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Abstract. We analyze relations between two methods frequently used for modeling the choice among
uncertain outcomes: stochastic dominance and mean-risk approaches. New necessary conditions for stochastic
dominance are developed. These conditions compare values of a certain functional, which contains two
components: the expected value of a random outcome and a risk term represented by the central semideviation
of the corresponding degree. If the weight of the semideviation in the composite objective does not exceed the
weight of the expected value, maximization of such a functional yields solutions which are efficient in terms

of stochastic dominance. The results are illustrated graphically.
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1. Introduction

Uncertainty is the key ingredient in many decision problems. Financial planning, cancer
screening and airline scheduling are just few examples of areas in which ignoring
uncertainty may lead to inferior or simply wrong decisions. There are many ways to
model uncertainty; one that proved particularly fruitful is to use probabilistic models.

We consider decisions with real-valued outcomes, such as return, net profit or
number of lives saved. Although we sometimes discuss implications of our analysis in
the portfolio selection context, we do not assume any specificity related to this or any
other application.

Whatever the application, the fundamental question is how to compare uncertain
outcomes. This has been the concern of many authors and will remain our concern in
this paper. The general assumption that we make is that larger outcomes are preferred
over smaller outcomes.

Two methods are frequently used for modeling the choice among uncertain pro-
spectsstochastic dominandg0, 11] andmean—riskapproaches [14]. The first one is
based on an axiomatic model of risk averse preferences, but does not provide a simple
computational recipe. Itis, in fact, a multiple criteria model with a continuum of criteria.
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The second approach quantifies the problem in a lucid form of two criteria: the
mean which is the expected outcome, and tiek — a scalar measure of the variability
of outcomes. The mean—risk model is appealing to decision makers and allows a simple
trade-off analysis, analytical or geometrical. More specifically, one may maximize
scalarized objectives of the form

WX — Arx, (1)

whereux is the mean andy is the risk associated with the random variakleand
A > 0 is atrade-off coefficient.

On the other hand, the mean—risk approach is unable to model the entire gamut of
risk-averse preferences. Moreover, for typical dispersion statistics used as risk measures,
the mean-risk approach may lead to obviously inferior solutions.

The seminal portfolio optimization model of Markowitz [12] uses variance as the
risk measure. Itis, in general, not consistent with stochastic dominance rules; the use of
semivariance rather than variance was already recommended by Markowitz himself [13].
Porter [18] showed that a fixed target semivariance as the risk measure makes the mean—
risk model consistent with the stochastic dominance. This approach was extended by
Fishburn [5] to more general risk measures associated with outcomes below some fixed
target.

Our aim is to develop relations between the stochastic dominance and mean-risk
approaches that use more natural measures of risk, associated with allunderachievements
below the mean. Therefore, we focus our analysis on the central semideviations:

_ 1/k
5% = (B{(ex = X0Ox<p})

5% 1/k
=</ (ux—é)kpxms)) , k=12..., )

where Px denotes the probability measure induced by the random varklae the
real line,

o0

jix = B(X) = / £ P(de), ®

and Ik, denotes the indicator function of the evéit < 1 x}. In particular, (2) for
k = 1 represents thabsolute semideviation

s _ s _ [ I
Sy’ =08x = (ux — &) Px(d§) = > & — ux| Px(d§) 4)

(with the last equality following from straightforward calculation), and koe 2 it
represents thetandard semideviation

_ X 172
5P = ox = ( / (nx — §? Px(d€)> : ®)

—00

We shall show that mean—risk models using semideviations as risk measures are con-
sistent with stochastic dominance orders, if the mean-—risk trade-off coefficientin (1) is
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bounded by one. This will imply, roughly speaking, that maximization of functionals of
form (1), yields solutions which are efficient in terms of stochastic dominance.

In Sect. 2 we recall the notion of stochastic dominance and establish its basic
properties. Section 3 develops new necessary conditions for stochastic dominance and
Sect. 4 contains their graphical interpretation. In Sect. 5 we use these conditions to
establish relations between stochastic dominance and mean-risk models, and in Sect. 6
we present simple sufficient conditions for stochastic efficiency.

