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Abstract. We analyze relations between two methods frequently used for modeling the choice among
uncertain outcomes: stochastic dominance and mean–risk approaches. New necessary conditions for stochastic
dominance are developed. These conditions compare values of a certain functional, which contains two
components: the expected value of a random outcome and a risk term represented by the central semideviation
of the corresponding degree. If the weight of the semideviation in the composite objective does not exceed the
weight of the expected value, maximization of such a functional yields solutions which are efficient in terms
of stochastic dominance. The results are illustrated graphically.
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1. Introduction

Uncertainty is the key ingredient in many decision problems. Financial planning, cancer
screening and airline scheduling are just few examples of areas in which ignoring
uncertainty may lead to inferior or simply wrong decisions. There are many ways to
model uncertainty; one that proved particularly fruitful is to use probabilistic models.

We consider decisions with real–valued outcomes, such as return, net profit or
number of lives saved. Although we sometimes discuss implications of our analysis in
the portfolio selection context, we do not assume any specificity related to this or any
other application.

Whatever the application, the fundamental question is how to compare uncertain
outcomes. This has been the concern of many authors and will remain our concern in
this paper. The general assumption that we make is that larger outcomes are preferred
over smaller outcomes.

Two methods are frequently used for modeling the choice among uncertain pro-
spects:stochastic dominance[20,11] andmean–riskapproaches [14]. The first one is
based on an axiomatic model of risk averse preferences, but does not provide a simple
computational recipe. It is, in fact, a multiple criteria model with a continuum of criteria.
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The second approach quantifies the problem in a lucid form of two criteria: the
mean, which is the expected outcome, and therisk – a scalar measure of the variability
of outcomes. The mean–risk model is appealing to decision makers and allows a simple
trade-off analysis, analytical or geometrical. More specifically, one may maximize
scalarized objectives of the form

µX − λr X, (1)

whereµX is the mean andr X is the risk associated with the random variableX, and
λ > 0 is atrade-off coefficient.

On the other hand, the mean–risk approach is unable to model the entire gamut of
risk-averse preferences. Moreover, for typical dispersion statistics used as risk measures,
the mean–risk approach may lead to obviously inferior solutions.

The seminal portfolio optimization model of Markowitz [12] uses variance as the
risk measure. It is, in general, not consistent with stochastic dominance rules; the use of
semivariance rather than variance was already recommended by Markowitz himself [13].
Porter [18] showed that a fixed target semivariance as the risk measure makes the mean–
risk model consistent with the stochastic dominance. This approach was extended by
Fishburn [5] to more general risk measures associated with outcomes below some fixed
target.

Our aim is to develop relations between the stochastic dominance and mean–risk
approaches that use more natural measures of risk, associated with all underachievements
below the mean. Therefore, we focus our analysis on the central semideviations:

δ̄
(k)
X =

(
E
{
(µX − X)k1lX≤µX

})1/k

=
(∫ µX

−∞
(µX − ξ)k PX(dξ)

)1/k

, k = 1, 2, . . . , (2)

wherePX denotes the probability measure induced by the random variableX on the
real line,

µX = E{X} =
∫ ∞

−∞
ξ PX(dξ), (3)

and 1lX≤µX denotes the indicator function of the event{X ≤ µX}. In particular, (2) for
k = 1 represents theabsolute semideviation

δ̄
(1)
X = δ̄X =

∫ µX

−∞
(µX − ξ) PX(dξ) = 1

2

∫ ∞

−∞
|ξ − µX| PX(dξ) (4)

(with the last equality following from straightforward calculation), and fork = 2 it
represents thestandard semideviation:

δ̄
(2)
X = σ̄X =

(∫ µX

−∞
(µX − ξ)2 PX(dξ)

)1/2

. (5)

We shall show that mean–risk models using semideviations as risk measures are con-
sistent with stochastic dominance orders, if the mean–risk trade-off coefficient in (1) is
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bounded by one. This will imply, roughly speaking, that maximization of functionals of
form (1), yields solutions which are efficient in terms of stochastic dominance.

In Sect. 2 we recall the notion of stochastic dominance and establish its basic
properties. Section 3 develops new necessary conditions for stochastic dominance and
Sect. 4 contains their graphical interpretation. In Sect. 5 we use these conditions to
establish relations between stochastic dominance and mean–risk models, and in Sect. 6
we present simple sufficient conditions for stochastic efficiency.

