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Abstract—Motivated by applications in polymer-based data
storage we introduced the new problem of characterizing the
code rate and designing constant-weight binary B2-sequences.
Binary B2-sequences are collections of binary strings of length
n with the property that the real-valued sums of all distinct
pairs of strings are distinct. In addition to this defining property,
constant-weight binary B2-sequences also satisfy the constraint
that each string has a fixed, relatively small weight ω that scales
linearly with n. The constant-weight constraint ensures low-cost
synthesis and uniform processing of the data readout via tandem
mass spectrometers. Our main results include upper bounds on
the size of the codes formulated as entropy-optimization problems
and constructive lower bounds based on Sidon sequences.

I. INTRODUCTION

Binary B2-sequences were introduced by Lindström in [1]

and were subsequently studied in a number of follow-up

works [2], [3], [4]. Binary B2-sequences represent a set

(codebook) of binary vectors of some fixed length such that the

entry-wise real-valued sums of all pairs of codevectors from

the set are distinct; hence, given the sum one can uniquely

determine the vectors that were summed up. Since their

introduction, these sequences have found many applications

such as for search algorithms [5], [6], multiple access system

design [7], [8], and data fingerprinting [9], [3].

Some more recent applications of binary B2-sequences in-

clude polymer-based data storage. Nonvolatile storage systems

based on DNA and other native macromolecules and synthetic

polymers hold the promise of ultrahigh storage densities, long-

term readout compatibility and exceptional durability [10],

[11], [12], [13], [14], [15], [16], [17]. Synthetic polymers

are binary molecular storage media that represent 0s and

1s using polymers of significantly different masses [18]. A

user-defined binary string is created by stitching together

the polymer symbols in the required order and it is read

by measuring the masses of prefixes and suffixes (or all

substrings) of the polymer strings [19], [20]. To ensure unique

reconstruction of mixture of polymer strings based on their

prefix and suffix compositions only, one needs to follow a

more involved process, described in [21], [22]. There, binary

Bh-sequences (codes) [1], [3], [4] are used to ensure that

the sums of masses of prefixes of the same length uniquely

determine the strings themselves. Since in practice the polymer

used to represent 1s has a significantly higher mass than the

polymer used to represent 0s, the mass discrepancy can lead to

high fragmentation loss and significantly increased chemical

synthesis cost, using binary B2-sequences of relatively small

weight is desirable. This motivates introducing the problem of

constant-weight B2-sequence design.

The main results of our work include information-theoretic,

prefix-suffix splitting upper bounds on the size of constant-

weight binary B2-sequences for which the weight ω scales

linearly with n. Unlike its unconstrained counterpart, the

strongest upper bound is given in terms of an optimization

problem that has to be solved numerically. In addition, we also

provide constructive lower bounds based on Sidon sequences.

The paper is organized as follows. Section II presents

the notation, relevant concepts and a generalization of the

approach from [1] to the case of constant-weight binary

strings. Section II-A contains our main result, the sharpest

known upper bound on the size of binary constant-weight

B2-sequences. Constructive lower bounds are presented in

Section III.

II. PRELIMINARIES AND ENTROPY BOUNDS

We denote sets by calligraphic upper-case letters and vec-

tors by boldface lower-case letters. Cardinalities of sets are

denoted by upper-case letters. We also use [n] to denote the

set {1, 2, . . . , n}. All logarithms, unless stated otherwise, are

taken base-2.

A set An ⊂ {0, 1}n of binary vectors is called a B2-

sequence set if real-valued sums of all distinct pairs of strings

c1 + c2, c1, c2 ∈ An, are distinct. A B2-sequence set

Aω
n is said to have constant weight ω if every vector c =

(c1, . . . , cn) ∈ Aω
n has Hamming weight |c| ,

∑n
i=1 ci = ω.

Let Aω
n be the size of the largest constant-weight B2-

sequence set Aω
n of weight ω. We are interested in the asymp-

totic behavior of Aω
n , for constant ω̄ = ω

n
, or more precisely,

in the asymptotic code rate Rω̄ = lim supn→∞
logAω̄n

n

n
. The

results established in [1], [3] imply that for unrestricted binary

B2-sequence sets, the asymptotic code rate satisfies ≤ 0.5753,

which also establishes Rω̄ ≤ 0.5753 for any ω̄ ∈ [0, 1]. We

seek to improve this upper bound on Rω̄ for ω̄ ∈ [0, 1/2).
A simple asymptotic upper bound on Rω̄ can be derived

using information-theoretic arguments (attributed to Katona

for the case of unrestricted sequences), by assuming a uniform

probability distribution on the set of all possible ordered pairs

(C,C ′) of codevectors and invoking the fact that each pair

results in a unique sum. Note that C and C′ are chosen

independently but are allowed to be equal. To obtain an

upper bound on Rω̄, we assume that the size of the constant-

weight B2 code of length n equals Aω
n . Then, the entropy

of all ordered pairs of codevectors equals 2 log(Aω
n). Let

G = 1(C > C
′) be an indicator random variable for the event

that c is lexicographically ranked higher than c
′. Since the

sums of all unordered pairs are all distinct, there is a bijection
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between the conditional probability space of the pair (C,C ′)
given G and the probability space of a sequence of random

variables, Xi = Ci +C′
i , i ∈ [n], representing the coordinates

of the sum vector. Consequently,

2 log(Aω
n) = H(C,C ′|G) +H(G) (1)

