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Consistency between the Lagrangean and the Hamiltonian formalisms in the quantum
mechanics is investigated for the type of Lagrangean L=£%d;9;;(¢)d;—v(g) as an extension
of a previous paper. The variations d¢g; and d¢; should be considered as g-numbers. When
the Lagrangean can be transformed into the standard form L=3Q,2—V(Q), the commuta-
tion relations of dg; and &g; with g; and ¢; are found with the help of the Q-coordinate
system. It is shown that using the commutation relations, the variation principle leads to
the same equation of motion as the canonical equation of motion which is obtained in the
previous paper.

§ 1. Introduction

For velocity-dependent potentials, the ordinary procedure obtaining a Hamil-
tonian and an equation of motion does not lead to a consistent result for the
Lagrangean and the Hamiltonian formalism, though both formalisms have no
contradiction each other in the classical mechanics. This fact is due to the
ambiguity of an ordering of operators. In previous works,”® the type of Lagran-
gean L=1%¢,9:;9;,— v(q) was investigated® where ¢;;,=¢;; is a function of ¢;(Z=1~n).
It was shown that in the quantum mechanics, the correct Hamiltonian should be**
H=4%{{ps, ¢} —L—Z(q) with Z expressed in terms of ¢;; and its derivative, and
this H satisfied the canonical equation of motion. The equation of motion for g;,
however, could not be derived from the ordinary variation principle due to the fact
that 0g; was a g-number. The proposed formalism was examined for some examples
(the free Lagrangean for the polar coordinate system, etc.). If there exists the
canonical transformation from ¢; to Q,(a¢=1~n) for which the Lagrangean has
standard form L=10,—V(Q), the consistent equation of motion is derived
from the equation for Q,. It was indicated in I that the Euler-Lagrange equation
should be modified and that the ordinary variational method was not valid.

In this paper, it is, however, proved that if {g¢; and 0¢; are appropriately
regarded as g-numbers, the variation principle yields the consistent equation of

*) The summation convention is assumed for dummy indices.
**%) In this paper, the curly and the square brackets denote the anti-commutator and the com-
mutator, respectively.

220z 1snbny |z uo1senb Aq 9z96181/.62/1/9%/e1o1e/did/woo dnoolwspede)/:sdyy woly papeojumoq



298 R. Sugano

motion. In §2, a brief review of I is presented in a slightly modified way. In
§ 3, it is shown that the ordinary definition of canonical momentum and its com-
mutation relation with g; are not independent assumptions in this case as well as
in the standard Lagrangean, provided that the canonical equation of motion is
accepted. In §4, the commutation relations of §¢; and 0¢; with ¢; and ¢, are
given and with the aid of these commutators, the Euler-Lagrange equation is de-
rived by means of the variational method. Section 5is devoted to discussion of
the result. Complicated calculations in the text are given in the Appendices.

§2. Summary of the previous work

Let us first summarize essential points in the previous work in a slightly
different way for the convenience of the following argument. The initial Lag-
rangean is given by

L=%4¢9;;(@¢;—v(g),  (@E=1~n) 2.1

where ¢; and g; stand for a generalized coordinate operator and its time derivative,
respectively. ¢;;(q) is symmetric with respect to 7 and j for the Lagrangean to
be hermitian and ¢;; and V are functions of only ¢;((=1~n).

The canonical momentum conjugate to g¢; is defined by

1.
=0k L4 0@, 2-2)
qdi 2 )

and is assumed to satisfy the canonical commutation relation

[ pi, @71 = — 104, (2-3)
and all other commutators vanish. From (2-2) and (2-3), it follows that
[(21?’ qJ] = “Zf;J (Q) ’ (2 '4')

if [di, q;] is a function of g, only, where f;; is also symmetric inZ and j and is
related to ¢;; with

Sf11(@) 91(@) = 9:5(@) 1 (@) =0 (2-5)

provided that det (g;;) =0. (2-2) and (2-3) were the fundamental assumptions
in I. The assumptions are, however, not independent ones if the canonical equa-
tion of motion is accepted and the commutators [ 2y, ¢;] and [§:, ¢;]1 are functions
of g; only. The proof will be given in § 3.

