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Abstract

Principal components analysis (PCA) is a classic method for the reduction of dimensionality of
data in the form of n observations (or cases) of a vector with p variables. Contemporary datasets
often have p comparable with or even much larger than n. Our main assertions, in such settings,
are (a) that some initial reduction in dimensionality is desirable before applying any PCA-type
search for principal modes, and (b) the initial reduction in dimensionality is best achieved by
working in a basis in which the signals have a sparse representation. We describe a simple
asymptotic model in which the estimate of the leading principal component vector via standard
PCA is consistent if and only if p(n)/n→0. We provide a simple algorithm for selecting a subset of
coordinates with largest sample variances, and show that if PCA is done on the selected subset,
then consistency is recovered, even if p(n) ⪢ n.
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1. INTRODUCTION

Suppose {xi, i = 1, …, n} is a dataset of n observations on p variables. Standard principal
components analysis (PCA) looks for vectors ξ that maximize

(1)

If ξ1, …, ξk have already been found by this optimization, then the maximum defining ξk+1

is taken over vectors ξ orthogonal to ξ1, …, ξk.

Our interest lies in situations in which each xi is a realization of a possibly high-dimensional
signal, so that p is comparable in magnitude with n, or may even be larger. In addition, we
have in mind settings in which the signals xi contain localized features, so that the principal
modes of variation sought by PCA may be localized as well.

These issues are familiar in signal and image processing application areas in which each
sample has many variablesȁpixels, frequencies, genes, stocks, and so forth. In applications,
it is common to combine the use of transform domains and feature selection to achieve an
effective reduction of dimensionality. For example, one might transform the data into a
suitable orthogonal basis (e.g., wavelets), select coordinates with highest variance, and then
do PCA on the reduced set of variables.
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A notable example occurs in the work of Wickerhauser (1994a, b), in which the orthobasis
itself was chosen from a library of (wavelet packet) bases. Applications to face and
fingerprint classification were given. A selection of later examples (by no means exhaustive)
would include Feng, Yuen, and Dai (2000) in face recognition; and Kaewpijit, Le Moigne,
and El-Ghazawi (2002) and Du and Fowler (2008) for hyper-spectral images. For some
further discussion, see Cherkassky and Mulier (1998). A recent approach to variable
selection followed by dimensionality reduction that emphasizes sparsity is described by
Wolf and Shashua (2005) and Wolf and Bileschi (2005).

The purpose of this article is to contribute some theoretical analysis of PCA in these
burgeoning high-dimensional settings. In a simple class of models of factor analysis type,
we (a) describe inconsistency results to emphasize that when p is comparable with n, some
reduction in dimensionality is desirable before applying any PCA-type search for principal
modes; and (b) establish consistency results to illustrate that the reduction in dimensionality
can be effected by working in a basis in which the signals have a sparse representation. We
will support these assertions with arguments based on statistical performance and
computational cost.

We begin, however, with an illustration of our results on a simple constructed example.
Consider a single component (or single factor) model, in which, when viewed as p-
dimensional column vectors

(2)

in which  is the single component to be estimated, υi ~ N(0, 1) are iid Gaussian
random effects, and zi ~ Np(0, I) are independent noise vectors.

Figure 1a shows an example of ρ with p = 2,048 and the vector ρl = f(l/p), l ∈ {1, …, p},

where f(t) is a mixture of beta densities on [0, 1], scaled so that . Figure
1b shows a sample case from model (2): The random effect υiρ is hard to discern in
individual cases. Figure 1c shows the result of standard PCA applied to n = 1,024
observations from (2) with σ = 1, normalized to the same length as ‖ρ‖. The effect of the
noise remains clearly visible in the estimated principal eigenvector.

For functional data of this type, a regularized approach to PCA has been proposed by Rice
and Silverman (1991) and Silverman (1996), (see also Ramsay and Silverman (1997) and
references therein). Although smoothing can be incorporated in various ways, we illustrate
the method discussed also in Ramsay and Silverman (1997, chap. 7), which replaces (1) with

(3)

where D2ξ is the (p − 2) × 1 vector of second differences of ξ, and λ ∈ (0, ∞) is the
regularization parameter.

Figure 1d shows the estimated first principal component vector found by maximizing (3)
with λ = 10−12 and λ = 10−6, respectively. Neither is really satisfactory as an estimate. The
first recovers the original peak heights, but fails fully to suppress the remaining baseline
noise, whereas the second grossly oversmooths the peaks in an effort to remove all trace of
noise. Further investigation with other choices of λ confirms the impression already
conveyed here: No single choice of λ succeeds both in preserving peak heights and in
removing baseline noise.
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Figures 1e and f show the result of the adaptive sparse PCA algorithm to be introduced later,
respectively without and with a final thresholding step. Both goals are accomplished quite
satisfactorily after thresholding in this example.

This article is organized as follows. Section 2 reviews the inconsistency result Theorem 1.
Section 3 sets out the sparsity assumptions and the consistency result (Theorem 2). Section 4
gives an illustrative algorithm, demonstrated on simulated and real data in Section 5. Proofs
and their preliminaries are deferred to Section 6 and the Appendix.