2. Stochastic dominance

Stochastic dominance is based on an axiomatic model of risk averse preferences [3].
It originated from the majorization theory for the discrete case [9,15] and was later
extended to general distributions [8,19]. Since that time it has been widely used in
economics and finance (see [1,11] for numerous references). In the stochastic domi-
nance approach random variables are compared by the pointwise comparison of their
distribution functionsF(k).

For a real random variableX the first functionF (1)
X is the right–continuous cumulative

distribution function

F(1)
X (η) = FX(η) =

∫ η

−∞
PX(dξ) = P{X ≤ η} for η ∈ R. (6)

Thekth functionF(k)
X (for k = 2, 3, . . . ) is defined recursively as

F(k)
X (η) =

∫ η

−∞
F(k−1)

X (ξ) dξ for η ∈ R. (7)

Thekth degree stochastic dominance(kSD) is understood in the following way:

X �
(k) Y ⇔ F(k)

X (η) ≤ F(k)
Y (η) for all η ∈ R. (8)

The corresponding strict dominance relation
(k) is defined by the standard rule

X 
(k) Y ⇔ X �

(k) Y and Y ��
(k) X. (9)

Thus, we say thatX dominates Y by the kSD rule(X 
(k) Y), if F(k)

X (η) ≤ F(k)
Y (η) for all

η ∈ R, with strict inequality holding for at least oneη. In (8) and (9) we implicitly assume
that the functionsF(k)

X andF(k)
Y are well defined; this is guaranteed whenE|X|k−1 < ∞

andE|Y|k−1 < ∞ (see Proposition 1 below).
Clearly, X �

(k−1)
Y implies X �

(k) Y and X 
(k−1)

Y implies X 
(k) Y, provided

that thekth degree functionF(k)
X is well defined.

We shall employ a slightly more general approach to the topic. Let(Ω,F,P) be an
abstract probability space, and letEX = ∫

X(ω)P(dω) denote the expected value of
the random variableX. The space of real random variablesX such thatE{|X|k} < ∞
is denoted, as usual,Lk(Ω,F,P) (we frequently write simplyLk). The norm inLk is
defined as

‖X‖k =
(
E{|X|k}

)1/k
.

The distribution functions (7) are closely related to the norms in the spacesLk [4,6].
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Proposition 1. Let k≥ 1 and X∈ Lk. Then for allη ∈ R

F(k+1)
X (η) = 1

k!
∫ η

−∞
(η − ξ)k PX(dξ) = 1

k! ‖ max(0, η − X)‖k
k.

Proof. If k = 0, the left equation follows directly from (6) (with the convention 0! = 1).
Assuming that it holds fork − 1 we shall show it fork. We have

F(k+1)
X (ζ) = 1

(k − 1)!
∫ ζ

−∞

(∫ η

−∞
(η − ξ)k−1 PX(dξ)

)
dη

= 1

(k − 1)!
∫ ζ

−∞

(∫ ζ

ξ

(η − ξ)k−1 dη

)
PX(dξ),

where the order of integration could be changed by Fubini’s theorem (see, e.g., [2]).
Evaluation of the integral with respect toη gives the result fork.

��
Remark 1.Proposition 1 allows to define the functionsF(κ)

X and the corresponding
dominance relations for arbitrary realκ > 0:

F(κ+1)
X (η) = 1

�(κ + 1)
‖ max(0, η − X)‖κ

κ,

where�(·) denotes Euler’s gamma function. In the sequel, however, we shall consider
only integerκ.

Equation (2) and Proposition 1 imply the following observation.

Corollary 1. Let k≥ 1 and X∈ Lk. Thenδ̄
(k)
X =

(
k!F(k+1)

X (µX)
)1/k

.

It is also clear that the functionsF(k) are nondecreasing fork ≥ 1 and convex fork ≥ 2,
but the convexity property can be strengthened substantially.

Proposition 2. Let k≥ 1 and X∈ Lk. Then for all a, b ∈ R and all t ∈ [0, 1] one has

F(k+1)
X ((1 − t)a + tb) ≤

(
(1 − t)

(
F(k+1)

X (a)
)1/k + t

(
F(k+1)

X (b)
)1/k

)k

. (10)

Proof. Let t ∈ [0, 1]. Consider the random variablesA = max(0, a − X), B =
max(0, b − X), andU = max(0, (1 − t)a + tb − X). By the convexity of the func-
tion z → max(0, z − X), with probability one

0 ≤ U ≤ (1 − t)A + tB.

