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ABSTRACT

Least Squares Identification is considered from the
Bayesian point of view. Necessary and sufficient
condition for consistency almost everywhere is given
under the assumption that the data is generated by a

regression model with white and Gaussian noise.
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1. INTRODUCTION

The method of Least Squares (LS) has been treated by many
authors, starting with Gauss. Mann and Wald (1943) were
the first ones to apply it to time-series modelling, and
also to prove its consistency for this case. Astrdm (1968)
extended the consistency result to systems with an input,
and Ljung (1976) has shown convergence and consistency
under very mild conditions that €.g. include general

feedback situations.

In the present paper a Bayesian approach to the identifi-
cation procedure is used which gives a different type of
result. The true system parameters are thus regarded

random variables and not constants, which is usually the

case.,

The main result is necessary and sufficient condition for
consistency a.e. for the LS-method in the Gaussian white
noise case under a week condition. This is proved in a
series of theorems, where the basic idea is that the
LS-estimate is in the Gaussian case a conditional mean, and

therefore converges a.e. according to martingale theory.



2. THE LEAST SQUARES IDENTIFICATION METHOD. NOTATIONS

Let a system with p outputs y(:) and r inputs u(-:) be

governed by the vector difference equation

y(t) +Aly(t—1) +o..+ Phy(t—n) =Blu(t—l) +. ..+Bmu(t-m) +v(t)
where v(t) is some (vector) disturbance. Introduce

()T =l-y(t-1)T.. .=y (t-n) T u(t-1)T.. .u(t-m)T]

and

T _
9" = [ Al...An Bl...Bm ]

To get a formal similarity with the filtering problem it

is convenient to represent the unknown parameters as a

vector. Therefore, introduce

X = col 6

which is obtained by writing the columns of 6 under each

other. This is of course not crucial, but it simplifies

comparison with the well-known Kalman filter.

Then with

co(t)'f' 0
ot)T = .

0 o) T

(1) can be written

y(t) = o(t)Tx + v(t)

The weighted LS-estimate of x at time-t,Ety is obtained by

minimizing

t
V@ = E (e = v e o 12)

0 s=t.+1

0

with respect to z.

(1)

(2)

(3)



Notice that for every diagonal W the estimates will be the

same as if W is the identity matrix.

In treating consistency, the true system parameters are
usually considered as constants, given once for all (but

not known). Then each point w in the sample space gives a
certain realization of the noise sequence {v(t)} (and of

the input sequence {u(t)} in case of random input), whereas
the true system parameters are the same for every w. The
concept "almost everywhere", a.e., then means "for almost
every realization" for the particular system given. Ljung
(1976) has given very general conditions for the LS-estimates

to be consistent a.e. in the above meaning.

In the present paper, however, the true system parameters
are considered as random variables. The choice of system is
regarded as part of the experiment, and each realization
starts by picking a system. Then, of course, the true
system will probably not be the same in two different
realizations. Each point w in the sample space will thus
give 1) the true system parameters and 2) a noise sequence.
The sample space may be regarded as a product space, so that
u>=(wl @2),where 0y determines the true system and w,
determines the noise sequence. In order to get consistency,
the sets in the o-algebra generated by all the measurements
should tend to be parallel to the w,-axes as time tends to
infinity, i.e. the variations caused by the noise should

be averaged out.

With this point of view, the concept a.e. means "for almost
every realization for almost every system”. This must be
remembered when comparing the results of this paper with

other results.



The following additional notations will be used:

Ft - the o-algebra generated by all measurements of y and
u up to and including time t

F., - the smallest c-algebra containing Ft for every t
§t==E(x|Ft) - the conditional expectation of x given Ft
Pt==E((x—ﬁt)2]Ft) - the conditional covariance of x given Fye

lz(w) = the indicator function for the set B (1g(w) =1 if
© €B otherwise lj(w) = 0)

P(B|Ft) - the conditional probability for B given Fo



3. GENERAL RESULTS

It is well-known (see e.g. Kalman (1960) or Jazwinski (1970))
that under very general circumstances the conditional mean
is also the LS-estimate. This fact makes the following

theorem interesting.

Theorem 1: Suppose that the distribution of the true
parameters x has finite second moments. Then ﬁt and Pt

converge a.e. The limits are denoted by ﬁm and P_.

Proof: According to theorem 9.4.5 in Chung (1968) the condi-
tional mean of an integrable variable is a martingale that
converges a.e. Now X has finite second moments and each
component of the vector it is a conditional mean. Moreover
(Pp)yy = E((x—xt)i-(x—xt)let] = E(x.x.|Ft)-(xt)i'(xt)j
where the first term is a conditional mean and the second

one has already been shown to converge. o

In fact, Chung (1968) also shows that the limit §w==E(x|Fm)

a.e. In the next theorem this limit is examined.