2. Stochastic dominance

Stochastic dominance is based on an axiomatic model of risk averse preferences [3].
It originated from the majorization theory for the discrete case [9,15] and was later
extended to general distributions [8,19]. Since that time it has been widely used in
economics and finance (see [1,11] for numerous references). In the stochastic domi-
nance approach random variables are compared by the pointwise comparison of their
distribution functionsF

Forareal random variabkéthe first functiorF>((1) is the right—continuous cumulative
distribution function

n
FEm = Fxn = [ Px(d =PX <) forneR (6)
—00
Thekth function FQ‘) (fork =2,3,...) is defined recursively as
n
FOm) = / FEP@Eds forneRr. )
—00
Thekth degree stochastic dominan@sD) is understood in the following way:
XY < F>(<k) (n) < F\((k) (n) forallneR. (8)
The corresponding strict dominance relatiep), is defined by the standard rule
XY © XxpVY and Y %, X 9)

Thus, we say thaX dominates Y by the kSD r(l¥ >, Y), if F)((k)(n) < F\((k)(n) forall

n € R, with strictinequality holding for at least omeln (8) and (9) we implicitly assume

that the functionsh:)((k) and F$k) are well defined; this is guaranteed w1 < oo

andE|Y|k-1 < oo (see Proposition 1 below).
Clearly, X >, , Y impliesX >, Y andX >

that thekth degree functioﬂF)((k) is well defined.

We shall employ a slightly more general approach to the topic(®etF, P) be an
abstract probability space, and [BX = [ X(w) P(dw) denote the expected value of
the random variablX. The space of real random variabMssuch thaf&{|X|¥} < oo
is denoted, as usualy(£2, F, P) (we frequently write simply ). The norm inL is
defined as

w1 Y impliesX > Y, provided

I = (E0xK) 7

The distribution functions (7) are closely related to the norms in the spacks 6].
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Proposition 1. Letk> 1and Xe L. Then for allp € R
1 /M 1
R = / (n = &K Px(dé) = -l max(©, 11 = X)|Ii.
' !

Proof. If k = 0, the left equation follows directly from (6) (with the conventidn91).
Assuming that it holds fok — 1 we shall show it fok. We have

1 ¢ n
SCE T ( | o Px(d§)> d

1 ¢ ¢
= W/_ (/S (n—%)k_ldn) Px (dg),

where the order of integration could be changed by Fubini’s theorem (see, e.g., [2]).
Evaluation of the integral with respectfayives the result fok.

|
Remark 1.Proposition 1 allows to define the functioﬁé(’{) and the corresponding
dominance relations for arbitrary reat- 0:

FUHD () = - | max(©0, n — Xl

1
(r+1)
whereI'(-) denotes Euler's gamma function. In the sequel, however, we shall consider
only integer.

Equation (2) and Proposition 1 imply the following observation.
_ 1/k
Corollary 1. Letk> 1and X e Lx. Thend® = (k! Ferb (MX)) .

Itis also clear that the functiors® are nondecreasing far> 1 and convex fok > 2,
but the convexity property can be strengthened substantially.

Proposition 2. Letk> 1and Xe Lx. Thenforallab e R andallt € [0, 1] one has

k
FUHD (1 ha+ th) < <(1_t)(F><<k+1>(a))1/k+t(F)((k+1>(b))1/k) o)

Proof. Let t € [0, 1]. Consider the random variables = max0,a — X), B =
max0, b — X), andU = maxO0, (1 — t)a + tb — X). By the convexity of the func-
tion z — max(0, z — X), with probability one

O<U<@A-tHA+tB.
Therefore,
Uk < A=A +1B|lk < (1 —DI[Allk + tl| Bll,

where we used the triangle inequality fpr || k.

By Proposition 1,kIF® V(@ = [A[E. Similarly, kKF*®D () = |B|, and
KIF®D((1 — pa+ th) = [JU[|. Substitution into the last inequality yields the re-
quired result.

