectivity greater than
two. Beardon [3] investigated the family of rational maps as
follows:

� (�, �) = �2 (1 + �12�3)
(1 − ��)3 (1 − �4�) , (� ∈ C, � ∈ R) . (1)

He proved the following result.

�eorem A. For su�ciently small � > 0, there exists a Fatou
component � of �(�, �) with connectivity three or four.

At the same time, he claimed that one may be able to
compute the connectivity of � by further discussion. Qiao
and Gao [4] veri	ed that � has connectivity three for � ∈(0, 10−4). Moreover, for any given positive integer �, two
di�erent families of rational maps were constructed such that
one of them has a Fatou component with connectivity � (see
[4, 5]). However, the degree of rational maps satis	es with
those conditions are increased as the number � increases. As
the 	rst step to study the problem of connectivity number
of Fatou components in rational maps space with 	xed
degree, we just investigate the connectivity of any other Fatou
component of�(�, �) as the real parameter � varies. In fact, we
have the following results.

�eorem 1. Suppose that �(�, �) is de	ned as in (1); then we
have the following.

(1) For any � ∈ (0, 1/12], there exist two Fatou components�� and �̃� of �(�, �) with connectivities three and 	ve,

respectively. Moreover, � : �̃� → �� is an unbranched
covering.
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(2) 
ere exists � ∈ (0, 1/12] such that �(�, �) has one
Fatou component with connectivity nine.

Remark 2. In order to draw the graphs of Julia sets and
Fatou components of such rational maps in complex plane,
we consider its conformal conjugate. Let �(�) = 1/�, and put�̃(�, �) = � ∘ � ∘ �−1(�, �) = (�(� − �)3(� − �4))/(�3 + �12). It is
easy to see that∞ is a superattracting 	xed point of �̃(�, �) for
any � ∈ (0, 1/12]. By Figure 1, �(�, �) has Fatou components
with connectivities three, 	ve, and nine for some � ∈ (0, 1/12]
since �(�, �) and �̃(�, �) have the same dynamical properties.
Furthermore, by Figure 2, we know that �(�, 0.004355) has
Fatou components with connectivities eight and fourteen,
and we conjecture that for any large integral � ∈ N, there
exists �0 ∈ (0, 1/12) such that �(�, �0) has a Fatou component
with its connectivity bigger than�.

2. Preliminary Lemmas

For the fundamental concepts and classical results of iteration
theory of rational maps, see [2, 3, 6, 7]. In order to prove
�eorem 1, we need the following four lemmas. Except for
Lemma 3, the others are certain modi	cations of results
which have been veri	ed in [3].

Lemma 3 (see [8, Proposition 2.5]). Let � be a rational

map of a degree larger than one, and let {��}��=1 be its one
(super)attractive or parabolic cycle of periodic Fatou compo-
nents. If one of �� (� = 1, . . . , �) is not simply connected, then∪��=1�� contains at least two di�erent critical values for critical
points in itself.

In what follows, � ∈ (0, 1/12] in �(�, �). It is easy to see
that � = 0 (resp., � = ∞) is a superattracting (resp., repelling)
	xed point of �(�, �). Let �00 be the Fatou component that
contains � = 0.
Lemma 4. 
e nonzero critical points of �(�, �) lie outside the
circle {� : |�| = 3}.
Proof. �(�, �) has exactly eight critical points, that is,0, 1/�, 1/� and �� (� = 1, 2, 3, 4, 5), which are the solutions of

the equation ��(�, �) = 0. Obviously, � = 1/� lies outside
the circle {|�| = 3}. By a calculation, each �� (� = 1, 2, 3, 4, 5)
satis	es the following equation:

2 + �� � (�, �) = 0, (2)

where�(�, �) = �16�4 −2�12(1+2�3)�3 +5�11�2 −2�4�+1− �3.
Putting

� = sup {|� (�, �)| : |�| ≤ 3, � ∈ (0, 112]} , (3)

we can deduce that

� ≤ 81�16 + 54�12 (1 + 2�3) + 45�11 + 6�4 + �3 + 1 ≤ 2. (4)

By (2), the nonzero critical points of �(�, �) lie outside the
circle {� : |�| = 3}.