Therefore,

‖U‖k ≤ ‖(1 − t)A + tB‖k ≤ (1 − t)‖A‖k + t‖B‖k,

where we used the triangle inequality for‖ · ‖k.
By Proposition 1,k!F(k+1)(a) = ‖A‖k

k. Similarly, k!F(k+1)(b) = ‖B‖k
k, and

k!F(k+1)((1 − t)a + tb) = ‖U‖k
k. Substitution into the last inequality yields the re-

quired result.
��
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In a similar way we can prove the following properties.

Proposition 3. Let k≥ 1 and X, Y ∈ Lk. Then for allη ∈ R and all t ∈ [0, 1] one has

F(k+1)
(1−t)X+tY(η) ≤

(
(1 − t)

(
F(k+1)

X (η)
)1/k + t

(
F(k+1)

Y (η)
)1/k

)k

. (11)

Proof. We define the random variablesA = max(0, η − X), B = max(0, η − Y), and
U = max(0, η− (1− t)X − tY), and proceed exactly as in the proof of Proposition 2.

��
Proposition 4. Let k≥ 1 and X, Y ∈ Lk. Then for all t∈ [0, 1] one has

δ̄
(k)
(1−t)X+tY ≤ (1 − t)δ̄(k)

X + tδ̄(k)
Y . (12)

Proof. Define A = max(0, µX − X), B = max(0, µY − Y), andU = max(0, (1 −
t)µX + tµY − (1 − t)X − tY), and proceed as in the proof of Proposition 2.

��

3. Necessary conditions for stochastic dominance

The simplest necessary condition forkth degree stochastic dominance is the correspond-
ing inequality for expected values [7].

Proposition 5. Let k≥ 1 and X, Y ∈ Lk. If X �
(k+1)

Y, thenµX ≥ µY.

Our objective is to develop stronger necessary conditions that involve central semidevi-
ations. At first we establish some technical results.

Lemma 1. Let k≥ 1 and X∈ Lk. Then(
i !F(i+1)

X (η)
)1/i ≤

(
k!F(k+1)

X (η)
)1/k(

P{X < η}
)1/i−1/k

for i = 1, . . . , k.

Proof. We have

i !F(i+1)
X (η) = E{(max(0, η − X))i} = E{(max(0, η − X))i · 1lX<η

}
,

where 1lX<η denotes the indicator function of the event{X < η}.
Define A = (max(0, η − X))i , B = 1lX<η, p = k/i andq = k/(k − i). From

Hölder’s inequalityE{AB} ≤ ‖A‖p‖B‖q (see, e.g., [2]) we obtain

i !F(i+1)
X (η) ≤ ∥∥(max(0, η − X))i

∥∥
k/i · ∥∥1lX<η

∥∥
k/(k−i)

= ‖ max(0, η − X)‖i
k

(
P{X < η})(k−i)/k

.

Raising both sides to the power 1/i we obtain the result.
��
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Lemma 2. Let k≥ 1, X, Y ∈ Lk and let X�
(k+1)

Y. Then

(i)
(
i !F(i+1)

X (µY)
)1/i ≤ δ̄

(k)
Y

(
P{X < µY}

)1/i−1/k
for all i = 1, . . . , k;

(ii) if δ̄
(k)
Y > 0, then

(
i !F(i+1)

X (µY)
)1/i

< δ̄
(k)
Y for all i = 1, . . . , k − 1.

Proof. By Lemma 1 and the postulated dominance,

(
i !F(i+1)

X (µY)
)1/i ≤

(
k!F(k+1)

X (µY)
)1/k(

P{X < µY}
)1/i−1/k

≤
(
k!F(k+1)

Y (µY)
)1/k(

P{X < µY}
)1/i−1/k

= δ̄
(k)
Y

(
P{X < µY}

)1/i−1/k
, (13)

for i = 1, . . . , k, which completes the proof of (i). To prove (ii), note that Proposition 5
implies thatP{X < µY} ≤ P{X < µX} < 1.

��

We are now ready to state the main result of this section.