2. INCONSISTENCY OF CLASSIC PCA

A basic element of our sparse PCA proposal is initial selection of a relatively small subset of
the initial p variables before any PCA is attempted. In this section, we formulate some
(in)consistency results that motivate this initial step.

Consider first the single component model (2). The presence of noise means that the sample

covariance matrix  will typically have min(n, p) nonzero eigenvalues. Let 
be the eigenvector associated with the largest sample eigenvalue, with probability one it is
uniquely determined up to sign.

One natural measure of the closeness of  to ρ uses the “overlap” , defined as the
inner product between the vectors after normalization to unit length:

Equivalently,  is the cosine of the angle between  and ρ

(4)

and we may also write this in terms of a distance metric

(5)

For asymptotic results, we will assume that there is a sequence of models (2) indexed by n.
Thus, we allow pn and ρn to depend on n, although the dependence will usually not be
shown explicitly. (Of course, σ might also be allowed to vary with n, but for simplicity it is
assumed fixed.)

Our first interest is whether the estimate  is consistent as n → ∞. This turns out to depend
crucially on the limiting value

(6)

One setting in which this last assumption may be reasonable is when pn grows by adding
finer scale wavelet coefficients of a fixed function as n increases.

We will also assume that the limiting “signal-to-noise ratio”
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(7)

Theorem 1. Assume that there are n observations drawn from the p-dimensional model (2).
Assume that pn/n → c and that ǁρnǁ2/σ2 → ω > 0. Then almost surely

In particular, R∞(ω, c) < 1 if and only if c > 0, and so  is a consistent estimator of ρ if and
only if p/n → 0.

The situation is even worse if ω2 ≤ c—that is, if

because  and ρ are asymptotically orthogonal, and  ultimately contains no information at
all regarding ρ.

In short,  is a consistent estimate of ρ if and only if p/n → 0. The noise does not average
out if there are too many dimensions p relative to sample size n.

Theorem 1 is stated without proof, and we include some bibliographic remarks about its
history. The inconsistency phenomenon was first observed in a number of papers in the
learning theory literature in physics (see, for example, Biehl and Mietzner 1994; Watkin and
Nadal 1994; Reimann, Van den Broeck, and Bex 1996; Hoyle and Rattray 2004). The
limiting overlap formula of Theorem 1, derived in a related classification setting, appears in
Biehl and Mietzner (1994). These works all use the nonrigorous “replica method” of
statistical mechanics.

The first rigorous proof of inconsistency was given, in model (2), by the second author in his
Ph.D. dissertation (Lu 2002) and in the initial version of this article (Johnstone and Lu
2004), available at arxiv.org. While this article was in publication review, subsequent
rigorous proofs were published, along with other results, by Paul (2007) and Nadler (2008).

Remark. Paul (2007) also includes extensions to a considerably more general
“multicomponent” or “spiked” covariance model that has attracted interest in the literature.
Assume that we have n data vectors xi, observed at p time points. Viewed as p-dimensional
column vectors, this model assumes that

(8)

The mean function μ is assumed known. The vectors ρj, j = 1, …, m ≤ p are unknown and
mutually orthogonal, with norms ρj(n) = ǁρjǁ assumed decreasing: ǁρ1ǁ > ǁρ2ǁ ≥ … ≥ ǁρmǁ.

The multipliers  are all independent over j = 1, …,m and i = 1, …, n, and the noise
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vectors zi ~ Np(0, I) are independent among themselves and also of the random effects .

The population covariance matrix of the iid vectors (xi) is given by .
The vectors ρj are the ordered principal component eigenvectors of the population

covariance Σ. The asymptotics assume pn, mn, and  to be functions of n, and as n → ∞,

Paul (2007) shows that it continues to be true in the multicomponent model that  is
consistent if and only if pn/n → 0. Of course, the inconsistency extends to cases with pn/n →
∞ because these models are even larger.

3. SPARSITY, SELECTION, AND CONSISTENCY

3.1 Sparsity

The inconsistency Theorem 1 asserts that ordinary PCA becomes confused in the presence
of too many variables each with equal independent noise. Ideally, we might wish to reduce
the dimensionality from p to a smaller number of variables k before beginning PCA. For this
to succeed, the population principal components—ρ, in our model—should be essentially
concentrated in the smaller number of dimensions, in a manner that can be discovered from
the data.

To quantify this, assume that the data and the population principal components are
represented, perhaps after transformation, in a fixed orthonormal basis {eν}:

The index ν will always indicate the transform domain. In many situations, including all
examples in this article, the data xi are initially collected in the time domain—for example in
[0, 1], with xi = {xi(tl)}, where tl = l/p, l = 1,… , p. In such cases, the basis vectors eν are also
time domain functions eν(tl).