O
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In a similar way we can prove the following properties.

Proposition 3. Letk> 1and X Y € L. Then forallp e R and all t € [0, 1] one has

1/k 1/k\ K
P ooy 0D = ((1—t>(F;k+1>(n>) +t(RF ) ) (11)

Proof. We define the random variablés= max0, n — X), B = max0, n — Y), and
U = max0, n— (1-t)X —tY), and proceed exactly as in the proof of Proposition 2.

O
Proposition 4. Letk> 1and X Y € Lx. Then for all te [0, 1] one has
<(K (K (K
B yxary = (A= D8 + 150, (12)
Proof. Define A = max0, ux — X), B = max0, uy — Y), andU = max0, (1 —
Dux +tuy — (L —t)X — tY), and proceed as in the proof of Proposition 2.
O

3. Necessary conditions for stochastic dominance

The simplest necessary condition kbih degree stochastic dominance is the correspond-
ing inequality for expected values [7].

Proposition 5. Letk> 1and X Y € L. If X > Y, thenuyx > wy.

(k+1)

Our objective is to develop stronger necessary conditions that involve central semidevi-
ations. At first we establish some technical results.

Lemma 1. Letk> land Xe Lk. Then
g 1/i 1/k 1/i—1/k )
<|!F>(<'+1)(n)) < (k! F>((k+1)(n)) (]P’{X < n}) fori =1,...,k
Proof. We have

iFST () = E{(max©, n — X))'} = E{(max0, n — X)) - Ix_,},

where %, denotes the indicator function of the evgit < »}.
Define A = (max0, n — X)), B = lx-,, p = k/i andq = k/(k —i). From
Holder's inequalityE{ AB} < || Allpll Bllq (See, e.g., [2]) we obtain

iF{™ ) <

| (mase0. 1 = X))y - [x<n iy
= ||maxO, n — X)”L(P{X - U})(k_l)/k.

Raising both sides to the powefilwe obtain the result.
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Lemma 2. Letk> 1, X,Y € Lk and let X>

() (iFE ) <50 (Bx < o))

Y. Then

(k+1)

1/i—1/k
foralli =1,...,k;

— ; 1/i _
(i) if 8 > 0, then(itF{ ™ () <3 foralli =1,... . k-1,

Proof. By Lemma 1 and the postulated dominance,

(i!F>(<i+1) (w))l/i < (k! Fe+D (MY))l/k(]P’{X - MY})l/ K
< (k! F\((kH) (MY))l/k(IF’{X < MY})l/i_l/k
= Ss/k) (IP’{X < MY})l/i_l/k, (13)
fori =1,...,k, which completes the proof of (i). To prove (ii), note that Proposition 5
implies thatP{X < uvy} < P{X < ux} < 1.
O

We are now ready to state the main result of this section.

Theorem 1. Letk> land XY € L. If X > Y thenux > uy and

(k+1)
KX — 85'? Z py — Sg(k),
where the last inequality is strict wheneyex > pv.
Proof. By (7) and (8),
MX X
FE 00 = BP0 + [0 @ e < VG + [T R @
123% Y
(14)

Letk > 1. Owing to Proposition 54 x > uy, and the assertion needs to be proved only

in the case oﬁg'f) > Sg‘). The integral on the right hand side of (14) can be estimated
by Proposition 2:

(Y Y
/ Fy (6)dé = (ux—uv)/o Fy (1 —=tpux + tuy) dt
wy

k—1

1 1/(k—1) 1/(k=1)
< Gux =) [ ((1—t)(':>(<k)(ux)) +(F ) ) dt.

Using Lemmas 1 and 2 (with= k — 1), and integrating we obtain:
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X KX — [y /1 () 1/k(k—1)
/MY Fy (§)dé < &= Jo ((1 8y (P{X < ux})

_ k-1
+ 1 PIX < py)MHED ) i

_ 1 _ _ o\ k=1
< Mx “Y/ ((1—t)5§'§)+t3§k)) dt
0

= (k=1
(K (K
Cux—py @K — @)k (15)
- sl 30
K 8y —dy
Substitution into (14) and simplification with the use of Corollary 1 yield
59 — 3% < ux — v, (16)

which was set out to prove.