Theorem 1. Let k≥ 1 and X, Y ∈ Lk. If X �
(k+1)

Y thenµX ≥ µY and

µX − δ̄
(k)
X ≥ µY − δ̄

(k)
Y ,

where the last inequality is strict wheneverµX > µY.

Proof. By (7) and (8),

F(k+1)
X (µX) = F(k+1)

X (µY) +
∫ µX

µY

F(k)
X (ξ) dξ ≤ F(k+1)

Y (µY) +
∫ µX

µY

F(k)
X (ξ) dξ.

(14)

Let k > 1. Owing to Proposition 5,µX ≥ µY, and the assertion needs to be proved only
in the case of̄δ(k)

X > δ̄
(k)
Y . The integral on the right hand side of (14) can be estimated

by Proposition 2:

∫ µX

µY

F(k)
X (ξ) dξ = (µX − µY)

∫ 1

0
F(k)

X ((1 − t)µX + tµY) dt

≤ (µX − µY)

∫ 1

0

(
(1 − t)

(
F(k)

X (µX)
)1/(k−1) + t

(
F(k)

X (µY)
)1/(k−1)

)k−1

dt.

Using Lemmas 1 and 2 (withi = k − 1), and integrating we obtain:
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∫ µX

µY

F(k)
X (ξ) dξ ≤ µX − µY

(k − 1)!
∫ 1

0

(
(1 − t)δ̄(k)

X (P{X < µX})1/k(k−1)

+ tδ̄(k)
Y (P{X < µY})1/k(k−1)

)k−1
dt

≤ µX − µY

(k − 1)!
∫ 1

0

(
(1 − t)δ̄(k)

X + tδ̄(k)
Y

)k−1
dt

= µX − µY

k! · (δ̄
(k)
X )k − (δ̄

(k)
Y )k

δ̄
(k)
X − δ̄

(k)
Y

. (15)

Substitution into (14) and simplification with the use of Corollary 1 yield

δ̄
(k)
X − δ̄

(k)
Y ≤ µX − µY, (16)

which was set out to prove.
We shall now prove that (16) is strict, ifµX > µY. Suppose that̄δ(k)

Y > 0. By virtue
of Lemma 2(ii), inequality (15) is strict, which makes (16) strict, too.

If µX > µY andδ̄
(k)
Y = 0, we must haveP{X < µY} = 0, so

δ̄
(k)
X ≤ P{X < µX}1/k(µX − µY) < µX − µY

and (16) is strict again.
If k = 1 the integral on the right hand side of (14) can be simply bounded by

µX − µY, and we get (16) in this case, too. Moreover,FX(ξ) < 1 for ξ < µX, and the
inequality is strict wheneverµY < µX.

��

Since the dominance relationX �
(k+1)

Y implies X �
(m)

Y for all m ≥ k + 1 such that

F(m)
X is well-defined, we obtain the following corollary.

Corollary 2. If X �
(k+1)

Y for some k≥ 1, thenµX ≥ µY andµX − δ̄
(m)
X ≥ µY − δ̄

(m)
Y

for all m ≥ k such thatE{|X|m} < ∞.

A careful analysis of the proof of Theorem 1 reveals that its assertion can be slightly
strengthened. Indeed, estimating in (15) the quantitiesP{X < µY} andP{X < µX}
from above by some constantρ,

P{X < µX} ≤ ρ ≤ 1,

we obtain the necessary condition

ρ1/kµX − δ̄
(k)
X ≥ ρ1/kµY − δ̄

(k)
Y .

Unfortunately, it does not possess the separability properties of the assertion of Theo-
rem 1, because the right hand side contains a factor dependent onX. In the special
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case ofsymmetricdistributions, however, we can useρ = 1/2. We can also use central
deviations

δ
(k)
X =

(∫ ∞

−∞
|µX − ξ|k PX(dξ)

)1/k

= 21/kδ̄
(k)
X ,

and obtain a stronger necessary condition.

Corollary 3. If X and Y are symmetric random variables and X�
(k+1)

Y for some

k ≥ 1, thenµX ≥ µY andµX −δ
(m)
X ≥ µY−δ

(m)
Y for all m ≥ k such thatE{|X|m} < ∞.

4. The Outcome–Risk diagram

Our results have a useful graphical interpretation. Let us start from the special case of
the second degree stochastic dominance.