Lemma 5. �00 is simply connected and {� : |�| ≤ 1/2} ⊂�00 ⊂ {� : |�| ≤ 3/2}.
Proof. For � ∈ " = {� : 0 < |�| ≤ 3/2}, we have

########
� (�, �)�2

######## ≤
1 + �12|�|3

(1 − � |�|)3 (1 − �4 |�|)
≤ 1 + (3/2)3�12
(1 − (3/2) �)3 (1 − (3/2) �4) <

32 ,
########
� (�, �)�2

######## ≥
1 − �12|�|3

(1 + � |�|)3 (1 + �4 |�|)
≥ 1 − (3/2)3�12
(1 + (3/2) �)3 (1 + (3/2) �4) >

23 .

(5)

If |�| ≤ 1/2, then |�(�)| ≤ (3/2)|�|2 ≤ (3/4)|�|; we can
deduce that {� : |�| ≤ 1/2} ⊂ �00.

Suppose that �00 meets the circle {� : |�| = 3/2}; take
a point % ∈ �00 ∩ {� : |�| = 3/2} and join % to the origin
by a curve ' ⊂ �00. It is easy to see that �� → 0 uniformly
on '; then there exists a unique positive integer *, such that��(')meets the circle {� : |�| = 3/2}, but��(') does notmeet{� : |�| = 3/2} for � > *. Let - be a point where ��(') meets{� : |�| = 3/2}; we have

####-#### > ####� (-)#### > 23 ####-####2 = ####-#### . (6)

It is a contradiction and thus�00 ⊂ {� : |�| ≤ 3/2}. Obviously,�00 contains only one critical point � = 0 by Lemma 4; then�00 is simply connected by Lemma 3.

Lemma 6. �−1(�00) only consists of two Fatou components,
that is,�00 and�01, which contains a triply connected domainΩ. Here, Ω = {� : 1/2�4 − 1/� ≤ |�| ≤ 3/2�4 + 1/�, |� − 1/�4| ≥1/2�4}.
Proof. Take � ∈ Ω; by a simple calculation, we have

� |�| − 1 ≥ 12�3 − 2 > 800,
12 − �3 < �4 |�| < 32 + �3,

#####1 − �4�##### ≥ 12 .
(7)

It is easy to see that 1/(�|�| − 1) < 1.002/�|�|; we have
###########
�2 (1 + �12�3)
(1 − ��)3

########### ≤
|�|2 (1 + �12|�|3)

(� |�| − 1)3

< (1.002)3 |�|2 (1 + �12|�|3)(� |�|)3 < 3�.
(8)

Moreover, �(Ω) ⊂ {� : |�| ≤ 6�} ⊂ {� : |�| ≤ 1/2}. By
Lemma 5, we have �(Ω) ⊂ �00 andΩ ⊊ �00, and there exists
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Figure 1: �e Julia set ;(�̃(�, 1/20)) and three Fatou components of �̃(�, 1/20) with connectivities 3, 5, and 9, respectively.

at least one Fatou component�01( ̸=�00) of�−1(�00). Noting
that there are three (resp., two) zeros of �(�, �) in Ω (resp.,�00), this implies that �−1(�00) = �00 ∪ �01 and �01 ⊃ Ω.

3. Proofs

Let � ⊂ C be a bounded Fatou component of �(�, �). We
denote the connectivity of � by �(�) and the unbounded

component of C \ � by Out(�). Let Int(�) = C \ Out(�)
and A|	 := deg(� : � → �(�)). Moreover, we say that a

component of �−�(�) (� ∈ N) is a component �̃ such that��(�̃) = �. We say that � surrounds a point �(∈ C) (or a
domain�(⊂ C)) if it satis	es � ∈ Int(�) (or� ⊂ Int(�)) and
denote by � ↺ � (or � ↺ �). Denote the number of zeros
and poles of �(�, �) in the interior of Jordan curve D ⊂ C by�(�, D) andE(�, D). In order to prove�eorem 1, we need the
following propositions. Considering the connectivity of �01
in Lemma 6, we have the following result.