We shall now prove that (16) is strict,jifx > wy. Suppose thefts,k) > 0. By virtue
of Lemma 2(ii), inequality (15) is strict, which makes (16) strict, too.

If ux > wy ande,k) = 0, we must hav®{X < uy} =0, so

<(k
3 < PIX < jux)Y¥(ux — py) < jux — v

and (16) is strict again.

If k = 1 the integral on the right hand side of (14) can be simply bounded by
ux — iy, and we get (16) in this case, too. Moreovey,(§) < 1 foré < ux, and the
inequality is strict whenevary < ux.

]

Since the dominance relatiof > .,

F>(<m) is well-defined, we obtain the following corollary.

Y implies X m Y forall m > k+ 1 such that

Corollary 2. If X >, Y for some k> 1, thenux > py andux — 5 > py — 84"

for all m > k such thaf®{| X|™} < cc.
A careful analysis of the proof of Theorem 1 reveals that its assertion can be slightly
strengthened. Indeed, estimating in (15) the quantiigs < uy} andP{X < ux}
from above by some constant
P{X <ux}=p=1,
we obtain the necessary condition
sk sk
oM ¥ px — 55() > pY¥uy — 35()-

Unfortunately, it does not possess the separability properties of the assertion of Theo-
rem 1, because the right hand side contains a factor dependefit lonthe special
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case osymmetridistributions, however, we can uge= 1/2. We can also use central
deviations

® * K VK a®
8% =</ X — &l Px(ds>) = 2V/k§®,
—00

and obtain a stronger necessary condition.

Corollary 3. If X and Y are symmetric random variables and>X, ., Y for some
k> 1,thenux > uy andux —8%" > ,uy—(Sg(m) forallm > k such thai®{| X|™} < oo.

4. The Outcome—Risk diagram

Our results have a useful graphical interpretation. Let us start from the special case of
the second degree stochastic dominance.

For a random outcom& having a bounded variance we consider the graph of
the functionF>(<2): the Outcome-Risk (O-R) diagram (Fig. 1). By Corollary 1, the first
two semimoments are easily identified in the O-R diagram: the absolute semideviation
Sx = 83 is the valueF{? (1ux), and the semivariance? = (3?)2 is twice the
area below the graph fromoo to £ x. We also have a manifestation of the Lyapunov
inequalityax > 6x (Lemma 1 withn = ux, k = 2 andi = 1), because the shaded area
contains the triangle with verticég x, 0), (x, 8x) and(ux — 8x, 0).

Fig. 1. The O-R diagram and semimoments

Now consider two random variablésandY in a common O-R diagram. X >, Y

then Theorem 1 implies thaty — S;l) >y — Sg(l). This is obvious from Fig. 2, because
function F(? is bounded from below by the linear functidn + p, (n — 11,) where
Py =P{X <y} <1

But we also have a more refined relation illustrated in Fig. 3. The area l:léjﬁw
to the left of ux, equal to%&i, is not larger than the area beldv@ to the left of
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2 2
FPam  FPm

S)( + px('? - ,ux)

Sy 1

‘_Sx - px(ﬂx - My) b

My Hx n

Fig. 2. The first necessary conditioix =0 Y = 5 — Py (y — iy) < SY wherepy, =P{X < 11y}

FPa  F@wm

n

Fig. 3. The second necessary condition: =, Y = %5)2< < %_3 + %(Mx — 1y)(3x + 8v)

wy, increased by the area of the trapezoid with the vertiges; 0), (iy, 8y), (it x, 0),
and(ux, 8x). Employing the Lyapunov inequalitié < ox anddy < &y, we obtain
a graphical proof of Corollary 2 fdt = 1 andm = 2. For more details on the properties
of the O-R diagram in the case of the second degree dominance, the reader is referred
to [17].
For a higher degrele > 1 it is more convenient to analyze the graph of the function

1/k
GR ) = (KFEPm) " = Imax0, 5 — Xk, (17)

(k+1)

instead offy itself. It has the following properties.