For a random outcomeX having a bounded variance we consider the graph of
the functionF(2)

X : the Outcome-Risk (O-R) diagram (Fig. 1). By Corollary 1, the first
two semimoments are easily identified in the O-R diagram: the absolute semideviation
δ̄X = δ̄

(1)
X is the valueF(2)

X (µX), and the semivariancēσ2
X = (δ̄

(2)
X )2 is twice the

area below the graph from−∞ to µX. We also have a manifestation of the Lyapunov
inequalityσ̄X ≥ δ̄X (Lemma 1 withη = µX, k = 2 andi = 1), because the shaded area
contains the triangle with vertices(µX, 0), (µX, δ̄X) and(µX − δ̄X, 0).

-

6

ηµX

�
�
�
�
�
�
�
�
�
��

η − µXF(2)
X (η)

δ̄X
1
2 σ̄2

X
ppppppppppppppppppppppppppp

pppppp

pppppp

pppppppppp

pppppp

pp

pppppp

ppppp

pppppppppppp

ppppppp

ppp

pppppppppppppppp

ppppp

ppppppppppppppppp

ppppppppp

Fig. 1. The O-R diagram and semimoments

Now consider two random variablesX andY in a common O-R diagram. IfX �
(2)

Y

then Theorem 1 implies thatµX − δ̄
(1)
X ≥ µY − δ̄

(1)
Y . This is obvious from Fig. 2, because

function F(2)
X

is bounded from below by the linear functionδ̄X + pX(η − µX) where
pX = P{X < µX} < 1.

But we also have a more refined relation illustrated in Fig. 3. The area belowF(2)
X

to the left ofµX, equal to1
2 σ̄2

X, is not larger than the area belowF(2)
Y to the left of
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-

6

ηµY µX

F(2)
Y (η) F(2)

X (η)

��
��
��

��

�����������

δ̄X + pX (η − µX )

p p p p p p p p p p p p p pδ̄X − pX (µX − µY )

p p p p p p p p p p p p p pδ̄Y
δ̄X

Fig. 2. The first necessary condition:X �
(2)

Y ⇒ δ̄X − pX (µX − µY ) ≤ δ̄Y wherepX = P{X < µX }

-

6

ηµY µX

F(2)
Y (η) F(2)

X (η)

p
p

p
p p

p
p

p p
p

p p
p

p
p p

p
p p

p
p

δ̄Y

δ̄X

1
2 σ̄2

Y

1
2 σ̄2

X

Fig. 3.The second necessary condition:X �
(2)

Y ⇒ 1
2 σ̄2

X ≤ 1
2 σ̄2

Y + 1
2(µX − µY)(δ̄X + δ̄Y)

µY, increased by the area of the trapezoid with the vertices:(µY, 0), (µY, δ̄Y), (µX, 0),
and(µX, δ̄X). Employing the Lyapunov inequalities̄δX ≤ σ̄X andδ̄Y ≤ σ̄Y, we obtain
a graphical proof of Corollary 2 fork = 1 andm = 2. For more details on the properties
of the O-R diagram in the case of the second degree dominance, the reader is referred
to [17].

For a higher degreek > 1 it is more convenient to analyze the graph of the function

G(k)
X (η) =

(
k!F(k+1)

X (η)
)1/k = ‖ max(0, η − X)‖k, (17)

instead ofF(k+1)
X itself. It has the following properties.

Proposition 6. Let k> 1 and X∈ Lk. Then
(i) lim

η→−∞ G(k)
X (η) = 0;

(ii) G(k)
X (η) ≥ η − µX for all η ∈ R, and lim

η→∞
(

G(k)
X (η) − η + µX

)
= 0;

(iii) the function G(k)
X (·) is convex;
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(iv) at eachη ∈ R such thatP{X < η} > 0, the function G(k)
X (η) is continuously

differentiable and

dG(k)
X (η)

dη
≤ (
P{X < η})1/k

.

Proof. Assertions (i) and (iii) follow directly from the definition. To prove (ii) let us
recall (17): (

G(k)
X (η)

)k = E{(max(0, η − X))k}
≤ E{(η − X)k} + E{ max(0, X − η)k}. (18)

The second component at the right hand side of the last inequality tends to zero, as
η → ∞. We shall estimate the first component:

E
{
(η − X)k} = E{(η − µX + µX − X)k} = (η − µX)k

E

{(
1 + µX − X

η − µX

)k
}

.