The idea of concentration in a small number of variables can be captured by considering the
ordered coefficient magnitudes |ρ|(1) ≥ |ρ|(2) ≥ ⋯. The intuitive idea of sparse representation

is that, for relatively small k, the “energy” in the largest k coordinates  is close to the

total energy . This can only be true if the magnitudes |ρ|ν decay rather quickly.
Thus, we assume for some 0 < q < 2 and C >0 that

(9)

The condition q < 2 forces rapid decay—clearly, the more rapid if q is smaller. This notion
of “weak ℓq decay” is actually equivalent to the concentration of energy in the sums

 just mentioned (see Donoho (1993) or Johnstone (2003, chap. 15)), but is more
convenient for the results given here.
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The choice of orthonormal basis {eν} for sparse representation will depend on the dataset
and problem domain, and thus is beyond the scope of this article. We remark, however, that
for certain signal processing settings, wavelet bases can be natural for uncovering sparsity.
When one-dimensional signals are smooth or have isolated discontinuities (either in the
signal or its derivatives), then it can be shown (e.g., Mallat 1999) that the wavelet
coefficients decay rapidly with frequency octave away from the discontinuities. In such
cases, assumptions (9) are natural, as is shown in detail, for example, in the references cited
earlier. We have therefore used wavelet bases for the examples in this article, but hasten to
emphasize that our results apply equally to representations in other bases that might be
better suited to, say, economic or genomic data.

3.2 Consistency

If the principal components have a sparse representation in basis {eν}, then selection of an
appropriate subset of variables should overcome the inconsistency problem described by
Theorem 1. In this direction, we establish a consistency result for sparse PCA. For
simplicity, we use the single component model (2), and assume σ2 is known—although this
latter assumption could be removed by estimating σ2 using (14), presented later.

We again assume a sequence of models (2) indexed by n. The unknown principal
components ρ = ρn should satisfy a “uniform sparsity condition”: For some q ∈ (0, 2) and C
< ∞ independent of n, each ρn satisfies decay condition (9). In addition, as in Theorem 1,
the signal strength should stabilize: ∥ρn ∥ → ϱ > 0.

On the assumption of model (2), the sample variances

(10)

Consequently, components ν with large values of ρν will typically have large sample
variances. We use here a simple selection rule

(11)

with αn = α(n−1 log(n ∨ p))1/2 and α a sufficiently large positive constant—for example,

 would work for the proof. (By definition, n ∨ p = max(p, n).)

Let SI = (Sνν′ : ν and ) denote the sample covariance matrix of the selected variables.

Applying PCA to SI yields a principal eigenvecto ( , ). Let  denote the
corresponding vector in the full p-dimensional space:

The sparsity assumption implies that  is a consistent estimator of ρ.

Theorem 2. Assume that the single component model (2) holds with log(p ∨ n)/n → 0 and
∥ρn∥ → ϱ > 0 as n → ∞ Assum for some q ∈ (0, 2) and C < ∞, that for each n, ρn satisfies

the sparsity condition (9). Then the estimated principal eigenvector  obtained via subset
selection rule (11) is consistent:
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Here, α is the angle between  and ρ as in (4). Converting to an estimate  in the time
domain (as in Step 5 of Section 4, an equivalent statement of the result is that

 in Euclidean norm, where .

The proof shows that consistency holds even under weaker assumption p = o(en). The result
and proof could also be extended to multicomponent systems (8).

Armed with Theorems 1 and 2, let us return briefly to Figure 1. Based on Figure 1c, one
might ask if simple thresholding of the standard PCA estimate—either in the original or
wavelet domain—might suffice. Although this may work for high signal-to-noise settings,

Theorem 1 suggests that such an approach is doomed if ǁρǁ < p/n, because  is
asymptotically orthogonal to ρ. No such constraint applies in Theorem 2—as long as lim
ǁρnǁ > 0—as a result of the preliminary reduction of variables.

Bibliographic Remarks—Significant extensions of these results have been obtained
since this article was first written. For example, working with the multicomponent model,
Paul (2007) and Paul and Johnstone (2004) have derived lower bounds to the possible
quality of estimation, and optimal estimators that attain the bounds (at the level of rates of
convergence) in certain cases.

In a large p, n setting of partial least squares regression, Nadler and Coifman (2005) noted
the importance of prior dimension reduction and suggested the use of wavelets to exploit
sparsity.

Alternative methods for “sparsifying” PCA have also been proposed, based on connections
with LASSO and ℓ1 penalized regression (Jolliffe, Trendafilov, and Uddin 2003; Zou,
Hastie, and Tibshirani 2006; d'Aspremont et al. 2007), and compressive sensing (Fowler
2008). The study of consistency properties for these methods and comparison with those of
this article is a natural topic for further research, with significant progress recently reported
in Amini and Wainwright (2009).

3.3 Correct Selection Properties

A basic issue raised by the sparse PCA algorithm is whether the selected subset  in fact
correctly contains the largest population variances, and only those. We formulate a result,
based on large deviations of chi-squared variables, to address this issue. The considerations
of this section hold for coefficients in any orthogonal basis.