Proposition 6. Let k> 1and Xe Lk. Then
M lim G =
n——00

(iy G () > n— uxforallneR, and lim (G()'(‘)(n) - MX) —0
n—00

(iii) the function G (-) is convex;
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(iv) at eachn € R such thatP{X < n} > O, the function G'f)(n) is continuously
differentiable and

dG¥ ()

1/k
dn '

< (P{X <n})

Proof. Assertions (i) and (iii) follow directly from the definition. To prove (ii) let us
recall (17):

(G¥ (p)* = E{(max©, n — X)¥)
< E{(n — X)*} + E{ max0, X — m*}. (18)

The second component at the right hand side of the last inequality tends to zero, as
n — oo. We shall estimate the first component:

X\
E{(1 = X)) = B{(n — nx +px — X)) = (n—ux)kE:(lJr = ) }

n— X
(19)
Let us denote
A= X=X
n— ux
SinceEA = 0, we have
K, /K K. /K
kK, __ i _ i
E{(1+A) }-E{Z(i)A } = 1+E{_ <i>A }
i=0 i=2
< 1+ C1E[A%(1+ A)F2)
=14 Ci(n — 1x) 2E{(ux — X)2(1 + A)k2}, (20)

whereC;1 is a constant independent gnSinceX € Ly, there exists a consta@p > 0
such that

E{(ux — X)?(1+ A2} < C; (21)

for all sufficiently largen. Putting together (18)—(21) we obtain
lim Sup(Gglf)(n) -n+ Mx)

n— 00
1/k
lim sup((n - MX)[<1+ %) — 1D =0.
n—00 (Tl - H’X)

On the other hand, by Jensen’s inequality,

(G )" = B{(max©, n — X)*} = (max0, n — ux)* = (n — x),



On consistency of stochastic dominance and mean—semideviation models 227

which completes the proof of (ii). To prove (iv) we first note that the differentiability of
Gg'(‘)(.) for k > 1 follows from the Lebesgue theorem. Since we only need to consider
the case whel{X < n} > 0, we simply differentiate:

dG'm) _ (n max0, 5 - X)”k—l)k_l
d max0. 7 — Xl )

The application of Lemma 1 with= k — 1 to the right hand side of the last equation
completes the proof.

O

We see that for alk > 1 the functionGg'(‘) has properties similar tG(xl) = F)((Z):
convexity and two asymptotes. These are the horizontal axis and the 4ine x (cf.
Fig. 1). For a deterministic outcomé = x the graph oiG® () coincides with the

asymptotes. For a non-deterministic outcome the area between the gﬁﬁ‘ﬁ and its
asymptotes is a measure of risk. In particular, it follows from Proposition 6(i)—(iii) that

the maximum vertical diameter (the distance to the asymptotes) equ@lg)(t,ux),
that is(_Sg'(‘).

G(Yk)(n) G§<k)(n)

3\({'0 i
50 — pY Gy — my) 1
n
59 4 ¥t — ny)
Fig. 4. The O-R diagram for thék + 1)st degree stochastic dominancez, ;) Y = 5§<k) — pi/k(ux —

wy) < Sf,k), wherepy = P{X < uy}

We can graphically interpret Theorem 1 for> 1 in a way similar to the second
degree case, as illustrated in Fig. 4. It follows from Proposition 6 (jii)—(iv) that foru
functionG{¥ () is bounded from below by the linear functiaff + p%/“(n— 11, ) where
Py =P{X <y} <1

5. Mean-semideviation models

Mean-risk approaches are based on comparing two scalar characteristics (summary
statistics) of each outcome: the expected valand some measure of riskThe weak
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relation of mean-risk dominance is defined as follows

X >

—u/r

Y & ux=wpy and rx <ry.

The corresponding strict dominance relatien), is defined in the standard way (9).
Thus we say thaX dominates Y by the/r rules(X > Y),if ux > wy andrx <ry
where at least one inequality is strict.