Proposition 7. �01 is a triply-connected domain.

Proof. By a simple calculation, we have

�� (�, �) = �F (�, �)
(1 − ��)4(1 − �4�)2 . (9)

Here

F (�, �) = �17�5 − 2�13 (1 + 2�3) �4 + 5�12�3
− 2�5�2 + � (1 − �3) � + 2. (10)

Note that

F(−2� + 5�2, �) = − �3 + 35�6 − 122�9 + 524�12 − 910�15
− 1775�18 + 7750�21 − 8750�24
+ 3125�27 < 0,

F (−2� + 6�2, �) = 42�6 − 144�9 + 648�12 − 1560�15
− 1800�18 + 12960�21 − 18144�24
+ 7776�27 > 0,

(11)

we can deduce that there exists a point J0 ∈ (−2/�+5�2, −2/�+6�2) such thatF(J0, �) = 0 (J0 is a critical point of�(�, �)). Note
that (−2/� + 5�2, −2/� + 6�2) ⊂ (−2/�, −1/�) and

�(−K� , �) = K2 (1 − �9K9)
�2(1 + K)3 (1 + �3K) , (12)
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Figure 2: Two Fatou components of �̃(�, 0.004355) with connectivities 8 and 14, respectively.

and for any K ∈ [1, 2], we have |�(−K/�, �)| > 3/2; thus|�(J0, �)| > 3/2. By Lemma 5, it follows that J0 ∉ �01.
Moreover, three critical points 0, 1/� (twice) lie outside of�01.
Hence,�01 contains atmost four critical points. By Lemma 6,

since the triply-connected domain Ω ⊂ �01 and 1/�4 ∈;(�(�, �)) ∩ {|� − 1/�4| < 1/2�4}, then M(�1) ≤ −1. Applying
the Riemann-Hurwitz formula to the threefold covering map� : �1 → �00, we have

M (�1) +∑(*� − 1) = 3M (�00) = 3, (13)

so∑(*�−1) ≥ 4. It follows that∑(*�−1) = 4 and M(�1) = −1,
and thus �(�01) = 3.

By Lemma 5, �00 is bounded. Since ∞ is a repelling
	xed point, then each component in the preimage of �00 is
bounded. In fact, we have the following result.

Proposition 8. Each Fatou component of �(�, �) is bounded.
Proof. By Proposition 7,�01 contains four critical points and
they tend to � = 0 under ��(�, �) (� → ∞). Note that�(1/�, �) = ∞; then the dynamics of �(�, �) are decided by
the forward orbit of the critical point J0 in Proposition 7. If
lim�→∞��(J0) ̸= 0, there exists at most one cycle of periodic
components which is distinct from�00 by Sullivan’s theorem.
Assume that this cycle exists, denoted by �1, . . . , ��; then

P (� (�, �)) = ∞⋃
�=0

�−� (�00) ∪ (∞⋃
�=0

�⋃
�=1
�−� (��)) . (14)

Otherwise, P(�(�, �)) = ∪∞�=0�−�(�00).
Below we will prove that each component of P(�(�, �)) is

bounded. From the above analysis, let � be any component
of P(�(�, �)); there exists � ∈ N such that ��(�) = �00 or��(�) = �1 (if it exists). In order to show that� is bounded,

we need to prove that�1 is bounded. Suppose that�1, . . . , ��
exist, and note that ∪+∞�=0��(J0) ⊂ R∪{∞}; we have�1, . . . , ��
which are (super)attracting or parabolic components by the

Sullivan theorem, and thus J0 ∈ ∪��=1��. Without loss of
generality, J0 ∈ �1. By Lemma 3, �� (� = 1, . . . , �) is simply

connected; then �1 is contained in the bounded component
of C.

Remark 9. By Proposition 8, � = ∞ and its preimages are
buried points; here a point �0 in Julia set is called buried point
if it is not on the boundary of any Fatou component.