For this section, assume that the diagonal elements of the sample covariance matrix

 have marginal chi-squared distributions—in other words,

(12)

We will not require any assumptions on the joint distribution of  The use of the index ν
emphasizes the fact that we work in the transform domain.
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Denote the ordered population coordinate variances by , and the ordered

sample coordinate variances by . A desirable property is that  should, for

fixed k and for suitable positive αn small, (i) include all indices l in 

and (ii) exclude all indices l in . We will show that this, in fact,

occurs with high probability if , for appropriate α > 0.

We say that a “false exclusion” (FE) occurs if any variable in Iin is missed:

whereas a “false inclusion” (FI) happens if any variable in Iout is spuriously selected:

Theorem 3. Assume that the sample variances satisfy (12) and that a subset of size k of
variables is sought. With αn = αn−1/2(log n)1/2, the probability of an inclusion error of either
type is polynomially small:

with .

The proof is in the Appendix. As an example, if α = 9, then b(α) ≐ 4.36. As a numerical
illustration based on (A.4) (seen in the Appendix), if the subset size k = 50, while p = n =
1,000, then the chance of an inclusion error corresponding to a 25% difference in standard

deviations (i.e.,  when α = 9) is less than 5%.

4. AN ILLUSTRATIVE ALGORITHM

4.1 An Algorithm

The inconsistency results summarized in Section 2 emphasize the importance of reducing
the number of variables before embarking on PCA. The results of Section 3 show that the
existence of a sparse representation allows consistency to be recovered. The proof of
Theorem 2 relies on two key steps: (i) sparsity allows ρ to be approximated using a
relatively small number of coefficients, and (ii) these smaller number of coefficients can be
estimated by a reduced PCA.

We use these remarks as the basis for the sparse PCA algorithm to be described in general
terms here. Note that the algorithm per se does not require the specification of a particular
model, such as the single component system (2) or the multicomponent version (8). Given
the widespread use of transform domain and feature selection techniques in the signal
processing literature, as described in Section 1, we make no claims for originality; this
section is included primarily to illustrate results of previous sections.

1. Compute Basis Coefficients. Given a basis {eν} for , compute coordinates xiν =
(xi, eν) in this basis for each xi:
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2. Subset. Calculate the sample variances . Let  denote the
set of indices ν corresponding to the largest k variances.

3. Reduced PCA. Apply standard PCA to the reduced dataset {xiν, , i = 1, …, n}

on the selected k-dimensional subset, obtaining eigenvectors , j = 1, …, k,

.

4. Thresholding. Filter out noise in the estimated eigenvectors by hard thresholding

5. Reconstruction. Return to the original signal domain, using the given basis {eν},
and set

Discussion: Steps 2 and 3—An important computational point that is implicit in Steps
2 and 3 is that we only compute the variances Sν,ν for the p transform domain variables. Off-

diagonal covariance elements Sν,ν′ are only computed for ν, ν′ in the reduced set  of size k.
The reduced PCA size k may be specified in advance or chosen based on the data (see
Section 4.2).

Discussion: Step 4—Although not formally studied in the theory in the preceding
section, the thresholding step is found in our examples to yield a useful further filtering of
noise. For a scalar value y, hard thresholding is given, as usual, by ηH(y, δ) = yI{|y| ≥ δ}. An
alternative is soft thresholding ηS(y, δ) = sgn(y) × max(|y| − δ, 0), but hard thresholding has
been used here because it preserves the magnitude of retained signals.

There is considerable freedom in the choice of thresholds δj. Trial and error is always
possible, of course. Further, more formal choices are suggested by analogy with the signal in

Gaussian noise setting  (compare with, for example, Donoho et al. (1995)),

and, for this article, we use this choice of δj. Here,  is an estimate of the noise level in { ,

 }—in this article, estimate (16) is used. Another possibility is to set

, where MAD denotes “median absolute deviation.”

The consistency result Theorem 2 applies to this algorithm, with subset selection rule (11),
and without the thresholding Step 4. Although the thresholding step helps in the examples to
follow, theoretical analysis to elucidate its specific advantages is beyond the scope of this
article.

Terminology—We will refer to the general procedure specified by Steps 1 through 5 as
“sparse PCA.” With the specific data-based choice of k proposed as method (b) in Section
4.2, with w = 0.995, we use the term “adaptive sparse PCA” (ASPCA).
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In the rest of this section, we amplify and illustrate various aspects of this algorithm. Given
eigenvalue and eigenvector routines, it is not difficult to code. For example, a MATLAB
package ASPCALab that includes the algorithms and files that produce the figures in this
article is available at www-stat.stanford.edu/~imj/. To exploit wavelet bases, it makes use of
the open-source library WaveLab available at www-stat.stanford.edu/~wavelab/.

4.2 Data-Based Choice of k

When the size k of the set of selected variables  is itself determined from the data, we write

 for . Here are two possibilities, both based on the sample variances  of Step 2
presented earlier:

(a) Choose coordinates with variance exceeding the estimated noise level by a
specified fraction αn:

This choice was considered in Section 3.