(19)

Let us denote

� = µX − X

η − µX
.

SinceE� = 0, we have

E
{
(1 + �)k} = E

{
k∑

i=0

(
k

i

)
�i

}
= 1 + E

{
k∑

i=2

(
k

i

)
�i

}
≤ 1 + C1E

{
�2(1 + �)k−2}

= 1 + C1(η − µX)−2
E
{
(µX − X)2(1 + �)k−2}, (20)

whereC1 is a constant independent onη. SinceX ∈ Lk, there exists a constantC2 > 0
such that

E
{
(µX − X)2(1 + �)k−2} ≤ C2 (21)

for all sufficiently largeη. Putting together (18)–(21) we obtain

lim sup
η→∞

(
G(k)

X (η) − η + µX

)
lim sup
η→∞

(
(η − µX)

[(
1 + C1C2

(η − µX)2

)1/k

− 1
])

= 0.

On the other hand, by Jensen’s inequality,(
G(k)

X (η)
)k = E{(max(0, η − X))k} ≥ (max(0, η − µX))k ≥ (η − µX)k,
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which completes the proof of (ii). To prove (iv) we first note that the differentiability of
G(k)

X (·) for k > 1 follows from the Lebesgue theorem. Since we only need to consider
the case whenP{X < η} > 0, we simply differentiate:

dG(k)
X (η)

dη
=

(‖ max(0, η − X)‖k−1

‖ max(0, η − X)‖k

)k−1

.

The application of Lemma 1 withi = k − 1 to the right hand side of the last equation
completes the proof.

��
We see that for allk > 1 the functionG(k)

X has properties similar toG(1)
X = F(2)

X :
convexity and two asymptotes. These are the horizontal axis and the lineη − µX (cf.
Fig. 1). For a deterministic outcomeX = µX the graph ofG(k)(η) coincides with the
asymptotes. For a non-deterministic outcome the area between the graph ofG(k)

X and its
asymptotes is a measure of risk. In particular, it follows from Proposition 6(i)–(iii) that
the maximum vertical diameter (the distance to the asymptotes) equals toG(k)

X (µX),

that isδ̄
(k)
X .

-

6

ηµY µX

G(k)
Y (η) G(k)

X (η)

�������������
δ̄
(k)
X + p1/k

X (η − µX )

p p p p p p p p p p p p p pδ̄
(k)
X − p1/k

X (µX − µY )

p p p p p p p p p p p p p pδ̄
(k)
Y

δ̄
(k)
X

Fig. 4. The O-R diagram for the(k + 1)st degree stochastic dominance:X �
(k+1)

Y ⇒ δ̄
(k)
X − p1/k

X (µX −
µY ) ≤ δ̄

(k)
Y , wherepX = P{X < µX }

We can graphically interpret Theorem 1 fork > 1 in a way similar to the second
degree case, as illustrated in Fig. 4. It follows from Proposition 6 (iii)–(iv) that forη ≤ µX

functionG(k)
X

(η) is bounded from below by the linear functionδ̄(k)
X

+ p1/k
X

(η−µX ) where
pX = P{X < µX} < 1.

5. Mean–semideviation models

Mean–risk approaches are based on comparing two scalar characteristics (summary
statistics) of each outcome: the expected valueµ and some measure of riskr . The weak
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relation of mean–risk dominance is defined as follows

X �µ/r Y ⇔ µX ≥ µY and r X ≤ rY.

The corresponding strict dominance relationµ/r is defined in the standard way (9).
Thus we say thatX dominates Y by theµ/r rules (X µ/r Y), if µX ≥ µY andr X ≤ rY

where at least one inequality is strict.
An important advantage of mean–risk approaches is the possibility to perform a pic-

torial trade-off analysis. Having assumed a trade-off coefficientλ ≥ 0 one may directly
compare real values ofµX − λr X and µY − λrY. This approach is consistent with
mean–risk dominance in the sense that

X �µ/r Y ⇒ µX − λr X ≥ µY − λrY for all λ ≥ 0. (22)

Therefore, an outcome that is inferior in terms ofµ − λr for someλ ≥ 0 cannot be
superior by the mean–risk dominance relation.