By Lemma 6 and Propositions 7 and 8, let �1 be

the component of C \ �01 which contains 1/�4 . Clearly,�1 ̸= {1/�4}, and in the following, we denote� = Int(�01) \(�01∪�1); then 1/� ∈ �. Belowwe consider the connectivity

of �−1(�01).
Proposition 10. �−1(�01) consists of three Fatou components
with connectivities 5, 3, and 3, respectively.

Proof. Weclaim that�−1(�01) consists of three Fatou compo-
nents. On one hand, since�(Out(�01)) = �(�1) = Out(�00)
and �01 ⊂ Out(�00), there exists at least one component
of �−1(�01) in Out(�01) and �1, respectively. On the other
hand, since �(�, �) is monotone increasing from 0 to +∞ for� ∈ (0, 1/�) and �01 ⊃ Ω by Lemma 6, there exists a unique

component�2 of�−1(�01)with�2∩(0, 1/�) ̸= 0 and�2 ⊂ �.
We claim that

�2 ↺ 1� . (15)

Assume that (15) is true (in what follows, we will return to
the proof of this fact later in the proof), and by the de	nition
of interior at the beginning of this section, 1/� ∈ Int(�2).
Since 1/� is a critical point with multiplities 2 and 1/�4 ,∞ ∉
Int(�2), then �(�, �) is a 3-fold map from Int(�2) to some
neighborhood � of ∞. Furthermore, we can easily deduce

that �2 is the unique component of �−1(�01) in Int(�2)
(otherwise, �(�, �) : Int(�2) → � is at least a 4-fold map; it
is a contradiction). Hence, A|	2 = 3 owing to �(�, �) : �2 →�01 which is a proper map. Obviously, we have A|�(
,�) = 5, so
the number of components of �−1(�01) in Out(�01) and�1
is exactly one, respectively, denoted by �1 and �3. Clearly,�1, �2, and �3 are mutually disjoint preimage components

of �−1(�01) and A|	1 = A|	3 = 1.
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Below we prove (15). In fact, if�2 does not surround 1/�,
we distinguish two cases to discuss and get a contradiction.

(i) If �2 does not surround �00, it is easy to see that�(Int(�2)) = Int(�01) and �00 ⊂ Int(�01), and since�2 has no pole, then �−1(�00) ∩ Int(�2) ̸= 0, but it is
a contradiction to Lemma 6.

(ii) If �2 ↺ �00, note that �(�, �) < 0 for � ∈ (1/�, 1/�4)
and lim
→1/�+�(�, �) = −∞, and we can deduce that

there exists at least one component (denoted by �̂2)
of �−1(�01)with �̂2 ∩ (1/�, 1/�4) ̸= 0. Obviously, �̂2 ⊂
Out(�01) and �̂2∩�2 = 0 since�2 does not surround1/�. If �̂2 ↺ �00, then �̂2 ↺ 1/�, and by a similar
discussion as used in the case of �2, it is easy to see
that A|	̂2 = 3, but it is a contradiction to the fact that

both� and�1 contain some connected components

of �−1(�01). If �̂2 does not surround �00, we also
get a contradiction by a similar discussion of case (i).
Hence, we get�2 ↺ 1/�.

Next we will acquire the connectivity of �� (� = 1, 2, 3).
Obviously, J0 ∉ �1 ∪ �3, and by the Riemann-Hurwitz
formula, �(�1) = �(�3) = 3. Furthermore, we claim that
the “free” critical point J0 in Proposition 7 is not contained in�2, and thus �(�2) = 5. In order to prove that J0 ∉ �2, we
turn to show the stronger result as follows:

�2 ∩R
− = 0. (16)