(b) As motivation for the second method, recall that we hope that the selected set of

variables  is both small in cardinality and also captures most of the variance of
the population principal components, in the sense that the ratio

(13)

is close to one for each of the leading population principal components in {ρ1, …,

ρm}. Now let  denote the upper α percentile of the  distribution. If all

coordinates were pure noise, one might expect the ordered sample variances 

to be close to . Define the excess over these percentiles by

and for a specified fraction w(n) ∈ (0, 1), set

where  is the smallest index k for which the inequality holds, and the somewhat
sloppy notation refers to the indices ν that contribute to the left-hand sum of

excesses . This second method has been used for the figures in this article,
typically with w(n) = 0.995.

Estimation of σ—If the population principal components ρj have a sparse representation
in basis {eν}, then we may expect that in most coordinates, ν, {xiν} will consist largely of
noise. This suggests a simple estimate of the noise level on the assumption that the noise
level is the same in all coordinates—namely,
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(14)

4.3 Computational Complexity

One estimates the cost of sparse PCA by examining its main steps:

1. This depends on the choice of basis. In the wavelet case, no more than O(np log p)
operations are needed. (see, for example, Mallat (1999)).

2. Evaluate and sort the sample variances and select .

3. Compute a k × k matrix and its eigendecomposition: O(k3+k2n).

4.
Apply thresholding to each vector in , and estimate  and .

5. Reconstruct eigenvectors in the original sample space: O(k2p).

Hence, the total cost of sparse PCA is O(np log p + k2max(p, n)). Both standard and
smoothed PCA need at least O((min(p, n))3) operations. Therefore, if we can find a sparse
basis such that k/p→0, then under the assumption that p/n→c as n→∞, the total cost of
sparse PCA is o(p3). We will see in the examples that follow that the savings can be
substantial.

5. EXAMPLES

5.1 Simulated Examples

The two examples in this section are both motivated by functional data with localized
features. The first is a three-peak principal component depicted in Figure 1, and already
discussed in Section 1. The second example, Figure 2, has an underlying first principal
component composed of step functions. For both examples, the dimension of data vectors is
p = 2,048, the number of observations n = 1,024, and the noise level σ = 1. However, the
amplitudes of ρ differ, with ∥ρ∥ = 10 for the “three-peak” function and ∥ρ∥ = 25 for the
“step” function. The corresponding square root signal-to-noise ratios ω = ϱ/σ (Theorem 1)
are 10 and ~25 respectively.

Figure 1c and Figure 2c, respectively, show the sample principal components obtained by
using standard PCA. Although standard PCA does capture the peaks and steps, it retains
significant noise in the flat regions of the function. Corresponding Figure 1d and Figure 2d
show results from smooth PCA with the indicated values of the smoothing parameter. Just as
for the three-peak curve discussed earlier, in the case of the step function, none of the three
estimates simultaneously captures both jumps and flat regions well.

Figures 1e, f and Figures 2e, f present the principal components obtained by sparse PCA
without and with the thresholding step, respectively. The WaveLab wavelet bases Symmlet
and Haar are used for the “three-peak” and “step” functions respectively. Using method (b)
of Section 4.2 with w = 99.5%, the subset step selects k = 142 and 361 for the “three-peak”
curve and “step” function, respectively. The sample principal component in Figure 1f is
clearly superior to the other sample principal components in Figure 1. Although the
principal component function in the step case appears to be only slightly better than the
solid, red, smooth PCA estimate, we will see shortly that its squared error is reduced by
about 75%.
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Table 1 compares the accuracy of the three PCA algorithms, using average squared error

(ASE) defined as . (  was first normalized to have length ∥ρ∥ before
computing ASE.) The running time is average CPU time over 50 iterations, used by
MATLAB on an Intel Core Duo CPU T2400 at 1.83 GHz.

Figure 3 presents boxplots of ASE for the 50 iterations. Overall, sparse PCA with
thresholding always gives the best result for the “step” curve. For the “three-peak” function,
in only a few iterations (~15%) does sparse PCA generate larger error than smoothed PCA
with λ = 10−12. On average, ASE using sparse PCA is superior to the other methods by a
large margin. Overall, Table 1 and Figure 3 show that sparse PCA leads to the most accurate
principal component (within the techniques considered) while using much less CPU time
than other PCA algorithms.

5.2 Noise Level in the Single Component Model

Anderson (1963) obtained the asymptotic distribution of  for fixed p—in
particular,

(15)

as n→∞. Here, p increases with n, but one can nevertheless use (15) as a heuristic for
estimating the variance  needed for thresholding. Because the effect of thresholding is to
remove noise in small coefficients, setting ρν to 0 in (15) suggests

(16)

Neither ∥ρ∥2 nor σ2 in (16) is known, but they can be estimated by using the information
contained in the sample covariance matrix S of (10). Hence, in the single component model,

If ρν is a sparse representation of ρ, then most coefficients will be small, suggesting the
estimate (14) for σ2. In turn, this suggests as an estimate

(17)

5.3 ECG Example

We offer a brief illustration of sparse PCA as applied to some electrocardiogram (ECG) data
kindly provided by Jeffrey Froning and Victor Froelicher in the cardiology group at Palo
Alto Veterans Affairs Hospital. Beat sequences—typically about 60 cycles in length—were
obtained from some 15 healthy patients; we selected two for the preliminary illustrations
here. Individual beats are notable for features such as the sharp spike (“QRS complex”) and
the subsequent lower peak (“T wave”), seen, for example, in Figures 5a and d. The presence
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of these local features, of differing spatial scales, suggests the use of wavelet bases for
efficient representation. Traditional ECG analysis focuses on averages of a series of beats. If
one were to look instead at beat-to-beat “variation,” one might expect these local features to
play a significant role in the principal component eigenvectors.