An important advantage of mean-risk approaches is the possibility to perform a pic-
torial trade-off analysis. Having assumed a trade-off coefficientO one may directly
compare real values gix — Arx and wy — Ary. This approach is consistent with
mean-risk dominance in the sense that

w/r

X >

—u/r

Y = jux—Airx>uy—Airy forallx>0. (22)

Therefore, an outcome that is inferior in termspof- Ar for somei > 0 cannot be
superior by the mean—risk dominance relation.

A mean-risk model is said to lmnsistentvith the stochastic dominance relation
of degreek if

XY = X>,. VY (23)
Such a consistency would be highly desirable, because it would allow us to search for
stochastically non-dominated solutions (that is, soluti¥n®r which there is noY
satisfyingY >, X) by the rule:

X, Y = Y¥yX

w/r

Moreover, negating (22) and (23) we would get a rule involving the scalarized objective:
Ux —Arx > py —Ary forsomexr>0 = Y %, X

We would then know that using simplified aggregate measures of theferiar would
not lead to solutions that are inferior in terms of stochastic dominance.

A natural question arises: can mean-risk models be consistent with a stochastic
dominance relation?

The most commonly used risk measure is the variance [14]. Unfortunately, the
resulting mean-risk model is not, in general, consistent with stochastic dominance. The
use of fixed-target risk measures is a possible remedy, because stochastic dominance
relations are based on norms of fixed-target underachievements (Proposition 1).

We shall try to address the question in a different way. We modify the concept of
consistency to accommodate scalarizations, and we use central semideviations as risk
measures.

Definition 1. For a non-negative constant we say that a mean-risk model ds
consistentvith thekth degree stochastic dominance relation if

X=Y = wux=py and ux —arx>py —ary. (24)
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By virtue of (22), consistency in the sense of (23) impliesonsistency for allv > 0.
Moreover,

ux > py andux —oarx > pwy —aly

= ux—Mx>uy—aryforal0O<ir<a (25)

(combine the inequalities at the left hand side with the weights X/ and 1 /«).
Thusa-consistency implieg-consistency for alk € [0, «]. It still guarantees that the
mean-risk analysis leads us to non-dominated results in the sense that

Ux —AMx >puy —AryforsomeO<i<a = Y%, X

With these general definitions we can return to our main question: how can the
risk measure be defined to maintairconsistency with the corresponding stochastic
dominance order? The answer follows immediately from Theorem 1.

Theorem 2. Inthe spac&(£2, F, P) the mean—risk model with== 5 is 1-consistent
with all stochastic dominance relations of degrées. . , k + 1.

Proof. By Theorem 1,
(K (K
ux =80 > uy =80 = Y F X

The implicationY # .., X = Y %, X,i =k, ..., 1, completes the proof.

In the special case & = 1 we conclude that the mean—absolute deviation model of
Konno and Yamazaki [10] i%—consistent with the first and the second degree stochastic
dominance. Indeed, the absolute deviation satigflés= 259, and Theorem 2 implies
the result.

Fork = 2 we see that the use of the central semideviation as the risk measure (in-
stead of the variance in the Markowitz model) guarantees 1-consistency with stochastic
dominance relations of degrees one, two and three.

The constan& = 1 in Theorem 2 cannot be increased for general distributions, as
the following example show®{X = 0} = (1+ &) X P(X =1} = 1 — (1 + &),
andY = 0. ObviouslyX >, Y, but for eachw > 1 we can finde > 0 for which
UX — aé_)‘gl(o <0=py — oa_Sg(k).

For symmetric distributions we can use Corollary 3 to get a wider range of trade-offs
for semideviations, which allows us to replace semideviations with the corresponding
deviations.