Owing to (2-4) in which f;;(¢) is not a c-number, 0g; is in general a g-
number. This fact gives rise to the difficulty that the Lagrange formalism is not
consistent with the Hamilton one. In order to avoid the trouble, the transforma-
tion of variables is introduced by which the lLagrangean is brought into the
standard form ‘

L=4Q0.-V(Q), (@=1~n) (2-6)

220z 1snbny |z uo1senb Aq 9z96181/.62/1/9%/e1o1e/did/woo dnoolwepede//:sdyy woly papeojumoq



On Consistency between Lagrange and Hamilton Formalisms 299

with®

Q. @), Q‘a:%{qi, @5} @-7)

if the following condition is satisfied:

Oae 9454 5, - (2-8
0Q. 00, 20,7 (2-8)

Then the commutation relation is transformed to
[Pﬂé’ Qﬁ] = [Qa’ Qﬁ] - —iacr/s’ . (29)

and all others vanish.

The consistency between [, q;] (or [ds: g;]) and [P, Qg] is guaranteed
by (2-7) and (2-8). The transformation (2:7) can be expressed also in terms
of Py, Q. p; and g;:

1 0qq
Qa: a ’ Pa:_'“{ (1) _1,_} 2‘10
Q.(q) 5 p 50, ( )
or
a=a:@,  pi=t{p, 12, (2-11)
2 a(]i

Since, for the standard Lagrangean (2-6), the Lagrange formalism is con-
sistent with the Hamilton one, the correct Hamiltonian is defined by

H(P,Q)=P,Q,—L(Q,Q), (2-12)
which is different from

K(P, Q) E%—{pw Q’L} —L(Qs Q)- (2'13)
H and K are related by

H(p,q) =K(p,q) —Z(q), (2-14)
where

Z(Q) = - Qaz + % {Pi’ Qz}

il ]l ]
pz,ao szaQa- ( )

With the help of (2:8), Z can be expressed in terms of f;; and ¢;;

Py 2 )
Z= =i o St Ot 2 D (g, f, 00 ) 2 0T (3.160)

0qm 0gn 4 Oqi 0q; /4 0qi0q,
or v
_ —f 0f e agkl f,, 0fie 095 ] » (2-16b)
0q; @qy 0q; aq}c

*) 8Q,/0q; and 8q;/0Q, are understood to be i[p;, Q,] and i[P,, g;], respectively.
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300 R. Sugano

The first expression (2-16a) was obtained in I, the second one (2-16b) is derived
in Appendix B. It is noticed that Z does not depend on ¢; or p;. As the two
forms of Z are not identical, (2-16a) and (2-16b) impose a condition for f;; or
9:; to satisfy (2-8). In other words, for the only fi; or ¢;; for which (2-16a)
and (2-16b) coincide,® there exists the transformation (2-7) or (2-10) leading
to the standard Lagrangean (2-6).

From the canonical equations of motion

Qu=i[H,Q.),  P.=i[H,P,] (2-17)
or from the Euler-Lagrange equation
d LQ.Q)_LQD _, 2.18)
dt 00, 00,
transforming back P, and Q, into p; and g; (or ¢; and g;), one can obtain
d¢:=i[H, q:],  pi=ilH, p:] (2-19)
and
d 0L(g,q) 0L(g,¢) _0Z . 1 0fyp 0 ( Wn)
— =02 1 0w O [ r OFn) 2.20
dt 0q; 0g; 0q: 4 0q; 0qx /i 0Gm ( )

Hence, the Hamiltonian H is the time generator of the (p,q) system and its
eigenvalue gives an energy of the system. The extra terms in (2-20) are due
to the fact that dg; and 0¢; are g-numbers (see §4). The Euler-Lagrange equa-
tion looks in appearance as if the system is non-conservative, however, (2-18)
indicates that the system is conservative if (2-8) is satisfied.

§ 3. Definition of canonical momentum and commutation relation

In this section, it is proved that the definition of canonical momentum (2-2)
and the commutation relation (2-:3) are not independent assumptions for the
Lagrangean (2:1), but one of them requires another one under the following
conditions:

(i) the canonical equation of motion (2-19) is valid,

(ii) the Hamiltonian is defined by

Hz%{.pi’q.i} _L_A’ (3’1)

where A is an arbitrary function of g,
(iii) the commutators [ s, g;] and [di, g;] are independent of gy:

*) In fact, for examples for which explicit forms of the transformation are known, (2-16a)
and (2-16b) yield the same Z. As the special example, putting g;;=¢8;;, f=g 1, one obtains the
relation from (2-16)

(n2+n-2)(gi)2=4(n—1>§%f.