Theorem 2: With the assumptions of theorem 1, if M is the
set {0|P_=0} then ly-kX_= ly-x a.e.

If P(M) = 1 then also % _-x in L2.

Proof: It is sufficient to consider the scalar case, since
Pt-+0 implies that all its diagonal elements tend to zero.
Since MEF_, E(lM|Ft)-+lM a.e. according to Lévy's zero-or-one

law. Then

2,
E(lMIFt) P, >0 a.e.

But

2 2 2 2,2 2
0 < E(ylFO ™ Py = E(Ly|F) " E(x“|F) - E(1y|F ) “ %,



Now both terms of the right member are uniformly integrable
since they are less than E(leFt) (a.e.), which is a condi-
tional mean and thus uniformly integrable by martingale
theory [Chung (1968), theorem 9.4.3). Also both terms
converge a.e. and so they must converge in Ll [Chung (1968),

1

theorem 4.5.4]. Then the left member converges in L and a.e.,

and the limits must be equal, i.e. zero. This means that

2 A 2 2 A 2 _
E {E(lMlFt) . E((xt-x) lFt)} = E {E(E(lMIFt) (%, ~x) ’ Ft)}—
. 2
=t ( E(lM]Ft)(xt—x)> -0

so that
A . 2
E(lMIFt)'(Xt-X) - 0 in L
and the last part of the theorem is proven. But Lévy's

zero-or-one law and theorem 1 together imply that
E(lMlFt)'(xt—x)

C Ca s s 2
converges a.e. The limit must be zero because it is in L“.

Then also

1. - (%

M -X) -0 a.e.

t

which proves the theorem. o

Remark: From the proof it is evident that the theorem can be

applied component-wise.

These two theorems might also be used in connection with
other identification schemes than the LS-method. Then it must
be shown that the difference between the estimate and the
conditional mean tends to zero. The conditional mean is
unfortunately difficult to calculate in general. For the
Gaussian case, however, it is equal to the linear LS-estimate,

which is given by the Kalman filter equations.



4. MAIN RESULTS. THE GAUSSIAN CASE

The following theorem, given in Astr®m, Wittenmark (1971),
couples the Kalman filter equations to the conditional mean.
The weighted LS-estimate also satisfies these equations.
Thus the theorem makes theorems 1 and 2 applicable to

LS-estimation in the Gaussian case.

Theorem 3: (Astrdm, Wittenmark)

Suppose that the true parameter vector x is Gaussian with a
prioni mean m and a piriord covariance Py,{v(t)} is a sequence
of independent, equally distributed normal vectors with

zero mean value and positively definite covariance R, and x
and v(t) are independent for all t. Let the output vector of
the system be generated by (1). Then the conditional distri-
bution of x given Ft is normal with mean ﬁt and covariance

Pt' where ﬁt and P, satisfy the difference equations

ke = R+ K(O) [y (D) -0(t) TR, __ ] (4)

t t t-1

P_ =P 1

t t-1 " F

o(t) [R+o(t) TP, 0(t)]1” o(t) T, (5)

t-1

where

1 1

K(t) = P, ;@) [R+0(£)"P__ 0(t)1 ™ =P 0(t)R (6)

t-1

and the initial conditions are it =m, P =P0.

0 0
Proof: For the single-input single-output case the proof is
indicated in Astrdm, Wittenmark (1971). The extension to the

multivariable case is straightforward.

It is well-known (see e.g. Astrdm (1968)) that the weighted

LS-estimate is also given by equations (4)-(6) with the
weighting matrix W = R_ L. Thus ﬁt minimizes V (-), so that
%t = 2t = the weighted LS-estimate.

Moreover, if R is diagonal then ﬁt is also the ordinary
ILS-estimate, i.e. it minimizes Vt(-) for W = I. Since R



must be known it can also be made diagonal by a transforma-
tion of variables, and so it is no restriction to assume R

diagonal.

Corollary 1: Under the assumptions of the theorem and R

diagonal it follows from theorem 2 that the estimate Et==it

is consistent a.e. and in L2 provided Pt-+0 a.e.

Corollary 2: Under the assumptions of the theorem

oo
ba K(s)K(s)T < o a.e.

s=t0+l

which gives a lower bound to the convergence rate of K(t).

Proof: By theorem 1 P,. converges a.e. and

t i T
P, =P, - pI K(s)[R+®(s) PS ®(s)] K(s)
s=t0+1

Now a condition is needed to guarantee that Pt-+0. This is

given in the next theorem.

