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Consistency between the Lagrangean and the Hamiltonian formalisms in the quantum 
mechanics is investigated for the type of Lagrangean L=!(IiUii(q)qj-v(q) as an extension 
of a previous paper. The variations IJqi and IJ(Ii should be considered as q-numbers. When 
the Lagrangean can be transformed into the standard form L=H2a2 - V(Q), the commuta­
tion relations of IJqi and IJqi with qi and (Ii are found with the help of the Q-coordinate 
system. It is shown that using the commutation relations, the variation principle leads to 
the same equation of motion as the canonical equation of motion which is obtained in the 
previous paper. 

§ 1. Introduction 

For velocity-dependent potentials, the ordinary procedure obtaining a Hamil­
tonian and an equation of motion does not lead to a consistent result for the 
Lagrangean and the Hamiltonian formalism, though both formalisms have no 
contradiction each other in the classical mechanics. This fact is due to the 
ambiguity of an ordering of operators. In previous works/), 2

) the type of Lagran­
gean L = iiJ.igii(fi- v(q) was investigated*) where gii= gii is a function of qli = lr-vn). 
It was shown that in the quantum mechanics, the correct Hamiltonian should be**) 
H = t {pi, qi} - L-Z (q) with Z expressed in terms of gii and its derivative, and 
this H satisfied the canonical equation of motion. The equation of motion for qi, 

however, could not be derived from the ordinary variation principle due to the fact 
that oqi was a q-number. The proposed formalism was examined for some examples 
(the free Lagrangean for the polar coordinate system, etc.). If there exists the 
canonical transformation from qi to Oa (a= lr-vn) for which the Lagrangean has 
standard form L = !Qa2

- V(O), the consistent equation of motion is derived 
from the equation for Qa. It was indicated in I that the Euler-Lagrange equation 
should be modified and that the ordinary variational method was not valid. 

In this paper, it is, however, proved that if oqi and oqi are appropriately 
regarded as q-numbcrs, the variation principle yields the consistent equation of 

*> The summation convention is assumed for dummy indices. 
**> In this paper, the curly and the square brackets denote the anti-commutator and the com­

mutator, respectively. 
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298 R. Sugano 

motion. In § 2, a brief review of I is presented in a slightly modified way. In 
§ 3, it is shown that the ordinary definition of canonical momentum and its com­
mutation relation with qi are not independent assumptions in this case as well as 
in the standard Lagrangean, provided that the canonical equation of motion is 

accepted. In § 4, the commutation relations of oqi and oqi with qJ and qJ are 
given and with the aid of these commutators, the Euler-Lagrange equation is de­
rived by means of the variational method. Section 5 is devoted to discussion of 
the result. Complicated calculations in the text are given 111 the Appendices. 

§ 2. Summary of the previous wo:rk 

Let us first summarize essential points in the previous work in a slightly 
different way for the convenience of the following argument. The initial Lag­
rangean is given by 

(2·1) 

where qi and qi stand for a generalized coordinate operator and its time derivative, 
respectively. giJ (q) is symmetric with respect to i and j for the Lagrange an to 

be hermitian and giJ and V are functions of only qi (i = lr-.Jn). 
The canonical momentum conjugate to qi is defined by 

and Is assumed to satisfy the canonical commutation relation 

[pi, qj] = - ioij, 

(2·2) 

(2·3) 

and all other commutators vanish. From (2 · 2) and (2 · 3), it follows that 

[qi, qj] = -ifij(q), (2·4) 

if [qi, qJJ is a function of qk only, where hJ is also symmetric 111 z and j and Is 

related to giJ with 

fij (q) gjk (q) = gij (q)fjk (q) = oik, (2 · 5) 

provided that det (giJ) 3;: 0. (2 · 2) and (2 · 3) were the fundamental assumptions 
in I. The assumptions are, however, not independent ones if the canonical equa­
tion of motion is accepted and the commutators [pi, qJJ and [qi, qJJ are functions 
of qk only. The proof will be given in § 3. 

