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ABSTRACT

Least Squares ldentification Ís considered from the
Bayesian point of vÍew. Necessary and sufficient
condition for consistency almost everywhere is given
under the assumption that the data Ís generated by a
regression model with whj-te and Gaussian noise.
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I INTRODUCTTON

The method of Least Squares (LS) has been treated by many
authors, starting with Gauss. Mann and lrrard (1943) brere
the first ones to appry it to time-series modelling, and
also to prove its consistency for this case. Âström (196g)
extended the consi-stency result to systems with an input,
and Ljung (1976) has shown convergence and consistency
under very mild condi-tions that e,g. include general
feedback si-tuations.

rn the present paper a Bayesian approach to the identifi-
cati-on procedure is used which gives a different type of
result. The true system parameters are thus regarded
random variabres and not constants, which is usually the
case.

The main resurt is necessary and sufficient condition for
consistency a.e. for the LS-method in the Gaussian white
noise case under a week condition. This is proved in a
series of theorems, where the basic idea i-s that the
LS-estimate is in the Gaussian case a conditional mean, and
therefore converges a.e. according to martingale theory.



2. THE LEAST SOUARE S IDENTTF'I CATION METHOD. NOTATIONS

Let a system with p outputs y(.) and r inputs u(.) be
governed by the vector difference equation

y(t) +Arv(t-1) +...+ lpz(t-n) =B1r(t-1) +...+Bmu(r-m) +v(r)

where v(t) is some (vector) disturbance. Introduce

p (t) T = [-y (t-1) -v (r-n¡ T u (r-I) T. . .u (r-m) T]

and

T€ I .An 81. . .Bm l

To get a formal simÍrarity with the filtering probrem it
is convenient to represent the unknown parameters as a
vector. Therefore, introduce

x=col€

which is obtained by writing the columns of 0 under each
other. This is of course not crucÍal, but it simplifies
comparison with the well-known Kalman filter.

Then with

p (t) T
0

o (r) T

0 a (r) T

(1) can be written

y(t) =o(t)Tx+v(t)

The weighted LS-estj-mate of x at time t, ût, is obtained by
minimí zj-ng

v ( c) E

t
:

s=tO*1

A

3

(1)

(2)

I

t
/t
f-

\t-ro Eil'i)

with respect to e.

ll v(=) - o(s)r' (3)
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Notice that for
same as if W is

every diagonal W the estimates will be the
the identity matrix.

ïn treating consistency, the true system parameters are
usually considered as constants, given once for arl (but
not known). Then each poi-nt o in the sample space gives a
certain realization of the noise sequence {v(t) } (and of
the input sequence {u(t) } in case of random input), whereas
the true system parameters are the same for every o. The
concept "almost everywhere", a.e., then means "for almost
every rearization" for Èhe particular system given. Ljung
(1976) has given very general conditions for the LS-estimates
to be consistent a.e. in the above meaning.

rn the present paper, however, the true system parameters
are considered as random variables. The choice of system is
regarded as part of the experiment, and each realization
starts by picking a system. Then, of course, the true
system wil-l probabry not be the same in two different
realizations. Each point <o i-n the sampre space witt thus
give 1) the true system parameters and 2) a noise sequence.
The sampre space may be regarded as a product spacer so that
, - (<D1 <,12), where ú)f determines the t.rue system and o,
determines the noise seguence. rn order to get consistency,
the sets in the o-algebra generated by all the measurements
shoul-d tend to be parallel to the olr-axes as time tends to
infinity, i.e. the variations caused by the noise should
be averaged out.

with this poì-nt of view, the concept a.e. means "for al-most
every realization for almost every system". This must be
remembered when comparing the results of this paper with
other results.
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The followíng additional notations will be used:

Fa the o-argebra generated by alr measurements of y and
u up to and includj-ng tíme t

F- the smarrest o-algebra containing Fa for every t

ia=t{xlfa) the condÍtional expectation of x given Fa

Pt = E ( tx-ial 2 
| ra) the conditionar covariance of x given Ft

fB (o) the indicator function for the set B

ro € B otherwj-se 1" (ro) = 0)
(r" {col =1if

P(Blft) the conditional probability for B given Fa
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3. GENERAL RESULTS

It is well-known [see e.g. Kalman (1960) or Jazwj.nskj- (1970) )
that under very general circumstances the conditional mean
is also the LS-estj_mate. This fact makes the following
theorem interesting.