This is not satisfied with an arbitrary f except the case n=1.
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On Consistency between Lagrange and Hamilton Formalisms 301

[ 24 a1 =8:5(2), [di 951 =7:5(Q) (3-2)
From the conditions (i), (ii) and (iii) it follows that

di=ilH, al = 45} + é{m, 15 —ilL, ai]- (3-3)
Here one has
1 1 oL
[L, q;]= szgngk+ — Q39 ki = {%i, '_,“}3 (3-4)
where
oL
17> 3:5
a2 {9 » st - (3-5)

Substituting (3:4) into (3-3), one finds
{q,ya SJ‘L_}—Zé‘l]} + {pj‘“—g—‘_Ls sz} :O (3'6>

Thus, due to (3-6), if p;=0L/0q;, then &;= —i0;; and vice versa.

A modification of the commutation relation, therefore, cannot remove away
the difficulty mentioned in § 1, if the definition of canonical momentum (2-3) and
Hamiltonian (3-1) are employed.

§4. Euler-Lagrange equation and variation principle in g-system
If the transformation (2-:10) or (2-11) exists in the Q-coordinate system,

variations 0Q, and 8Q, can be regarded as c-numbers. But J¢; and 0¢; cannot
be taken as c-numbers. Since one has

b= aaélaQ“’ 4-1)
dd=+ 0. gg} L0 - agbﬁagﬁ} (4-2)

0q; and 0¢; do not commute with ¢; when 0Q, and 0Q, are c-numbers. Differ-
entiating (4:1) with respect to time, one easily sees™®

d
——6 1:26.7:- 4'3
—0a:=0¢ (4-3)

This fact (4-3) makes the variational principle applicable to this case. In fact,
if one treats §g; and 0¢; as g-numbers in the variational method, it is snown that

* In I, (4-3) did not hold as 8¢; was assumed to be a ¢-number, although this assumption
was not used in the calculation there. The consequence of I, therefore, does not need to be

changed. Suppose 6Q, and dQ, to be c-numbers, then one must put both 0q; and d84; into g-num-
bers.
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302 R. Sugano

the consistent equation of motion (2-20) can be derived from

5 sz(q, Q) dt=0. (4-4)

Before doing this, one has to obtain the commutation relations [g,, 04d,],
[0q:, ¢;1 and [gs, 04;]. However, there is no general criterion to settle these
commutators only in the g¢-system. Since 0Q, and 0Q, are c-numbers, one can
obtain these commutators with the help of (4-1) and (4-2). The derivation is
shown in Appendix B and the result is

[Qi! 6Q.7':| =0 ’ (45)

[di» 0q;]1 = — [qs, 0d;] = %ﬁk Ji1GrimOqm » (4-6)

[q.i’ 6Q.7] = i 6 { .fzk f:ilonZm; q'/n} + é { (.fzk fjl +fjlc fil)fmnGkaGnlsé\QSa Q'r}

“4-7)
with

aglm agkm agkl
G 'In:Gm =——__‘~+“‘—- 4'8
" T bq  0qr  Ogm “-8

The commutator (4-6) is in accord with (2-4) as is seen by taking variation
of (2-4). The 7y anti-symmetric part of (4-7) is also consistent with the com-
mutator

Lds ¢;1 = ‘;— { Jir S1Gruvims dmy

which is obtained from (2:3) and (2-2). Here Gy denotes the %/ anti-sym-
metric part of Gum; Greogm=09m/0qx —09xm/0q;. In (4-6) and (4-7) commutators
of 0g; and 0¢; are coupled with other component of variation dgi (k=%7).

With these preparations, one can now proceed to the variational method.
The variation of the Lagrangean (2-1) is

N Lo 10y, . 0
0L(q, §) = = (0¢:9:14;+ d:9:3047) + =4 —gi6Qij—l6Qk . 4-9)
2 2" 0q 0z
By using (4-5) ~(4-7), all §q; and 0¢; can be shifted to the right. After a

lengthy calculation, one finds

0L (g, @) = 2L 5¢u+ 0L g0+ L (g,0f15) + {4 Riadgal +Sabga,  (4-10)
04q 0qq 4 dt
where '
—1 09, J asz 09k Z
Rig="" fur Fun 2% Gpymyy — — 28 28—~ fo faunGienGatn » 4-11
4 szf 9, [bm] 8 0. 9as 3 S/ ik 2 ( )
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On Consistency between Lagrange and Hamilton Formalisms 303

__ 10 0fiy 095\, 1 0 0fie 09n\ 1 0fu O 09:s
s 5 ) 1 ) o e 2 (180
16 0g. T 0qx an> 8 0ga Fus 0q: O0qr/ 4 0qa OQk(‘f‘; e

_0Z 1 0fu a< @yif>
= R CALNE AN LA BN 4-12
o00 T 9gu 0ar\ " 0y (4-12)

From the relation

fis 09:; _ _ 0fy 9is (4-13)
an an
it follows that
0fis 0955 _ 0fis 094 (4-14)