Owing to (2·4) in which fiJ(q) is not a c-number, oqi is in general a q­
number. This fact gives rise to the difficulty that the Lagrange formalism is not 
consistent with the Hamilton one. In order to avoid the trouble, the transforma­
tion of variables IS introduced by which the Lagrangean is brought into the 
standard form 

(2·6) 
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On Consistency between Lagrange and Hamilton Formalisms 299 

if the following condition is satisfied: 

f)qi f)qj -0 
fYOa f)Q/3 gij- a/3 . 

Then the commutation relation is transformed to 

and all others vanish: 

(2· 7) 

(2·8) 

(2·9) 

The consistency between [pi, qj] (or [qi, qj]) and [Pa, 0 13] Is guaranteed 
by (2 · 7) and (2 · 8) . The transformation (2 · 7) can be expressed also in terms 

of Pa, Oa, Pi and qi: 

(2 ·10) 

or 

(2 ·11) 

Since, for the standard Lagrangean (2 · 6) , the Lagrange formalism is con­
sistent with the Hamilton one, the correct Hamiltonian is defined by 

which Is different from 

H and K are related by 

H(p, q) =K(p, q) -Z(q), 

where 

- 1 [ fJqj J [ f)qi J - 4 Pi, fYQa Pb fYOa • 

With the help of (2 · 8), Z can be expressed in terms of fij and gij 

z- 1 + + + f)gij f)gkt 1 f) ( + + f)gkt) 1 82
fij 

- - 16J ij J kU mn fYqm fYqn - 4 fJqi \ J ij J k~ fJqj -4 f)qifJqj 

or 

(2 ·12) 

(2 ·13) 

(2 ·14) 

(2·15) 

(2 ·16a) 

(2·16b) 
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300 R. Sugano 

The first expression (2 ·16a) was obtained in I, the second one (2 ·16b) is derived 
in Appendix B. It is noticed that Z does not depend on q_., or Pi· As the two 
forms of Z are not identical, (2 ·16a) and (2 ·16b) impose a condition for fti or 
gii to satisfy (2 · 8). In other words, for the only fii or gii for which (2 ·16a) 
and (2 ·16b) coincide,*) there exists the transformation (2 · 7) or (2 ·10) leading 
to the standard Lagrange an (2 · 6) . 

From the canonical equations of motion 

(2 ·17) 

or from the Euler-Lagrange equation 

(2·18) 

transforming back Pa and Oa into Pi and qi (or qi and qi), one can obtain 

(2·19) 

and 

d f)L (q, q) _ f)L (q, q) _ 8Z + _!_ f)jik _1__( f£m 8g1~). 
dt f)qi f)qi f)qi 4 f)qi f)qk Oqm 

(2·20) 

Hence, the Hamiltonian H is the time generator of the (p, q) system and its 
eigenvalue gives an energy of the system. The extra terms in (2 · 20) are due 
to the fact that oqi and oqi are q-numbers (see § 4). The Euler-Lagrange equa­
tion looks in appearance as if the system is non-conservative, however, (2 ·18) 
indicates that the system is conservative if (2 · 8) is satisfied. 

§ 3. Definition of canonical momentum and commutation relation 

In this section, it is proved that the definition of canonical momentum (2 · 2) 
and the commutation relation (2 · 3) are not independent assumptions for the 
Lagrange an (2 ·1), but one of them requires another one under the following 
conditions: 

(i) the canonical equation of motion (2 ·19) is valid, 
(ii) the Hamiltonian is defined by 

H=i{Pi, qi} -L-A, 

where A is an arbitrary function of qi, 
(iii) the commutators [pi, q1] and [qi, q1] are independent of qk: 

(3·1) 

*) In fact, for examples for which explicit forms of the transformation are known, (2 ·16a) 
and (2·16b) yield the same Z. As the special example, putting Uii=goii• f=g- 1, one obtains the 
relation from (2·16) 

(n2+n-2) ( fjf )
2 
=4(n-l) a:r f. 