Theorem 4: With notations and assumptions as in theorem 3
and R diagonal
{(*)IPt"O} =

o o]
= {w] = [aTtp(s) ]2 divergent for every constant column vector a#0.
s=tnt+l
0

To prove this the following lemma is needed.
Lemma: Let {Pt} be a sequence of positively definite matrices
such that Ptan and Pt—Pc° positively semidefinite for all t. Then

P =0 aT P:__l a-o t-w for every constant column vector a#0.

Proof: The proof is given in Appendix.

Proof of theorem 4: Theorem 1 gives Pt->P°° a.e. for some

P_>0. The formula in theorem 3 for computing Pt+1 shows that

Pt+l--Pt < 0 and so P,-P, 2 0 for all t. Then the lemmagives
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Pt-»o«aT P;:l a-»» t-ow for every constant vector a#o0.

Now equation (5) for P, is equivalent to

it
le = P(-)l + ©  o(s) RYo)T
s=t. +1
0
so that
-7, -1 -1, = L -1 T -
a (Pt—Po )a = z a” ®o(s) R ®(s)” a =
s=t0+l
t ©(s) O L 0 e@=)T 0 a
~T T £ ri. . 1
= h [al...a ] . 1. 1 . ol
s=t0+l 0 ‘p(s) 0 = 0 ‘p(s) 5
X P
P
p t . .
= ¥ > ;L (a'I.Icp(s)(p(s)Taj)
j=1 s=tq+l 73
Thus
L S -
a Pt a - » for every constant 3 # 0
=
5 T 2
z [a” @(s)]° divergent for every constant a #0
s=t0+l

since rj >0 for all j, 1 < 3j < p.

This completes the proof.

Theorem 4 shows that in the Gaussian case (with v (-) being
white noise) the only condition needed for consistency a.e.
is that

i 2
s [af o(s)]
s=t0+l

be divergent a.e. for every constant vector a # 0. This
condition will be referred to as CC (Consistency Condition).
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Now for simplicity consider single-input single-output
systems. Then in the open-loop case CC is a condition on the
input only, because to avoid divergence all components of
the vector a corresponding to y-components in ¢ (t) must be
zero, since y contains also a white noise part. This fact
is further discussed in Ljung, Wittenmark (1974). To see the
relation between CC and the concept of persistently
exciting consider the case @(t) = u(t-1). Then u is
persistently exciting of order one only if

lim 2 F a2 s o

Nosco N

whereas CC only demands that

g 2
Tu(t) © diverges

so that u(t) may e.g. decrease to zero with increasing t.

In the closed-loop case CC gives a condition on the feedback.

If it is linear and constant, it must be of such a high order
that not all of its terms are components in the vector ¢(t).
If it is time-varying it must not converge too fast to a

linear and constant feedback of low order.

Example: (from Ljung (1974))
Consider the system

y(t+1)-+xly(t) = x2u(t)-+e(t+l)
with the time-varying feedback
u(t) = f(t)y(t)
where f£(t)»f as t-o. Then with al = [ a; a,l cc is
T lay+a, £(8)12 y(t)2
diverges for every a # 0. Now y(t) - 0 because of the noise,

SO there must be a subsequence for which {y(t)2} is bounded

from below. Thus CC is satisfied if
g 2
r [f(t) - £]

diverges.

For the case when the minimization of Vt(-) is restricted to
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a finite set of parameter values this result and the
consistency condition (CC) was shown in Ljung (1974), cf
also Ljung (1976).

Finally the question of non-consistency will be treated.

In order to conclude non-consistency a.e. it is not
sufficient that P,» the a posterioni covariance after

all the measurements, is nonzero. But if the a postenioni
distribution is continuous and x is a constant, then with
P,>0 the probability will be zero for the estimate to take
any particular value, especially the true one. The fact
that x is a stochastic variable, is however a complication.
The next theorem treats non-consistency in the Gaussian

case and couples it to P_, being non-zero.

Theorem 5: With the assumptions of theorem three

P(PQ° # 0, X, = xX) =0
Proof: As in theorem 2 it is no restriction to consider the
scalar case only. According to theorem 3 the conditional

distribution of x given Ft is normal with mean ﬁt and

covariance P,. Introduce the sets MY = {wIPm<:y} and
M= {w|P_=0}. Then
. 1 —52/2Pt
P(lx—xtl <e|Ft) e e ds <
2mn Pt -

{1 if w €M
Y

$ 1 1
] T " 28 £ —/= = 2¢ =k(y)-e if o £ MY

2n P, ) Vany

Taking expectations on both sides gives

P(Ix—§t|<s) < k(y)-e-+P(MY)

for all t > to.
to P(M) by choosing y small enough.