A mean–risk model is said to beconsistentwith the stochastic dominance relation
of degreek if

X �
(k) Y ⇒ X �µ/r Y. (23)

Such a consistency would be highly desirable, because it would allow us to search for
stochastically non-dominated solutions (that is, solutionsX for which there is noY
satisfyingY �

(k) X) by the rule:

X µ/r Y ⇒ Y ��
(k) X.

Moreover, negating (22) and (23) we would get a rule involving the scalarized objective:

µX − λr X > µY − λrY for someλ ≥ 0 ⇒ Y ��
(k) X.

We would then know that using simplified aggregate measures of the formµ−λr would
not lead to solutions that are inferior in terms of stochastic dominance.

A natural question arises: can mean–risk models be consistent with a stochastic
dominance relation?

The most commonly used risk measure is the variance [14]. Unfortunately, the
resulting mean–risk model is not, in general, consistent with stochastic dominance. The
use of fixed-target risk measures is a possible remedy, because stochastic dominance
relations are based on norms of fixed-target underachievements (Proposition 1).

We shall try to address the question in a different way. We modify the concept of
consistency to accommodate scalarizations, and we use central semideviations as risk
measures.

Definition 1. For a non-negative constantα, we say that a mean–risk model isα-
consistentwith thekth degree stochastic dominance relation if

X �
(k) Y ⇒ µX ≥ µY and µX − α r X ≥ µY − α rY. (24)
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By virtue of (22), consistency in the sense of (23) impliesα-consistency for allα ≥ 0.
Moreover,

µX ≥ µY andµX − α r X ≥ µY − α rY

⇒ µX − λr X ≥ µY − λrY for all 0 ≤ λ ≤ α (25)

(combine the inequalities at the left hand side with the weights 1− λ/α andλ/α).
Thusα-consistency impliesλ-consistency for allλ ∈ [0, α]. It still guarantees that the
mean–risk analysis leads us to non-dominated results in the sense that

µX − λr X > µY − λrY for some 0≤ λ ≤ α ⇒ Y ��
(k) X.

With these general definitions we can return to our main question: how can the
risk measure be defined to maintainα-consistency with the corresponding stochastic
dominance order? The answer follows immediately from Theorem 1.

Theorem 2. In the spaceLk(Ω,F,P) the mean–risk model with r= δ̄(k) is1-consistent
with all stochastic dominance relations of degrees1, . . . , k + 1.

Proof. By Theorem 1,

µX − δ̄
(k)
X > µY − δ̄

(k)
Y ⇒ Y ��

(k+1)
X.

The implicationY ��
(i+1)

X ⇒ Y ��
(i) X, i = k, . . . , 1, completes the proof.

��

In the special case ofk = 1 we conclude that the mean–absolute deviation model of
Konno and Yamazaki [10] is12-consistent with the first and the second degree stochastic
dominance. Indeed, the absolute deviation satisfiesδ(1) = 2δ̄(1), and Theorem 2 implies
the result.

For k = 2 we see that the use of the central semideviation as the risk measure (in-
stead of the variance in the Markowitz model) guarantees 1-consistency with stochastic
dominance relations of degrees one, two and three.

The constantα = 1 in Theorem 2 cannot be increased for general distributions, as
the following example shows:P{X = 0} = (1 + ε)−k, P{X = 1} = 1 − (1 + ε)−k,
andY = 0. ObviouslyX 

(k+1)
Y, but for eachα > 1 we can findε > 0 for which

µX − αδ̄
(k)
X < 0 = µY − αδ̄

(k)
Y .

For symmetric distributions we can use Corollary 3 to get a wider range of trade-offs
for semideviations, which allows us to replace semideviations with the corresponding
deviations.

Corollary 4. In the class of symmetric random variables inLk(Ω,F,P) the mean–risk
model with r= δ(k) is 1-consistent with all stochastic dominance relations of degrees
1, . . . , k + 1.
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6. Stochastic efficiency in a set

Comparison of random variables is usually related to the problem of choice among risky
alternatives in a given feasible (attainable) setQ. For example, in the simplest problem
of portfolio selection [14] the feasible set of random variables is defined as all convex
combinations of a given collection of investment opportunities (securities). A feasible
random variableX ∈ Q is calledefficientunder the relation� if there is noY ∈ Q such
thatY  X. Consistency (24) leads to the following result.