= H(X1, X2, . . . , Xn|G) +H(G)

≤ H(X1) +H(X2) + . . .+H(Xn) + 1.

Assume that the probability of observing a 1 at the ith
coordinate (i.e., Ci) of the B2-sequence code equals pi,
i = 1, . . . , n. Given that the weight of the binary vectors is

ω, we have 1
n
(p1 + p2 + . . .+ pn) =

ω
n
= ω̄. The entropy of

the ith coordinate of all possible 2-sums equals H(Xi) and is

equal to the entropy of a Binomial(2, pi) distribution, i.e., the

distribution pi with probabilities of 0, 1 and 2 equal to

pi0 = (1− pi)
2
, pi1 = 2 pi (1− pi) , p

i
2 = p2i , i ∈ [n]

respectively. Note that H(Xi) = H(pi) equals

− p2i log p
2
i − (1 − pi)

2 log(1− pi)
2 − 2pi(1 − pi) log pi

− 2pi(1− pi) log(1− pi)− 2pi(1 − pi)

=− 2pi log pi − 2(1− pi) log(1 − pi)− 2pi + 2p2i = Hbin(pi).

Since
d2Hbin(pi)

dp2
i

= − 2
ln(2) (

1
pi

+ 1
1−pi

) + 4 < 0, the function

Hbin(pi) is concave in pi. Hence, we have

H(X1) +H(X2) + . . .+H(Xn)

= Hbin(p1) +Hbin(p2) + . . .+Hbin(pn)

≤ nHbin

(∑n

i=1 pi
n

)

= nHbin (ω̄) . (2)

Note that Hbin(ω̄) stands for the entropy of a Binomial(2, ω
n
)

distribution, i.e., the distribution

p0 = (1− ω̄)2 , p1 = 2 ω̄ (1− ω̄) , p2 = ω̄2.

By (1) and (2) it follows that 2 log(Aω
n) ≤ nHbin (ω̄)+ 1 and

Rω̄ ≤
1

2
Hbin (ω̄) . (3)

While (3) provides a good starting upper bound for Rω̄, we

note that an alternative entropy bound can be obtained by

considering the coordinates of the difference of codevector,

rather than the sum of codevectors. Specifically, we assume a

uniform distribution on the set of ordered pairs of codevectors

(C,C ′) in a constant-weight B2 code, so that the entropy

of the ordered pair is as before given by 2 log(Aω
n). Let

Yi = Ci − C′
i , i ∈ [n], be the sequence of random variables

representing the values of coordinates of the difference of

vector in the ordered pair. Then, either one of the following

holds: (1) Yi = 0 for i ∈ [n], whenever the two vectors in

the ordered pair are equal; (2) there is a one to one mapping

between Y1, Y2, . . . , Yn and the ordered pair if the two vectors

in the pair are not equal. This follows because if any two

different pairs c1, c2 ∈ Aω
n and c1, c2 ∈ Aω

n have the same

difference c1 − c2 = c3 − c4, then the two pairs c1, c4 and

c2, c3 have the same sum c1+c4 = c2+c3, which violates the

B2 constraint. Next, let E be the event {(Y1, . . . , Yn) = 0n}.

Then, we can upper-bound 2 log(Aω
n) by

H(C,C′|Y1, Y2, . . . , Yn) +H(Y1, Y2, . . . , Yn)

=

(

1−
1

Aω
n

)

H(C,C′|Y1, Y2, . . . , Yn, E
c)

+
1

Aω
n

H(C,C′|Y1, Y2, . . . , Yn, E) +H(Y1, Y2, . . . , Yn)

=
logAω

n

Aω
n

+H(Y1, Y2, . . . , Yn)

≤H(Y1) +H(Y2) + . . .+H(Yn) +
logAω

n

Aω
n

,

where (1− 1
Aω

n
) equals the probability that the two codevectors

in the pair are not equal. Assume that P{Ci = 1} = qi. Then,

as before, we have 1
n
(q1+q2+ . . .+qn) = ω̄. The distribution

qi of Yi is given by

qi0 = q2i +(1−qi)
2, qi1 = qi(1−qi), q

i
−1 = qi(1−qi), i ∈ [n].