Considerable preprocessing is routinely done on ECG signals before the beat averages are
produced for physician use. Here we summarize certain steps taken with our data, in
collaboration with Jeff Froning, preparatory to the PCA analysis. The most important feature
of an ECG signal is the Q-R-S complex: The maximum occurs at the R wave, as seen, for
example, in Figure 5a. Therefore, we define the length of one cycle as the gap between two
adjacent maxima of R waves.

i. “Baseline wander” is observed in many ECG datasets (compare with Figure 4, with
a caption that summarizes the adjustment used).

ii. Because pulse rates vary even on short timescales, the duration of each heartbeat
cycle may vary as well. We use linear interpolation to equalize the duration of each
cycle, and for convenience in using wavelet software, discretize to 512 = 29 sample
points in each cycle.

iii. Because of the importance of the R wave, the horizontal positions of the maxima
are registered at the 150th position in each cycle.

iv. The ECG data vector is converted into an n × p data matrix, where n is the number
of observed cycles and p = 512.

5.4 PCA Analysis

Figures 5a and d show the mean curves for two ECG samples in blue. The number of
observations n (i.e., number of heartbeats recorded) are 66 and 61, respectively. The first
sample principal components for these two sample sets (“patients”) are plotted in Figures 5c
and f, with the upper/red curves from standard PCA and the lower/blue curves from sparse
PCA, with thresholds chosen subjectively. In both cases, there are two sharp peaks in the
vicinity of the QRS complex. The first peak occurs shortly before the 150th position, where
all the maxima of R waves are aligned, and the second peak, which has an opposite sign,
occurs shortly thereafter. (The lower/blue curves have been offset vertically by −0.4 and
−0.2 in Figures 5c and f, respectively, for legibility in monochrome.)

The standard PCA curve in Figure 5c (upper/red) is less noisy than that in Figure 5f (upper/

red), even allowing for the difference in vertical scales. Using (14),  and ,
whereas the magnitudes of the two mean sample curves are very similar.

The sparse PCA curves (lower/blue) are smoother than the standard PCA ones (upper/red),
especially in Figure 5f, where the signal-to-noise ratio is lower. On the other hand, the
upper/red and lower/blue curves match quite well at the two main peaks. Sparse PCA has
reduced noise in the sample principal component in the baseline while keeping the main
features.

There is a notable difference between the estimated principal components for the two
patients. In the first case, the principal component is concentrated around the R-wave
maximum, and the effect is to accelerate or decelerate the rise (and fall) of this peak from

baseline in a given cycle. This is more easily seen by comparing plots of  (green) with

 (red), shown over a magnified part of the cycle in Figure 5b. In the second patient,
the bulk of the energy of the principal component is concentrated in a level shift in the part
of the cycle starting with the ST segment. This can be interpreted as beat-to-beat fluctuation
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in baseline; because each beat is anchored at 0 at the onset point, there is less fluctuation on
the left side of the peak. This is particularly evident in Figure 5e. There is, again, a slight
acceleration/deceleration in the rise to the R-wave peak—less pronounced in the first case,
and also less evident in the fall.

Obvious questions raised by this illustrative example include the nature of effects that may
have been introduced by the preprocessing steps—notably, the baseline removal anchored at
onset points and the alignment of R-wave maxima. Clearly, some conventions must be
adopted to create rectangular data matrices for principal component analysis, but detailed
analysis of these issues must await future work.

To summarize, sparse PCA has reduced noise in the sample principal component in the
baseline while keeping the main features, and in addition, sparse PCA uses less than 10% of
the computing time used by standard PCA in these examples.

6. PROOF OF THEOREM 2

We first establish some notation and recall some pertinent matrix results (e.g., Golub and

Van Loan 1996). Norms on vectors are always Euclidean 2-norms: . Define
the 2-norm of a rectangular matrix by ‖A‖ = sup{‖Ax‖ : ‖x‖ = 1. If A is real and symmetric,
then ‖A‖ = λmax(A). If Ap×p is partitioned,

where b is (p − 1) × 1, then by setting x = (1, 0T)T, one finds that ‖b‖ ≤ ‖A‖. The matrix B =
ρuT + uρT has at most two nonzero eigenvalues, given by

(18)

6.1 Perturbation Bounds

Suppose that a symmetric matrix Ap×p has unit eigenvector q1. We wish to bound the effect
of a “symmetric” perturbation Ep×p on q1. The following result (Golub and Van Loan 1996,

theorem 8.1.10) constructs a unit eigenvector  of A + E and bounds its distance from q1 in
terms of ‖E‖.