Theorem 1: Suppose that the distributÍon of the true
parameters x has fÍnite second moments. Then
converge a.e. The limits are denoted by "_ø

and P t
and
ir

D
æ

Proof: According to theorem 9.4.5 in Chung (1968) the condÍ-
tionar mean of an integrabre variable is a martingale that
converges a.e. Now x has finite second moments and each
component of the vector ia is a conditional mean. Moreover

(pt)ij = E((x-*r)..(x-i.)jlFr) = E(xrx, lFt) - (ir)i.(ir) j
where the first term is a conditionar mean and the second
one has already been shown to converge. tr

In fact¡ Chung (1968) also shows that the limit *_= E(xlf_)
a.e. In the next theorem this limit is examined.

Theorem 2: Inlith the assumptions of theorem I, Íf M is the
set {cole-=61 then lM.i* = lM.x a.e.
If P(M) = I then also ia -x in 1,2.

Proof: rt is sufficient to consider the scalar case, since
na -0 implies that all its di_agonal elements tend to zero.
since M€F-, E(lMlra) -1oo a.e. according to Lévyts zero-or-one
law. Then

E(lMlFr)' Pr-o a.e.

But

0< E(lMl t.)''Pr = r(Iu lr r)'.8(x2l Ft) - E(lM lrr)'.i.'
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Now both terms of the right member are uniformly int,egrabre
since they are less than tqx2lrr) (a.e.), whieh is a condj--
tional mean and thus uniformly integrable by martingale
theory lChung (1968), theorem 9.4.3]. Also both terms
converge a.e. and so they must converge Ín 1,1 [chung (1968),
theorem 4.5.4J. Then the left member converges in tI and a.e.,
and the limiÈs must be equal, i.e. zero. This means that

- {r(trlr.)'. r(1i.-x)'lr.)} = r {u(rrt*trrtz(î.-x),lr.)} =

= t (t (rMlFr) (it-x))' , o

so that

6 (1¡rlf t) ' (ia-x) + o in r,2

and the last part of the theorem is proven. But Lévyrs
zero-or-one law and theorem I together imply that

r(1¡,rlFt)'(i.-x)

converges a.e. The limit must be zexo because it j-s ín 1,2

Then also

1r, (*a-x) -+ 0 a. e.

which proves the theorem. n

Remark: From the proof it is evj-dent that the theorem can be
applied component-wise .

These two theorems might arso be used in connection with
other identifícation schemes than the LS-method. Then it must
be shown that the dÍfference between the estimate and the
conditionar mean tends to zero. The conditional mean is
unfortunatery difficult to calculate in general. For the
Gaussj-an case, however, it is equar to the li_nea5 LS-estimate,
which is given by the Kalman filter equations.
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4. MAIN RNSULTS. THE GAUSSIAN CASE

The following theorem, given in .A,ström, wittenmark (r97r) ,
couples the Karman filter equations to the conditionar mean.
The weighted LS-estimate arso satisfies these equations.
Thus the theorem makes theorems 1 and 2 applicable to
LS-estimation in the Gaussian case

Theorem 3: (Âström, Wittenmark)
suppose that the true parameter vector x is Gaussj_an with a
phictni mean m and a pníotL covariance pO,{v(t) } is a sequence
of independent, equally distributed normar vectors with
zero mean value and positivery definite covariance R, and x
and v(t) are independent for all t. Let the output vector of
the system be generated by (1). Then the conditional distri-
bution of x given Fa is normar with mean ia and covariance
Pt, where ia and Pa sati-sfy the difference equations

ir = û._r + K(r) ty(r)-o(r)rir-tl (4)

Pr = Pt-r - Pr-ro(t) [n +o(t)Tea-ro(t) ]-1o(t)Te.-, (s)

where

K (t) = pr-ro (t) [R + o (t) Tpt_ro (t) ]-1 = pto (r) R-1 (6)

and the initial conditions are x = IIlr Pto

Proof: For the single-Ínput single-output case the proof is
indicated in Âström, Wittenmark (197I). The extension to the
mul-tivariable case is straj_ghtforward.

rt is well-known (see e.g. Âström (1968)) that the weÍghted
LS-estimate is also given by equations ( ) - (6) with the
weighting matrÌ-x t4I = R-1. Thus i a minimizes Va (. ) , so that

tt = the weighted LS-estimate.

Moreover, if R is dÍagonal then ia is also the ordinary

to =Þ'0'

X- =t

LS-estimate, i.e. it minimÍzes Vt (.) for Vü = I. Since R
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must be known it can also
tion of variables, and so
diagonal.

be made diagonal by a transforma-
it is no restriction to assume R

Corollary 1: Under
diagonal it follows
is consistent a.e.

the assumptÍons of
from theorem 2 that

and in L2 provided p

Èheorem and
estimate ¿

a. e.

the
the

t-0

R

t=xt

Corollary 2z Under the assumptions of the theorem

K(s)K(s)T < - a.e
0
+l

which gives a lower bound to the convergence rate of K (t) .