(Jqi (Jq/J 

This is not satisfied with an arbitrary f except the case n=l. 
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On Consistency between Lagrange and Hamilton Formalisms 301 

(3·2) 

From the conditions (i), (ii) and (iii) it follows that 

qi = i[H, qi] = ~ {~1i, q1} + ~ {p1, 'IJii} - i[L, qi]. (3·3) 

Here one has 

(3·4) 

where 

(3·5) 

Substituting (3 · 4) into (3 · 3), one finds 

{<ib ~,. + iiJ,,} + 1 PJ- :~. ~,,} = 0 .. (3·6) 

Thus, due to (3 · 6), if Pi= fJLjfJqi, then ~iJ = - iaif and vice versa. 
A modification of the commutation relation, therefore, cannot remove away 

the difficulty mentioned in § 1, if the definition of canonical momentum (2 · 3) and 
Hamiltonian (3 ·1) are employed. 

§ 4. Euler-Lagrange equation and variation principle in q-system 

If the transformation (2 ·10) or (2 ·11) exists in the Q-coordinatc system, 
variations aQa and ada can be regarded as c-numbcrs. But aqi and aqi cannot 
be taken as c-numbcrs. Since one has 

a . - 1 {aQ· aqi } + 1 {Q· fJ2qi aQ } (4. 2) 
qi- 2 a' fJOa 2 a' f)Qaf)Q/3 /3 ' 

aqi and aqi do not commute with qi when aOa and ada arc c-numbers. Differ­
entiating ( 4 ·1) with respect to time, one easily sees*) 

This fact ( 4 · 3) makes the variational principle applicable to this case. In fact, 
if one treats aqi and aqi as q-numbers in the variational method, it is snown that 

*l In I, (4·3) did not hold as iJqi was assumed to be a c-number, although this assumption 
was not used in the calculation there. The consequence of I, therefore, does not need to be 
changed. Suppose iJQa and iJQa to be c-numbers, then one must put both iJqi and iJqi into q-num­
bers. 
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302 R. Sugano 

the consistent equation of motion (2 · 20) can be derived from 

iJ ft
2

L(q,q)dt=O. 
Jtl (4·4) 

Before doing this, one has to obtain the commutation relations [qi, oq1], 

[oqi, iJJ] and [qi, oq1]. However, there is no general criterion to settle these 
commutators only in the q-system. Since oOa and oQa are C-numbers, one can 
obtain these commutators with the help of ( 4 ·1) and ( 4 · 2). The derivation is 
shown in Appendix B and the result is 

(4·5) 

(4·6) 

. . 
[q_i, iJq_J] = ~ o{fikfJ7,Gk~m, iJm} + ~ { (fikf1~+ f 1kfa)fmnGmkrGnr-sDqs, iJr} 

(4·7) 

with 

(4·8) 

The commutator (4 · 6) is in accord with (2 · 4) as IS seen by taking variation 
of (2 · 4). The i-j anti-symmetric part of ( 4 · 7) is also consistent with the com­
mutator 

which is obtained from (2 · 3) and (2 · 2). Here G[k£Jm denotes the k-l anti-sym­
metric part of Gk£m; G[k£Jm = f)g£m/Oqk- fJgkm/fJq£. In ( 4 · 6) and ( 4 · 7) commutators 
of oqi and oqj are coupled with other component of variation oqk (k~i). 

With these preparations, one can now proceed to the variational method. 
The variation of the Lagrangean (2 ·1) is 

~L ( ") 1 c~. . + . ~. ) + 1 . fJgiJ ~ . fJv ~ u q, q =- uqigiJqJ qigiJUqJ -qi -::::l-uqkqJ-~Uqk · 
2 2 uqk uqk 

By using ( 4 · 5) "--" ( 4 · 7), all oqi and oqi can be shifted to the right. 
lengthy calculation, one finds 

where 

R _ - i + + fJgik G i fJfk£ fJgk£ i + + G G 
ia=-Jk~Jmn_::::\_ [~m]a-- -::::\- -::::l---

8 
Jk~Jmn ikm a'tn' 

4 uqn 8 uqa uqi 

(4·9) 

After a 

(4 ·11) 
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On Consistency between Lagrange and Hamilton Formalisms 303 

Sa= _ _!_ ~(Jk~ 8jij 8gij) + _!_ _i__(hJ 8Jk~ 8gjb) + _!_ 8jik ~( jj7; 8gij) 
16 8qa 8qk 8qb 8 8qa 8qi 8qk 4 8qa 8qk , 8q~ 