Corollary 4. Inthe class of symmetric random variableglg(s2, F, P) the mean-risk
model with r= §® is 1-consistent with all stochastic dominance relations of degrees
1,...,k+1.
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6. Stochastic efficiency in a set

Comparison of random variables is usually related to the problem of choice among risky
alternatives in a given feasible (attainable) @et~or example, in the simplest problem

of portfolio selection [14] the feasible set of random variables is defined as all convex
combinations of a given collection of investment opportunities (securities). A feasible
random variableX € Q is calledefficientunder the relation if there is noY € Q such
thatY > X. Consistency (24) leads to the following result.

Proposition 7. If the mean-risk model ig-consistent for some > 0 with the kth
degree stochastic dominance relation, then, except for random variables with identical
w and r, every random variable that maximizes- Ar for some0 < A < « is efficient
under the kth degree stochastic dominance rules.

Proof. Let 0 < A < @ and X € Q be maximal byu — Ar. Suppose that there exists
Z € QsuchthatZ >, X. Then from (24) we obtain

Mz = WX,
and
nz —alz = pux —arx.
Due to the maximality o¥,
Mz — Mz < Lx — Arx.

All these relations may be true only if they are satisfied as equations; otherwise, com-
bining the first two with weights + 1 /o andi/a we obtain a contradiction with the
third one. Consequently,z = ux andrz = rx.

O

It follows from Proposition 7 that for mean—risk models satisfying (24), an optimal
solution of problem

maxux —Arx : X e Q}

with any O< A < «, is efficient under the kSD rules, provided that it has a unique pair
(i x, rx) among all optimal solutions.

Combining Proposition 7 and Theorem 2 we obtain the following sufficient condition
for stochastic efficiency.

Theorem 3. If X is the unique solution of the problem
max{ux —1 8% : X e Q} (26)

forsomex € (0, 1]and k> 1, thenitis efficient under the rules of stochastic dominance
of degreed, ... ,k+ 1.
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Proof. It remains to consider the case= 1. Suppose that there existse Q such that
Z >, X.Then from Theorem 2,7 > pux and

$(K) - (0
nz —Ady EMX_)‘SX .

SinceX is the unique maximizer of (26, = X.
o

Theorem 3 can be extended to risk measures defined as convex combinations of semide-
viations of various degrees. By applying Theorem 2ifet k, ..., m the following
sufficient condition for stochastic efficiency can be obtained.

Corollary 5. If X is the unigue solution of the problem

m
max{ux — Y 1y : X e Q} (27)
i=k
for some m> k > 1 such thatE{|X|™} < oo, and some sequenag > 0 satisfying

0 <YM A <1,thenitis efficient under the rules of stochastic dominance of degrees
1., k+1

Owing to Corollaries 3 and 4, for symmetric distributions we can use the central deviation
82'2 as the risk measures in (27), and still use the setp[", Ai < 1 of the coefficients
in (27).

Itis of practical importance that the simplified objective functionals in (26) and (27)
are concave iX (see Proposition 4). In the case of multiple maximizers of the simplified
objective functionals, some of them may be stochastically dominated, but only by other
maximizers with the same mean value (Proposition 7). Then, an SD efficient maximizer
may be identified by an additional (second-level) minimization of the corresponding
central deviation.

7. Conclusions

The stochastic dominance relati¥n> .., Y is rather strong and difficult to verify: it is

an inequality of two distribution functioni;,)((k“) < F\((k“). The necessary conditions
of Section 3 establish useful relations:

Ux — Aég'(‘) > py — ASﬁ(k), for all » € [0, 1],

that follow from the dominanceu(x andSﬁ'(‘), defined in (3) and (2), denote the expec-
tation and théth central semideviation of).

This allows us to relate stochastic dominance to mean-risk models with risk repre-
sented by thé&th central semideviatioﬁlg'?. The key observation is that maximization
of simplified objective functionals of the form

<(K)
MX — )\8)( s
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wherei € (0, 1], yields solutions which are efficient in terms of stochastic dominance.
In particular, maximization of., — A3, yields solutions efficient in terms of the first and

the second degree stochastic dominance whereas maximizajign-ef.c, generates
efficient solutions for the first, the second and the third degree stochastic dominance.
This may help to quickly identify promising candidates in complex decision problems
under uncertainty.
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