Let Qp×p = [q1 Q2] be an orthogonal matrix containing q1 in the first column, and partition
conformally

where D22 and E22 are both (p − 1) × (p − 1).

Suppose that λ is separated from the set of eigenvalues of D22, denoted λ(D22); set
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If ‖E‖ ≤ δ/5, then there exists  satisfying

(19)

such that  is a unit eigenvector ofA + E. Moreover, with d as in
(5),

Let us remark that because ǁeǁ ≤ ǁEǁ, we have ǁrǁ ≤ 1 and

(20)

Suppose now that q1 is the eigenvector of A associated with the “principal” eigenvalue
λ1(A). Here and later, λi(A) denotes the ith largest eigenvalue of A. We verify that, using the

preceding conditions,  is also the principal eigenvector of A + E. In other words, if

, then, in fact, λ* = λ1(A + E).

To show this, we verify that λ* > λ2(A + E). Take inner products with q1 in the

eigenequation for :

(21)

Because A is symmetric, . Trivially, we have . Combine these

remarks with (20) to get .

Now δ = λ1(A) – λ2(A) and, because from the minimax characterization of eigenvalues (e.g.,
Golub and Van Loan 1996, p. 396), λ2(A + E) ≤ λ2(A) + ǁEǁ, we have

6.2 Some Limit Theorems

Collect the noise vectors into a matrix Zp×n = [z1 ... zn]. We turn to properties of the noise
matrix Z. The cross-products matrix ZZT has a standard p-dimensional Wishart Wp(n, I)
distribution with n degrees of freedom and identity covariance matrix (see, for example,
Muirhead 1982, p. 82). Thus, the matrix C = σ2(n−1ZZT – Ip) is simply a scaled and
recentered Wishart matrix.

Geman (1980) and Silverstein (1985), respectively, established almost sure limits for the
largest and smallest eigenvalues of a Wp(n, I) matrix as p/n → c ∈ [0, ∞), from which
follows:
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(22)

(Although the results in the articles cited are for c ∈ (0, ∞), the results are easily extended to
c = 0 by simple coupling arguments.)

Suppose, in addition, that υ is an n × 1 vector with independent N(0, 1) entries, which are
also independent of Z. Conditioned on υ, the vector Zυ is distributed as Np(0,ǁυǁ2I). Because
Z is independent of υ, we conclude that

(23)

where  and  denote chi-squared variables the Up a vector uniform on the surface of
the (p – 1)-dimensional unit sphere Sp–1 in , and all three variables χ(n), χ(p), and Up are
independent.

Now let u = σn−1Zυ. From (23) we have, as p/n → c ∈ [0, ∞),

(24)

6.3 Proof of Theorem 2

Outline—Recall from (11) that, given αn = α(n−1 log(n ∨ p))1/2, the selected subset of

variables  is defined by  and that the estimated principal eigenvector

based on  written . We define a vector ρI with coordinates (ρI,ν) by selecting coordinates

from ρ = (ρν) according to membership in :

We will use the triangle inequality  to show that . There
are three main steps.

(i) Construct deterministic sets of indices  with constants a∓ to be

determined later, which bracket  almost surely as n → ∞:

(25)

(ii) The uniform sparsity, combined with , is used to show that .

(iii) The containment , along with  shows that .
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Details

Step (i): We first obtain a bound on the cardinality of  using the sparsity condition (9).
Using (9), ǀρǀ(ν) ≤ Cν−1/q, and so

Let . Turning to the bracketing relations (25), we first remark that ,

and when ,

Using the definitions of  and writing  for a random variable with the distribution of

 we have

We apply (A.2) from the Appendix with ∊n = (a+ - 1)αn/(1 + a+αn) and for n large and α′
slightly smaller than , so that

with . If , then  for suitable a+ > 2.

The argument for the other inclusion is analogous, using (A.3) in place of (A.2):

with  so long as α′ is now slightly less than α2 and n is large enough. If

, then  for suitable .

By a Borel-Cantelli argument, (25) follows from the bounds on  and .

Step (ii): We first remark that one may easily show that d(ρ + u, ρ) ≤ ǁuǁ/(ǁρǁ – ǁuǁ), so that

norm convergence implies d-convergence. So, for n > n(ω) we have  and so

When , we have by definition
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say, while the uniform sparsity condition entails .

Putting these together, and defining s1 = s1(n) as the solution of the equation Cs−1/q = ∊n,
and writing a ∧ b for min(a, b), we obtain, as n → ∞,

Step (iii): We adopt the abbreviations

and similarly for EI. We consider  and note that the perturbation
term has the decomposition

so that

Consider the first term on the right side. Because  from Step (ii), it follows

that . Because , the first term is asymptotically negligible.

Let  and . On the event , we have ǁ uI

ǁ ≤ ǁ uI+ ǁ and setting , by the same arguments as led to (24), we have

because k+ = o(n) from Step (i).

Finally, because on the event Ωn, the matrix ZI+ contains ZI, along with some additional

rows, it follows that  by (22), again
because k+ = o(n). Combining previous bounds, we conclude that ǁEIǁ → 0.