Proof: By P*. converges a.e. and

P P K(s) tR+o(s)T P" o(s) l x(s) Tt 0 s=tO*1

æ

I
s=t

Now a
given

theorem I
t
I

condition is needed to guarantee
in the next theorem.

that na - 0. This is

4t With notations and assumptions as in theorem 3

and R diagonal
{co lea - 91

oo

= {rl : [.Tp(s) ]2 divengent for eveqf constant qclurrr vector al}.
s=tg*1

To prove this the following lemma j-s needed.

Theorem

I,emma: Let
such that P

P-=0,+aTP

{Pr}
. -+P
t'@

be
and

-1
t

a sequence of positively definite matrices
Pt-P_ positively semidefinite for all t. Then

a -t@ t -+æ for every constant colurrr vector al}.

Proof: The proof is given in Appendix.

Proof of theorem 4 Pt-P- a.e. for some

computing Pt+I shows that
all t. Then the Lemma gives

P > 0.æ,
Theorem I

in theorem
gr_ves

3 for
0 for

The formula
S0 andsoP t+1 -P t
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P -rOcläT p-1 ä-- t-ræ for every constant vector ã,#0.t t

Now equation (51 for pa is equivalenÈ to
-1
t

so that

Thus

-l mo(s) R * o(s)'n;tP +
t
I

s=tO*1

U* t"tl ef rl å =

s=tO*1

t
E

s=t
är o (") n-l o (s) T:_

cl -

0
+1

= 
"=io*,rãî...ri, ['j"'.rl=, ] t+ + ] f:'T

t
: r l

n;t ã - * for every constant ã I O

-Þ

0

'tp(s)

â
.I

tp
,lI

p
E

j=1
l_ (äT*(s)ptslrår)

-¡Fa*

T 2t a rp (s) l di-vergent for every constant a f O

since rj >

This completes the proof.

Theorem 4 shows that in the Gaussian case (wÍth v(.) being
white noise) the only condition needed for consistency a.e.
is that

E
s=tO*1

[.T ,p (s) ] 2

be divergent a.e. for every constant vector a f 0. This
condition will be referred to as CC (Consistency Condition).

t
E

s=tO*1
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Now for simplicity consider single-input singre-output
systems. Then in the open-loop case cc is a conditi_on on the
input onry, because to avoid di-vergence arr components of
the vector a corresponding to y_components in p (t.) must be
zero, since y contains also a white noise part. This fact
is further discussed in Ljung, WÍttenmark (Lg74) . To see the
relation between cc and the concept of persistently
exciting consider the case e(t) = u(t-l) . Then u is
persj-stently excj_ting of order one only if

rN
** + :* u(t)2 >

whereas CC only demands that
@

Eu(t.) z dÍverges
so that u(t) may e.g.

rn the closed-loop case cc gives a condition on the feedback.
rf it is linear and constanto it must be of such a high order
that not al-l- of its terms are components in the vector p(t).
rf it is time-varying i-t must not converge too fast to a
linear and constant feedback of low order.

Example: (from Ljung (I974))
Consider the system

y (t+1) + xrV (r) = *2r (r) + e (r+1)

with the time-varying feedback

u(t) = f (t)y(r)

decrease to zero with increasing t.

as t -r-. Then with aT [.t uzl cc iswhere f (t) -¡ t
@r lar+a, f (t)] y (t)

diverges for every a * 0. Now y(t) * O because of the noise,
so there must be a subsequence for which {y(t)2} j_s bounded
from below. Thus CC is satisfied if

(Þ; tr(t) - r)2
diverges.

2 2

For the case when the minimization of va(.) j_s restricted to
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a finite set of parameter varues this resurt, and the
consistency condition (CC) was shown in Ljung (Ig74,), cf
also Ljung (I976) .

Finally the question of non-consistency will be treated.
In order to conclude non-consistency a.e. it, is not
sufficient that p-r the a yto,stetioni covariance after
alL the measurements, is nonzero. But if the a" r)o^t¿ttioní
distribution is contÍnuous and x is a constant, then with
P* t 0 the probabÍlity wirr be zero for the estj_mate to take
any particular varue, especialry the true one. The fact
that x is a stochastic variable, is however a compricati_on.
The next theorem treats non-consistency in the GaussÍan
case and couples it to p_ being non- zero.

Theorem 5: !{ith the assumpti-ons of theorem three

P(P_l o, x =x) =0

Proof: As i-n theorem 2 it Ís no restriction to consider the
scarar case on1y. Accordíng to theorem 3 the conditional
distribution of x gÍven Fa is normar with mean ia and
covariance P fntroduce the sets

Then
M^. = {c,lle cy1 andY-¡ó

- t2/zv,
dss

![ = {ole_=0}.