= 8Z + _!_ 8fik _!_( 11~ 8gij). c4 . 12) 
8qa 4 8qa 8qk 8q~ 

From the relation 

it follows that 

Then it IS easy to see that 

afij agij = afij agij 
8qk aq~ aqb aqk 

(4 ·13) 

(4 ·14) 

Ria=O. (4·15) 

The third term of (4 ·10) vanishes because (Jqi = 0 at the boundary. Substituting 

(4·12) and (4·15) into (4·10), one gets 

ft 2 [_3_ aL _ 8L _ aZ _ _!_ ajik ~(' /J7, fJgiJ ).](Jqa = 0 . ( 4 ·16) 
Jt1 dt 8qa aqa aqa 4 aqa aqk . aqb . 

Thus the modified Euler-Lagrange equation (2 · 20) is obtained. 
As the consequence, if one deals with (Jqi and (Jqi as q-numbers and uses 

the commutation relations ( 4 · 5) to ( 4 · 7), the principle of the least action is 
valid also in the case of velocity dependent potential. The correct Hamiltonian, 
whose eigenvalue is an energy of a system, is H of (2 ·14). Then the canonical 
equation of motion with this His same as the modified Euler-Lagrange equation 
derived from the variation principle. In this formalism, everything is consistent. 

§ 5. Discussion 

As was pointed out in § 3, the ordinary definition of canonical momentum 
and commutation relations are not independent assumptions if the canonical equa­
tion of motion is required. It is, however, left as an open question whether it 
is possible or not to construct a consistent formulation by modifying both of the 

. assumptions and by defining the Hamiltonian in the ordinary way: H = t {pi, 

qi} -L. 
Since the variation principle is adequate also in the case of the velocity­

dependent potential, if the Lagrangean is invariant under a continuous transforma­
tion, a conservation law of the associated physical quantity follows fro~ the 
variation method keeping an ordering of operators. 

It would be worthwhile to notice that formulation of the non-linear chiral 
invariant Lagrangean3

) should be re-examined from the viewpoint of our argument. 
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304 R. Sugano 

The quantization of the gravitational field also has a relation to our theory, though, 
in this case, there is no transformation to the standard form. 

The argument in this paper is valid only in the special case where the 
transformation to the standard form exists. Therefore, it remains to build up a 
consistent theory in general cases where no such transformations exist. The 
main problem is to set up commutation relations of (Jqi and (Jqi with q1 and q1 

without resorting to the 0-system. The i-j symmetric part of [qi, (Jq1] and the 
i-j anti-symmetric part of [qi, (Jq1] can be found, as was noticed in § 4, from the 
commutators [qi, q1] and [qi, q1], respectively. If one disregards, therefore, the 
first form of Z (2 ·16a) and takes only the form (2 ·16b) throughout the theory, 
one can have the consistent theory by employing the commutators ( 4 · 5) to ( 4 · 7). 
Needless to say, it should be examined whether another possibility exists or not. 
Anyway, however, the other formulation, if possible, has to include the one ex­
tended in this paper as the special case. 

Appendix A 

Derivation of relations between qi and Oa 

Before calculating Z, it is convenient to obtain relations between qi and Qa 

which are useful in the derivation of Z and commutators of (Jqi and (Jqi in Ap­
pendix B. 

From (2 · 8) and 

(A·l) 

it follows that 

(A·2) 

and 

(A·3) 

Differentiation of (A· 3) with respect to qk gives 

02
Qa 80a + 8Qa 02

Qa = ogij . 
oqioqk oqi 8qi 8qi8qk 8qk 

(A·4) 

Integrating the second term of (A· 4) by part, one finds 

8 2Qa 8Qa 02Qa 80a = Bgij _ f)gik 

8qi8qk 8qj oqioqj 8qk oqk oq, 
(A·5) 

and then 

(A·6) 
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On Consistency between Lagrange and Hamilton Formalisms 305 

where 

(A·7) 

Analogously one has 

fPq~, 8q1 +- 8q~, .. 82q1 
8Qa8Qfl 8Qa BQa 8Qa8Qfl 

(A·8) 

and 

82q~, 8q1 = _ _!._ fr f· G 8qm. (A·lO) 
8Qa8Qfl 8Qa 2 ~k :17, &km 8Qfl • 

In the step from (A· 8) and (A· 9) to (A ·10), t,tses have been made of (A· 2) 
and the relation 