Otherwise, assume that K ∈ �2 ∩ R
−. Note that � is a real

parameter and�2∩R+ ̸= 0; then�2 is symmetric with respect
to real axis R. We choose a Jordan curve D in the interior of�2 such that D is very close to VOut(�2) and symmetric with
respect to R, and we take a point �0 in D ∩ {� | � ∈ C, Im � ≥0} such that �0 is one of the nearest points from K; denote
the arc of D from �0 to �0 in counterclockwise direction by Γ.
Moreover, we can also choose a Jordan arc X between K and�0 in D ∩ {� | � ∈ C, Im � ≥ 0} such that X ∩ Γ = {�0}. SetX̃ = {� | � ∈ X} and take Γ̃ = Γ∪X∪ X̃; then Γ̃ is a Jordan curve
in�2 and Γ̃ ∩ V�2 ⊂ {K}. Since�(�, Γ̃) = 2, E(�, Γ̃) = 3, and
arg�(�, �) changes by −2Y as � goes around Γ̃ by argument
principle, but arg�(�, �) changes by −6Y since A|	2 = 3; it is
a contradiction. Hence, we get (16).

By a similar argument as the one used in (15), we can

deduce that�3 ↺ 1/�4 and�1 ↺ �01. In fact, it is decided by
the “similarity” of the Julia sets ;(�(�, �)). By the de	nition

of �1 and Lemma 6, for any K0 ∈ �1 ∩ R, K0 > 1/2�4.
Let K1 ∈ R

− be the largest point of V�01 and let K2 ∈ R
+

be the largest point of V�00; by Lemma 5, �(K1, �) = K2 <2. Furthermore, by Lemma 6 and (16), the unique “free”
critical point J0 in Proposition 7 satis	es J0 ∈ (K1, 0). Note
that �(�, �) is monotone increasing in (K1, J0) and monotone
decreasing in (J0, 0); by a calculation, we can easily deduce

that |�(J0, �)| < 1/�2 for any K ∈ (−1/�4, 0). It is easy to
see that �(�, �) is monotone increasing in (0, 1/�) from 0 to+∞; then the equation �(�, �) = K0 has only one real root

in (−1/�4, 1/�4) since �(�, �) < 0 for � ∈ (1/�, 1/�4). Since

0

D1
D00

M1D2D01

M2 D3

c0

M

Figure 3: Schematic diagram of ∪2�=0�−�(�00).

�2 ⊂ � and� ∩ R ⊂ (−1/�4, 1/�4), we can deduce that the

number of bounded components of C \ �2 which intersects
with R is two (see Figure 3).

For any component� in the preimage of�� (� = 1, 2, 3), it
is easy to see that �(�) ≥ 3 by the Riemann-Hurwitz formula.
Furthermore, the connectivity �(�) is decided by the number
of critical points in � and local degree A|	. It is easy to see
that there exists atmost one Fatou component which contains
the free critical point J0; the following Proposition 13 shows
that even if there is no critical point in �, its local degree
may be larger than one.�erefore, we cannot give a complete
description of connectivity of this family of rational maps. In
order to get Proposition 13, we 	rst consider the number of
poles in Int(�).
Proposition 11. No preimage component of �2 or �3 sur-
rounds 0, 1/� or 1/�4.
Proof. We argue by contradiction and induction. Let � be
a preimage component of �2 or �3; we distinguish the
following three cases to discuss.

(i) Suppose that� ↺ 0; it is easy to see that� ↺ �00 since0 ∈ �00 and� ̸=�00.
(ii) Suppose that� ↺ 1/�; then� ⊂ �2 or� ⊂ Out(�2).

If � ⊂ �2, since �(�, �) > 0 for any � ∈ � ∩ (0, 1/�) ( ̸= 0)
and �(�, �) < 0 for any � ∈ � ∩ (1/�, 1/�4) ( ̸= 0), �(�) ↺ �00
by symmetry. If � ⊂ Out(�2), then � ↺ �00 or there exist
two points �1 ∈ (0, 1/�) ∩ � and �2 ∈ (1/�, 1/�4) ∩ �. Since�(�1, �) > 0 and �(�2, �) < 0, then �(�) surrounds �00 by
symmetry.

(iii) Suppose that � ↺ 1/�4; then either � or �(�)
surrounds�00 by the similar proof of (i) and (ii).