P(lx-i.l <elrr)

I if o€M

I
2tr Pæ

t

t
1lE;4 l, e

Y

2e s+.2¿ =k(y).s if i)ÉM
{ 2rv Y

Taking expectations on both sides gives

P(lx-itl .e) 5 k(v).e+p(Mr)

for all t > t'0. Now p (Mv) can be made arbitrariry close
to P(M) by choosing y small enough.
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But ia -i- a.e. and so by Egorovrs theorem [see e.g. Halmos
(1950)) ror any ô >0 there exists a set N with p(N) >1-ô
such that it-i- uniformr-y on N. Then there is a T(s) so
that

sup
tl€N <t

for all t > T(o) .

This gives

Pti -x) s P(lî--xl <e) s pltli_-xl <elnn) +ôs

x. -xtæ

@

+ô

if t>T(e). Now the right member can be made ress than
P(M) +3ô for any 6 > 0 by choosing fÍrst ô, then y to make
P(My) <P(M) +ô then e(0. ¿<a/2kh)) and finally r>T(e).
Thus

Then

P(e_=g¡ S 0

where the last equality is implied by theorem two. This
completes the proof.

Remark: Theorems 2 and 5 together show that the sets
{<l I P-=0 } and {<,1 | i-=¡¡ } can dif f er only by a null-se t.

Theorems 4 and 5 should be combined to show different
cases of non-consistency. A constant and rinear feedback
of sufficiently low order is of course one case, since thenr¡
a* g(t) = 0 everywhere for some a f O, so that CC is
satisfied nowhere.



L4

The only difficurt cases are when the feedback converges
too fast to a rinear and constant one. Then the exact
limit in convergence rate separating consistency from
non-conslstency wirr depend on the stability of the
limiting closed-loop system.

Example (continued) :

example given above
and

@r tf (r) -fl¿

Consíder again the first-order
If the closed-loop system is stable

depends on
in turn

convergles then pta-0. But if the closed-loop system is
unstable then f (t,) must converge faster in order to make

6i [a, + uzr (Ð ]2 y rc)2

convergent, and the required convergence rate
how unstable the closed-Ioop system is, which
depends on f, xl and xr.



5 CONCLUSTONS

The two maj_n ideas and results of this paper are 1) the
way of looking at the true system as t,aken from a set of
systems at the begi-nning of each realÍzation and z) the
coupling of consistency and non-consistency for the
LS-method to the divergence or convergence of a certain
series (CC, the Consistency ConditÍon). This condition is
shown to be sufficient and necessary in the Gaussian white
noise case. rt may be interpreted as a condition that the
input should ',shake" the system long enough, Ín the
open-loop as well as j-n the closed-loop case.

It is interesting to note that the
any conditions on the stability of
results previously given. However,
using CC, unstable systems seem to
input than do stable systems.

15

theorems do not require
the systems r ërs do most
in showing consistency
requi-re a "less excitingt'

As for extensions, the case with time-varying noise
covaríance could be treated. This wourd effect only theorem
four and cc wourd include the noise covariance. Theorems
one and two are gÍven in a general form, but their possible
application to other cases has not been i-nvestigated.
However, theorem four may be used for any method containing
a P-equation as i_n the LS-case.
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APPENDTX

Lemma:

matrices
for all

D
æ

Let {Pt} be a sequence of positively definite
such that pt - p_ and pa - p_ positively semÍdefj-nite

t. Then
m -'l0 e¡ a' na- ë1.-+ot-+oo

for every const,ant column vector a to
Proof of the lemma: First suppose that p 0. Let À bethe smallest eigenvalue of n;t. Then

T --l 'na-Pt*a)Àta"a-+øt_+æ

for every constant a I o, since all eigenval_ues of p
to zero.

@ t

tendt

Nextsuppose P* I o, and assume that it is diagonal. This i,sno restriction since it is symmetric and thus can be
diagonalized. At reast one of the erements of p_ must be
non- zero, sây the (1, I) _el_ement. Then put

À I I

':]
0

À0

0

æP À
2

tur2 a

and P

t
13"""

so that P* ì Þ. Also introducu At = Pt-Þ and

t
11

a ttlr

At with

a t
12'"' "

ta a t
22

t
23" "'
t
33

t
2T

aAt 2I
t

a

aa t432 At31

Then At ) 0.



Now

a

a tdet P 2It
t

a t
I I2

0 +

so that for the (1rt)-element of p-1
t

lr+a t
11

t
12"""

A

À t
11a t

12"""a

tu2:-

= Àl det Âa + det At à Àt det Ãa

Âr At
0

I tt 11 det p t À det1

Thuswith.T=lf O O 0l
Ta a#6

ast-ræ.

det At det Ã1 tP )

At À I

Ta
";t

1a<
^1
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