0qr 0q: 0qr 0qx .
Then it is easy to see that
R;a=0. (4-15)

The third term of (4-10) vanishes because 0g;=0 at the boundary. Substituting
(4-12) and (4-15) into (4-10), one gets

“"d 0L oL 0Z 1 0fu 0 [ 0.%7)]6 —0 4-1
£ —— s = : «=0. -16
J;x [dt 0§, 0gs 0gs 4 0q, qu<- /s g, /. 7 ( )

Thus the modified Euler-Lagrange equation (2-20) is obtained.
As the consequence, if one deals with J¢; and 0¢; as ¢-numbers and uses

the commutation relations (4-5) to (4-7), the principle of the least action is
valid also in the case of velocity dependent potential. The correct Hamiltonian,

whose eigenvalue is an energy of a system, is H of (2-14). Then the canonical
equation of motion with this / is same as the modified Euler-Lagrange equation
derived from the variation principle. In this formalism, everything is consistent.

§ 5. Discussion

As was pointed out in § 3, the ordinary definition of canonical momentum
and commutation relations are not independent assumptions if the canonical equa-
tion of motion is required. It is, however, left as an open question whether it
is possible or not to construct a consistent formulation by modifying both of the
assumptions and by defining the Hamiltonian in the ordinary way: H=3{p:,
gt — L.

Since the variation principle is adequate also in the case of the velocity-
dependent potential, if the Lagrangean is invariant under a continuous transforma-
tion, a conservation law of the associated physical quantity follows from the
variation method keeping an ordering of operators. |

It would be worthwhile to notice that formulation of the non-linear chiral
invariant Lagrangean® should be re-examined from the viewpoint of our argument.
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304 R. Sugano

The quantization of the gravitational field also has a relation to our theory, though,
in this case, there is no transformation to the standard form.

The argument in this paper is valid only in the special case where the
transformation to the standard form exists. Therefore, it remains to build up a
consistent theory in general cases where no such transformations exist. The
main problem is to set up commutation relations of d¢; and 0¢; with ¢; and ¢,
without resorting to the Q-system. The 7j symmetric part of [¢;, 0g;] and the
i-j anti-symmetric part of [g;, 0d;] can be found, as was noticed in §4, from the
commutators [ds, g;] and [di, ¢;], respectively. If one disregards, therefore, the
first form of Z (2-16a) and takes only the form (2-16b) throughout the theory,
one can have the consistent theory by employing the commutators (4-5) to (4-7).
Needless to say, it should be examined whether another possibility exists or not.
Anyway, however, the other formulation, if possible, has to include the one ex-
tended in this paper as the special case.

Appendix A
Derivation of relations between q; and Q.

Before calculating Z, it is convenient to obtain relations between ¢; and Q,
which are useful in the derivation of Z and commutators of §¢; and d¢; in Ap-
pendix B.

From (2-8) and

aQa aQi aQi @Qa
0La 099 _ 5 9 ¢, (A-1
dg; 0Q, 77 00, 0q; )
it follows that
aqu aQa aQa @q
:ﬁ > :gt ! (A'Z
00. " ba; 0g: " 0Q. )
and
0Qa 0Qu _ 0q: 0q; _ A.3
da: ba; T 90. 60, 7 (&-3)
Differentiation of (A-3) with respect to g gives
2 2
aQa 6Qa+aQa aQa :agi]‘ . (A.4)

0q:0qx @qj 0q: 66118%: 0qx
Integrating the second term of (A-4) by part, one finds

02Qa aQa . 62Qa aQa — agzj _ agzk (A'5)
0q:0qx 0‘]1‘ aQi@(Jj 0qr 0qx @C]j

and then

2
6Qa aQa:_L(agzj _agzk + agjk>E}“Gijks (AG)
aQi@Qk @qj 2 @Qk aqj a(]i 2
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On Consistency between Lagrange and Hamilton Formalisms 305

where
‘ Gijlc = Glcﬁ . | (A * 7)
Analogously one has ‘

Oq: _ 8q; | Oq: 0qy _0fy _0fiy 5 0Qs  (p.g)
0Q.0Qs Qs Q. 90005 0Qs 0ax " O |

0°¢:  0q; _ 0qs 0°q; =—<fi @ﬁz',fjkﬁﬁ)@_Q_e (A-9)

00,00, 00, 00, 00,00 0gx / Oqu
and _ v
@zqi @Qj G 0qm .A ‘
= P m A-10)
90,00, 30, fkfﬂ o0, ( )

In the step from (A-8) and (A-9) to (A-10), uses have been made of (A-2)
and the relation