In all, if � surrounds any of 0, 1/� or 1/�4, then either �
or �(�) surrounds�00. Note that if �(�) surrounds�00, we
have � ⊊ �−1(�2) and � ⊊ �−1(�3) since �2 ∩ R

− = 0
and �3 ⊂ �1. To get the conclusion in this proposition, it
su�ces to prove that no preimage component of �2 or �3
surrounds�00.
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Below we prove that no preimage component of �2
surrounds�00 by induction.

Let� be a component of�−1(�2). Obviously, we have�∩�00 = 0. Suppose that� ↺ �00; we will get contradictions by
discussion.

(iv) Suppose that� ⊂ Out(�01), and since (−∞, −1/�4) ∩� ̸= 0, we get �(�) ∩ R
−1 ̸= 0 which contradicts with �2 ∩

R
−1 = 0.
(v) Suppose that� ⊂ �, and choosing a Jordan curve D in� such that D ↺ �00, it is easy to know that�(�, D) = 2 andE(�, D) = 0 or 3. Since �(�) = �2 and�2 does not surround�00, the contradiction can be deduced by argument principle.

Hence, any component � of �−1(�2) cannot surround�00. Assume that any component of �−�(�2) cannot sur-
round �00. Again, let � be a component of �−(�+1)(�2).
Suppose that � ↺ �00; we still distinguish two cases to
discuss.

(vi) Suppose that� ⊂ Out(�01), and since �(�, �) < 0 for
any � ∈ � ∩ (−∞, −1/�4) ( ̸= 0) and �(�, �) > 0 for any � ∈�∩(1/�4, +∞) ( ̸= 0), then�(�) surrounds�00 by symmetry
which contradicts with the assumption.

(vii) Suppose that� ⊂ �, and since�(�) is a component
of�−�(�2) and�(�) ̸=�, then�(�) cannot surround�00 by
assumption. By a similar analysis as used in the case (v), we
also deduce a contradiction.

�erefore, we get that no preimage component of �2
surrounds �00. By a similar discussion as the above used
in �2, any preimage component of �3 cannot surround�00.

However, the conclusion in Proposition 11 cannot 	t for�1. For simplicity, the symbol (1 × �) (� ∈ N) is 1 ⋅ ⋅ ⋅ 1⏟⏟⏟⏟⏟⏟⏟⏟⏟
�

and

�(1×0)� = �� for � = 1, 2, 3.
Proposition 12. Given that � ∈ [1, +∞), only one component

of �−�(�1) surrounds 0, 1/�, and 1/�4. Moreover, only one
component of �−�(�1) surrounds 1/� but does not surround
0 and 1/�4. In addition, only one component of �−�(�1)
surrounds 1/�4 but does not surround 0 and 1/�.
Proof. By induction and a similar discussion as the one used
in Proposition 10, it is easy to get the following conclusion. For

any integer � ∈ N, �−1(�(1×�)) consists of three components:
one is contained in Out(�(1×�)), denoted by �(1×(�+1)); one
is contained in �2, denoted by �(1×�)2; one is contained in�1, denoted by �(1×�)3. Moreover, �(1×(�+1)) ↺ �(1×�) and�(1×�)� ↺ �(1×(�+1))� (� = 2, 3). By a similar discussion as
used in Proposition 11, we can deduce that any preimage
component of �(1×�)2 or �(1×�)3 (b = 1, . . . , � − 1) cannot
surround 0 or 1/�. Since ��(�(1×�)�) = �� (� = 1, 2, 3), then�(1×(�+1)), �(1×�)2 and �(1×�)3 are satis	ed with conditions of
this proposition in turn as follows:

�00 ←d �01 ←d {{{
�2�1�3 ←d {{{

�12�11�13 ←d {{{
�112�111�113 ←d ⋅ ⋅ ⋅ .

(17)

By Proposition 10, we can deduce that �(�(1×�)1) =�(�(1×�)3) = 3, �(�(1×�)2) = 5 for any � ∈ [1, +∞). However,
for the other components in the preimage of �� (� = 1, 2, 3),
we have the following result.