(A·11) 

Differentiating the first equation of (A· 2) and using (A· 6), one gets 

fPq~, - - _!._ + G 8qr, 
8q18Qa 2 J ik jH 8Qa • (A·12) 

Similarly from (A·2) with the help of (A·6) and (A·11), it follows that 

(A·13) 

It . will be worthwhile to note that (8 /8Qa) () = (} (8 /80a) because, noting 
&Pa = oQa = c-number, 

-io 8A(Q) 
80a 

o[Pa, A(Q)] = [oPa, A(Q)] +[Pa, oA(Q)] = -i-8-&A(Q), 
8Qa 

(A·14) 

while (8 /8q~,) (J~(J (8 /8qi) . In fact, one finds 

8(Jq;, =_E_( 8q., iJQa) =- _!._ f~,kGjlc&aq,. 
8qj 8qj 80a 2 

(A·15) 

Appendix B 

Derivation of Z and commutators of aq~, and (Jqi 

Although the first expression of Z (2 ·16a) was obtained in I, a simpler 
derivation is presented here. Since the two expressions of Z in (2 ·15) lead to 
the same results (2 ·16a) and (2 ·16b), the second one of (2 ·15) will be employed 
in the following derivation. Then one gets 
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306 R. Sugano 

4Z =- fl"qi f?q, - _ __!!_( fJ2qi fJq,) + fJsqi fJq, 
fJq,fJOa fJqifJQa fJqi fJq,fJOa fJQa fJqifJqjfJQa fJQa 

- - f) ( fJ2qi ) + f) ( fJ2qi ) 
- fJqi fJQa2 fJQa fJqifJQa • 

(B·l) 

With the aid of (A ·12) and (A ·13), this becomes 

4Z = - fJ Ft _l_h1 fJ g tj F k _l_fk~_}____ ( n)i&), 
fJqi 2 aqk 2 aqk aq~ 

(B·2) 

which immediately reduces to (2 ·16a). 
On the other hand, if one applies (A ·12) to the first expression of Z in 

(B ·1), one has 

Noting Gimn=Gnmi and hJ=fJi' one can easily see that hkfinGim.n is symmetric 
with respect to k and l. Then G1k" reduces to agk~jaq1 and hence 

4Z =l_ fJnn +. G· 
4 

~ J Jm. ~m.n 
uqi 

= _l_ f;jk an~ fJgn + l_ fjk fJnr. fJgk~ ' 
4 fJq;j aqk 2 aqj fJqi 

(Bo3) 

where (A ·11) has been used. 
Next let us calculate the commutators of oqt and oqto Here oQa and oQa 

are assumed to be c-numbers. (4·5) is obvious. Using (4o1) and the expression 

qi = ~ {da, :~:}' (Bo4) 

one finds, with the aid of (A o10) 

[qt, oq1] =- i a~~~Qfl :~: oQfl = ~ hkfJ~Gk~m.oqm.. (Bo5) 

Similarly (4 o 2) and (A ·10) give· 

[ o . J - [ Q. J fJ2qj ao - 0 fJqi fJ2q. i 
qt, qi - qi, a fJQafJQfl ~fl -z fJQa fJQafJQs oQfl = - Z fik fJT,GktrnOqm. o 

(Bo6) 

Finally let us obtain [qt, oqi]. With (4·2) and (B·4) one has 

[ .. o 0 J - - i fJqi fJ2q, ad - .i.. {o ( fJ2qj ) oqi "'o( fJqj ) fJ2qi Q. } 
qt> qj - fJQa fJQafJOfl 13 2 fJQafJOfl fJQa fJQa fJQafJQ13 ' fl 
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On Consistency between Lagrange and Hamilton Formalisms 307 

(B·7) 

For the first term, one may rewrite, by using (A ·10), as 

For the second term, one obtains, using (A ·14), (A ·10) and (A ·15), 

Substitution of (B · 8) and (B · 9) into (B · 7) leads us to ( 4 · 7). 
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