N 0n = — 0y . (A-11)
0qm 0gm
Differehtiatirig ’thef first eq_gat‘i‘oh of (AZ) and using (A-6), one gets
0%q, @ s
: =~—~— A-12
aqy'an ﬁk jk"'an ( )
Slmllarly from (A-2) Wlth the help of (A-6) and (A-11), it follows that
@ 0% _ 0fiy agkl
—_ + if e . A_‘].S
00, 0a 3 Fifo 0a; (B19)

It will be worthwhile to note that (0/0Q,)0= 6 (@/GQa) because, noting
0P, =0Q, = c-number,

~i5 2240 0[P, A1 =[P, AQ)1 4P 04 @] = ~i 50 04,
- (A-14)
while (0/3%) 0=0(0/0g;). In fact, one ﬁnds
00g: _ 0 ( 0g; 1. _
dq; aqj<aQa Q") 5 TuCmdas. | (A-15)

Appendix B
Derivation of Z and commutators of dq; and 04,

Although the first expression of Z (2:16a) was obtained in I, a simpler
derivation is presented here. Since the two expressions of Z in (2-15) lead to
the same results (2:16a) and (2-16b), the second one of (2:15) will be employed
in the following derivation. Then one gets
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306 R. Sugano

A7 = — 0°g; 0%q; — 0 ( 0%g; a%)_{_ 0°q; 0g,
aq‘iGQa OQiaQa 8Qi aq‘f@Qa ath GQiOQjaQa aQu
o [ 0%q; 0 0%g;
=— 2 + ), B-1
aQi<aQa2> aQa <aQiaQu> ( )
With the aid of (A-12) and (A-13), this becomes
oF; 1, 09 1, 0 og
4z=- e Oup e O (5, 008) B.2
oq; 277 Oqu * 2f“5qk<fi @QL> ®2)

which immediately reduces to (2-16a).
On the other hand, if one applies (A-12) to the first expression of Z in
(B-1), one has

. 1 6(1& 6Qn
4.2 = —f G _tr f. Gz ——
1fk JmaQatfj7 OQa

= - -—i—ﬁk f;m ﬁnijlGimn .

Noting Gimn=Gnm: and fi;=fj, one can easily see that fix finGimn is symmetric
with respect to k2 and [. Then Gjx reduces to 89/0g; and hence

1 0f;
47 = — - 'mGimn
4 @qj f;

1 Ofu 09u | 1 0fu 09w
=—=f; e VR L 2 YR B.3
4 S 0q; Ogx 2 I 0q; 0q; ( )

where (A-11) has been used.
Next let us calculate the commutators of 0g; and 0g;. Here 0Q, and 0Q.,
are assumed to be c-numbers. (4:5) is obvious. Using (4-1) and the expression

3y = l{ . 0a } B.4
G= Qe 0.1’ (B-4)
one finds, with the aid of (A-10)
. . 0%g 0q; z
i,a = 7 6 =--—73 G mé‘ m e B’5
[q Qj] z aQaan 0. Qg 2 fksz km0q ( )

Similarly (4-2) and (A-10) give-

. 5 azq i . aqi a?q P
QB6Q]= di, Qa] . 5Q =1 J
Lae a1 =1 00.0Qs " 0Qa Q.00

00, = ——;*fikfﬂ.GkZm()‘Qm .
| (B-6)
Finally let us obtain [q;, 0¢,]. With (4-2) and (B-4) one has

. n . 0q;  0qy s 1 { 0°q; |\ 0q: dq 0’qs . }
0 0] = — 9 50, -t ls : (94 ,
40, 095 = =7 0Q, 00,00, Qo (@Qaé‘Q,s ) 00, <6’Qa> 0Q.0Q4 <
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On Consistency between Lagrange and Hamilton Formalisms 307

) \ _
z_ié\{OQi 0%q; ,Qﬁ}

2 10Q, 0Q.004 :
L L

For the first term, one may rewrite, by using (A-10), as

0q; 0%q; . } _ { 0q; 0*q; 005 . } _ __1~ . G )
{an 50.00," 24 " 60, 5000, oq &= g VeSmCme 4.
(B-8)

For the second term, one obtains, using (A-14), (A-10) and (A-15),

f(e) o of = [0 s B 32 )

_J00g; 0qy ’q; 00, . } 1, . G Goso s
{ aq‘ aQa aQaaQB aq1c e 4 {ﬁmf:yr ﬁs imn T srk0qn, Qk}-
(B-9)

Substitution of (B-8) and (B:9) into (B-7) leads us to (4:7).
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