Proposition 13. Given that � ∈ N, let � be a component of
preimage of �(1×�)2 or �(1×�)3, and if J0 ∈ Out(�), then A|	 =1 or A|	 = 2.
Proof. By Propositions 11 and 12, Int(�) contains no pole of�(�, �), and thus �(Int(�)) = Int�(�) and � is a proper
map in Int(�). We distinguish three cases to discuss the local
degree of� as follows.

(1) If J0 ∈ Out(�), then A|Int(	) = 1 by the Riemann-
Hurwitz formula. Obviously, A|	 = 1.

(2) If J0 ∈ �, then A|	 ≥ 2. By the Riemann-Hurwitz
formula, A|Int(	) = 2, so A|	 = 2.

(3) If J0 ∈ Int(�) \ �, then A|Int(	) = 2 by the Riemann-
Hurwitz formula. Furthermore, we can deduce thatA|	 = 2. Otherwise, A|	 = 1. Note that Int(�) has
no poles of �(�, �), and for any bounded components

ofC\�(�), the forward components of it in Int(�) are
corresponding to all bounded components of C \ �.

Hence, �−1(�(�)) ∩ Int(�) = �; it is a contradiction
to A|Int(	) = 2.

Proof of 
eorem 1. (1) It is an immediate result of Proposi-
tions 7 and 10.

(2) We show that �(�, 1/20) has a Fatou component with
connectivity 9.

Put �0 = 1/20, and by Proposition 7, the “free” critical

point J0 satis	es J0 ∈ (−2/�0 + 5�20, −2/�0 + 6�20). Set�(K) = �(K, �0), h1(K) = K2, h2(K) = 1 + �120 K3, h3(K) =(1 − �0K)3, h4(K) = 1 − �40K (K ∈ R); then �(K) =(h1(K)h2(K))/(h3(K)h4(K)). Put i1 = [−2/�0 + 5�20, −2/�0 + 6�20],
and for any K1 ∈ i1, we have

h1 (−2/�0 + 6�20) h2 (−2/�0 + 5�20)h3 (−2/�0 + 5�20) h4 (−2/�0 + 5�20)
≤ � (K1) ≤ h1 (−2/�0 + 5�20) h2 (−2/�0 + 6�20)h3 (−2/�0 + 6�20) h4 (−2/�0 + 6�20) .

(18)

Furthermore, we can deduce that

� (K1) ∈ [59.237, 59.252] := i2, ∀K1 ∈ i1. (19)

If necessary, we enlarge or reduce the length of corresponding
interval, by a similar discussion as the one used in inequality
5, as follows:

� (K2) ∈ [−465.125, −464.357] := i3, ∀K2 ∈ i2;
� (K3) ∈ [15.065, 15.188] := i4, ∀K3 ∈ i3;
� (K4) ∈ [15108, 16564] := i5, ∀K4 ∈ i4;
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� (K5) ∈ [−0.714, −0.445] := i6, ∀K5 ∈ i5;
� (K6) ∈ [0.178, 0.478] := i7, ∀K6 ∈ i6.

(20)

For example,

h1 (59.252) h2 (59.252)h3 (59.237) h4 (59.252) ≤ � (K2) ≤ h1 (59.237) h2 (59.237)h3 (59.252) h4 (59.237) .
(21)

By Lemmas 5 and 6, i7 ∪ i6 ⊂ �00 and i5 ⊂ �01. Note
that i4 = [15.065, 15.188]; then i4 ⊂ �2. Let � be the
Fatou component that contains J0, and since �(J0) > 0, then�(�)∩R− = 0 by Proposition 11, and thus J0 ∈ Out(�(�)). As�(�, �0) = −1/(�0)4 has an approximate root 22.9777(> 1/�0),
we have �(�) ⊂ Out(�2). By Proposition 12, we can deduce

that �2(�) cannot surround �. By Proposition 13, A|	 = 2
and A��(	) = 1 (� = 1, 2), and thus �(�(�)) = �(�2(�)) = 5,�(�) = 9 by the Riemann-Hurwitz formula.
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