Proposition 7. If the mean–risk model isα-consistent for someα > 0 with the kth
degree stochastic dominance relation, then, except for random variables with identical
µ and r, every random variable that maximizesµ − λr for some0 < λ < α is efficient
under the kth degree stochastic dominance rules.

Proof. Let 0 < λ < α and X ∈ Q be maximal byµ − λr . Suppose that there exists
Z ∈ Q such thatZ 

(k) X. Then from (24) we obtain

µZ ≥ µX,

and

µZ − αr Z ≥ µX − αr X.

Due to the maximality ofX,

µZ − λr Z ≤ µX − λr X.

All these relations may be true only if they are satisfied as equations; otherwise, com-
bining the first two with weights 1− λ/α andλ/α we obtain a contradiction with the
third one. Consequently,µZ = µX andr Z = r X.

��

It follows from Proposition 7 that for mean–risk models satisfying (24), an optimal
solution of problem

max{µX − λ r X : X ∈ Q}
with any 0< λ < α, is efficient under the kSD rules, provided that it has a unique pair
(µX, r X) among all optimal solutions.

Combining Proposition 7 and Theorem 2 we obtain the following sufficient condition
for stochastic efficiency.

Theorem 3. If X̂ is the unique solution of the problem

max
{
µX − λ δ̄

(k)
X : X ∈ Q

}
(26)

for someλ ∈ (0, 1] and k≥ 1, then it is efficient under the rules of stochastic dominance
of degrees1, . . . , k + 1.
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Proof. It remains to consider the caseλ = 1. Suppose that there existsZ ∈ Q such that
Z 

(k) X̂. Then from Theorem 2,µZ ≥ µX and

µZ − λ δ̄
(k)
Z ≥ µX̂ − λ δ̄

(k)
X̂

.

SinceX̂ is the unique maximizer of (26),Z = X̂.
��

Theorem 3 can be extended to risk measures defined as convex combinations of semide-
viations of various degrees. By applying Theorem 2 fori = k, . . . , m the following
sufficient condition for stochastic efficiency can be obtained.

Corollary 5. If X̂ is the unique solution of the problem

max
{
µX −

m∑
i=k

λi δ̄
(i)
X : X ∈ Q

}
(27)

for some m≥ k ≥ 1 such thatE{|X|m} < ∞, and some sequenceλi ≥ 0 satisfying
0 <

∑m
i=k λi ≤ 1, then it is efficient under the rules of stochastic dominance of degrees

1, . . . , k + 1.

Owing to Corollaries 3 and 4, for symmetric distributions we can use the central deviation
δ
(i)
X as the risk measures in (27), and still use the set 0<

∑m
i=k λi ≤ 1 of the coefficients

in (27).
It is of practical importance that the simplified objective functionals in (26) and (27)

are concave inX (see Proposition 4). In the case of multiple maximizers of the simplified
objective functionals, some of them may be stochastically dominated, but only by other
maximizers with the same mean value (Proposition 7). Then, an SD efficient maximizer
may be identified by an additional (second-level) minimization of the corresponding
central deviation.

7. Conclusions

The stochastic dominance relationX �
(k+1)

Y is rather strong and difficult to verify: it is

an inequality of two distribution functions,F (k+1)
X ≤ F(k+1)

Y . The necessary conditions
of Section 3 establish useful relations:

µX − λδ̄
(k)
X ≥ µY − λδ̄

(k)
Y , for all λ ∈ [0, 1],

that follow from the dominance (µX andδ̄
(k)
X , defined in (3) and (2), denote the expec-

tation and thekth central semideviation ofX).
This allows us to relate stochastic dominance to mean–risk models with risk repre-

sented by thekth central semideviation̄δ(k)
X . The key observation is that maximization

of simplified objective functionals of the form

µX − λδ̄
(k)
X ,
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whereλ ∈ (0, 1], yields solutions which are efficient in terms of stochastic dominance.
In particular, maximization ofµX −λδ̄X yields solutions efficient in terms of the first and
the second degree stochastic dominance whereas maximization ofµX − λσ̄X generates
efficient solutions for the first, the second and the third degree stochastic dominance.
This may help to quickly identify promising candidates in complex decision problems
under uncertainty.
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