Now P(My) can be made arbitrarily close
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But ﬁt-aﬁm a.e. and so by Egorov's theorem (see e.g. Halmos
(1950)) for any & >0 there exists a set N with P(N) > 1 - &
such that ﬁt'*ﬁm uniformly on N. Then there is a T(eg) so
that

X X

sup A -A
wGN‘ t " Xeo| <E

for all t>T7T(e).

This gives

-

P(k_=x) s P(|&_-x|<e) g P{|& -x|<e}nN) + & ¢
< P([ﬁt-xl <2e) + &

if t>T(e). Now the right member can be made less than
P(M) + 38 for any 6 > 0 by choosing first §, then y to make
P(My) <PM) +6 then ¢(0<e<68/2k(y)) and finally t>T(e).
Thus

P(X,=x) s P(M) = P(P_=0)
Then
P(X,=%, P #0) = P(X_=x) - P(x_=x, P,=0) =

where the last equality is implied by theorem two. This
completes the proof.

Remark: Theorems 2 and 5 together show that the sets

{wle=0} and {w|§m=x} can differ only by a null-set.

Theorems 4 and 5 should be combined to show different

cases of non-consistency. A constant and linear feedback

of sufficiently low order is of course one case, since then
aT ©(t) = 0 everywhere for some a # 0, so that CC is

satisfied nowhere.
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The only difficult cases are when the feedback converges
too fast to a linear and constant one. Then the exact
limit in convergence rate separating consistency from
non-consistency will depend on the stability of the
limiting closed-loop system.,

Example (continued): Consider again the first-order

example given above. If the closed-loop system is stable

and
> [£(t)-£]2

converges then Ptjé(). But if the closed-loop system is

unstable then f(t) must converge faster in order to make
£ la) +a,£(t) 12 y(t)2

convergent, and the required convergence rate depends on
how unstable the closed-loop system is, which in turn

depends on f, X, and Xq.
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5. CONCLUSIONS

The two main ideas and results of this paper are 1) the
way of looking at the true system as taken from a set of
systems at the beginning of each realization and 2) the
coupling of consistency and non-consistency for the
LS-method to the divergence or convergence of a certain
series (CC, the Consistency Condition). This condition is
shown to be sufficient and necessary in the Gaussian white
noise case. It may be interpreted as a condition that the
input should "shake" the system long enough, in the

open-loop as well as in the closed-loop case.

It is interesting to note that the theorems do not require
any conditions on the stability of the systems, as do most
results previously given. However, in showing consistency
using CC, unstable systems seem to require a "less exciting"

input than do stable systems.

As for extensions, the case with time-varying noise
covariance could be treated. This would effect only theorem
four and CC would include the noise covariance. Theorems
one and two are given in a general form, but their possible
application to other cases has not been investigated.
However, theorem four may be used for any method containing

a P-equation as in the LS-case.
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APPENDIX

Lemma: Let {Pt} be a sequence of positively definite
matrices such that Pt-->P°° and P, -P_ positively semidefinite
for all t. Then

P°° =0 e aT P;l a - o t - o

for every constant column vector a # 0.

Proof of the lemma: First suppose that P, = 0. Let At be
the smallest eigenvalue of P_ 1. Then

t
aT P;l a > At aT a > o t o5
for every constant a # 0, since all eigenvalues of Pt tend
to zero.

Next suppose P°° # 0, and assume that it is diagonal. This is
no restriction since it is symmetric and thus can be
diagonalized. At least one of the elements of P_ must be
non-zero, say the (1,1)-element. Then put

Al 0 Al 0
P°° = AZ. and P = O..
0 - 0 0
SO that P_ > P. Also introduce AL = P -P and A_ with
r _t t t 3 t t
ar; { ar, A geceen. [ ar; : ageeenn.
TR T s NG
o a1 | @5, Bogernns ) ay |
t | B e
t t t =
ajy : a3y  asy { By
. | " : . |
. | . * . |
| . © J




Now

¢ t t
Al-kall } alZ""" 1
_________ | = —————
t
det P, = a21 ' =
t | 3
; | t
: |
f ’ i J
t 3 t t
A Ia " - 5 8 8 e fa |a ® @& o o o o
( 1 | 12 11 [ 12
..-.._..._.| ________________ I ___________
= 0o | + t |
a
< | ~ 21 | ~
. Ag . Ay
| e
0 | ) ©
= Al det At + det At > Al det At
so that for the (1,1) -element of P;l
=1 ~ det AL det AL - 1
(B.7) = < — = —
11 det Pt Al det At Al
Thus with a® = [ 1 o o ... ¢ ]
at pTl 4 oL al a +-
t ~ Al