The separation δn = ǁρIǁ2 → ǁρǁ2 > 0 and so, by the perturbation bound (19),
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7. CONCLUSIONS

In models with observational noise such as (2), in which the number of variables p grows
with the number of cases n, we have reviewed results that show that standard PCA yields
consistent estimates of the principal eigenvectors if and only if p/n → 0.

If the leading population principal eigenvector has a sparse representation in a given basis,
Theorem 2 shows that it can be consistently estimated by selecting a subset of variables with
variances above a threshold and then by restricting the PCA to this selected set.
Incorporating a threshold is found empirically to be helpful. Future theoretical work might
explore the tradeoff between variable selection and thresholding.

In summary, sparse PCA as described here may be of practical benefit in high-dimensional
settings with substantial observational noise in which variation between individuals resides
mainly in a subset of the coordinates in which the data are represented (perhaps after
transformation).
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APPENDIX

A.1 Large Deviation Inequalities

If  is the average of iid variates with moment-generating function exp{∧(λ)} =
E exp{λX1}, then Cramer's theorem (see, for example, Dembo and Zeitouni 1993, sections
2.2.2 and 2.2.12) says that for x > EX1,

(A.1)

where the conjugate function ∧*(x) = supλ{λx – ∧(λ)}. The same bound holds for 

when x < EX1. When applied to the  distribution, with X1 = z2 and z ~ N(0, 1), the
moment-generating function

and the conjugate function

The bounds
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(the latter following, for example, from (47) in Johnstone (2001)) yield

(A.2)

(A.3)

A.2 Proof of Theorem 3

Assume, without loss of generality, that .

False Inclusion

For any fixed constant t, and l ∈ Iout,

This threshold device leads to bounds on error probabilities using only marginal
distributions. For example, consider false inclusion of variable l:

Write  for a  variate, and note from (12) that . Set  for a value

of ∊n to be determined. Because  and , we arrive at

using large deviation bound (A.2). With the choice  both exponents are
bounded above by –b(α)log(n ∨ p), and so P{FI} ≤ p(k + 1)(n ∨ p)−b(α).

False Exclusion

The argument is similar, starting with the remark that for any fixed t and l ∈ Iin,

Consequently, if we set  and use , we get
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this time using (A.3). The bound P{FE} ≤ pk(n ∨ p)–b(α) ke–b(α)(1 – 2an)log(n∨p) follows on

setting  and noting that (1 + αn)−2 ≥ 1 –2αn.

For numerical bounds, setting Ln = log(n ∨ p), we may collect the preceding bounds in the
form

(A.4)
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Figure 1.

True principal component, the “three-peak” curve. (a) The single component ρl = f(l/p)
where f(t) = C{0.7B(1,500, 3,000) + 0.5B(1,200, 900) + 0.5B(600, 160)} and B(a, b)(t) =
[Γ(a + b)/(Γ(a)Γ(b))]ta•1(1 − t)b−1 denotes the beta density on [0, 1]. (b) A sample case
drawn from model (2) with σ = 1, n = 1,024 replications in total, p = 2,048. (c) Sample
principal component by standard PCA. (d) Sample principal component by smoothed PCA
using λ = 10−12 and λ = 10−6. (e, f) Sample principal component by sparse PCA with
weighting function w = 99.5%, and k = 142 and 35, respectively, without and with a
thresholding step.
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Figure 2.

Comparison of the sample principal components for a step function. (a) True principal
component ρl. (b) a sample case drawn from model (2) with σ = 1, p = 2048. (c) Sample
principal component by standard PCA. (d) Sample principal component by smoothed PCA
using λ = 10−12 and 10−6. (e, f) Sample principal component by sparse PCA with weighting
function w = 99.5%, and k = 361 and 233 without and with a thresholding step, respectively.
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Figure 3.

Side-by-side boxplots of ASE from 50 iterations using different algorithms for the “three-
peak” function (a) and for the “step” function (b).
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Figure 4.

Baseline wander is observed in many ECG datasets. One common remedy for this problem
is to deduct a piecewise linear baseline from the signal, the linear segment (dashed line)
between two beats being determined from two adjacent onset points. The onset positions of
R waves are shown by asterisks. Their exact locations vary for different patients and, as seen
here, even for adjacent R waves. The locations are determined manually in this example. To
reduce the effect of noise, the values of onset points are calculated by an average of 5 points
close to the onset position.
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Figure 5.

ECG examples. (Note: Colors refer to online version; “vertical offset” to monochrome print

version for clarity.) (a) Mean curve for ECG sample 1, n = 66, in blue, along with 

(green) and  (red), with  being the estimated first principal component from sparse
PCA (see also (c)). (b) Magnified section of (a) over the range 120 to 220. (c) First principal
components for sample 1 from standard (upper/left y-axis) and sparse PCA (lower/right y-
axis; vertical offset, −0.4); threshold, 0.0044. (d–f) Corresponding plots for sample 2, n =
61. Vertical offset for sparse PCA in (f) is −0.2 and threshold is 0.0075.
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