Since the entropy function H(qi) is concave in qi,

H(Y1) +H(Y2) + . . .+H(Yn)

=H(q1) +H(q2) + . . .+H(qn)

≤nH(
q1 + q2 + . . .+ qn

n
)

=n
(

− t log t− (1 − t) log(
1− t

2
)
)

,

where t =
∑

n
i=1[q

2
i +(1−qi)

2]

n
. Note that t ≥ ω̄2 + (1 − ω̄)2 ≥

1
2 by Jensen’s inequality, and that for t ≥ 1

2 the function

−t log t− (1− t) log(1−t
2 ) decreases as t increases. Hence, by

the previous inequality we have

H(Y1) +H(Y2) + . . .+H(Yn) ≤ nH(q),

where the distribution q is given by

q0 = ω̄2 + (1− ω̄)2, q1 = ω̄(1− ω̄), q−1 = ω̄(1− ω̄).

As a result, 2 log(Aω
n) ≤ nH(q) +

logAω
n

Aω
n

, and

Rω̄ ≤
1

2
H(q). (4)

It can easily be shown that the upper bound (3) is strictly

better than (4). However, as we will see later, the bound (4)

is more useful for deriving upper bounds than those obtained

from direct information-theoretic arguments.

In Table I, we provide numerical values for the information-

theoretic bounds derived in this section, along with those of

the improved upper bounds to be described in the subsequent

exposition, for different values of weights ω that scale linearly

with n. As may be seen, as ω decreases, all upper bounds

become closer in value. Additional results included in the table

are lower bounds, discussed in more detail in the last section.



TABLE I
UPPER AND LOWER BOUNDS ON THE SIZE OF BINARY,

CONSTANT-WEIGHT B2-SEQUENCES

The value of ω̄ 0.5 0.4 0.345 0.2 0.1 0.05 0.02

Entropy bound (3) 0.75 0.731 0.704 0.562 0.379 0.239 0.122

Entropy bound (4) 0.75 0.739 0.723 0.612 0.43 0.274 0.139

Upper bound (5) 0.6 0.6 0.594 0.515 0.365 0.235 0.121

Upper bound (27) 0.6 0.59 0.575 0.487 0.349 0.228 0.12

Lower bound 0.25 0.259 0.263 0.232 0.166 0.108 0.056

A. Improved Upper Bounds

An improved upper bound on Rω̄ for our constrained B2

codebook design can be obtained by adapting and generalizing

a recent approach from [4] for unconstrained B2 vectors.

The underlying proof combines entropy bounds with a prefix-

suffix decomposition approach first reported in [2]. For com-

pleteness, we first describe how to extend the prefix-suffix

decomposition approach for constant-weight B2 codebooks.

Afterwards, we improve the two bounds – the information-

theoretic and prefix-suffix bound – by combining them [4]. The

main differences between the approaches designed for general

codebooks [4], [2] and our approach is that we use more

elaborate entropy bounds, group the codevectors c ∈ Aω
n based

on the weight of their prefixes and invoke specialized counting

techniques. Importantly, the approach in [4] does not improve

the result that can be obtained purely through the use of

prefix-suffix decompositions [2], while our scheme improves

both the entropy and prefix-suffix approach for constant-weight

codebooks. The proof is deferred to Appendix A.

Lemma 1. Let every codevector be split as c = ab ∈ Aω
n ,

where a ∈ {0, 1}e and b ∈ {0, 1}n−e. Let e = ēn, where ē is

a constant in [0, 1]. Then, Rω̄ can be upper bounded by

min
ē∈[0,1]

max
ω̄′∈[max{0,ω̄−1+ē},min{ē,ω̄}]

max

{

H(
ω̄′

ē
) · ē,

1

2

[

H(
ω̄′

ē
) · ē+H(

2ω̄′′

1− ē
) · (1− ē) + 2ω̄′′

]

}

, (5)

where ω̄′′ = min{ω̄ − ω̄′, 1−ē
4 }. By optimizing over ē,

numerical values for the bound can be found for different ω′s.

A sampling of the results is shown in Table I.

Based on the above result and its proof, we describe next

our main result, constituting a sharper asymptotic upper bound

on constant-weight binary B2-sequences. Let

Bω′

n = {c : c = ab ∈ Aω
n , a ∈ {0, 1}e, |a| = ω′}, (6)

where e = ēn and ω′ = ω̄′n are constants s.t. ē, ω̄′ ∈ [0, 1], be

the set of codevectors in Aω
n whose prefixes of length e have

weight ω′ ∈ [max{0, ω − n + e},min{e, ω}]. For notational

convenience, we also use f = n − e to denote the length of

the suffixes. Note that

Aω
n =

∑

ω′∈[max{0,ω−f},min{e,ω}]

|Bω′

n |. (7)

Hence, we need to establish an upper bound on |Bω′

n | for any

n, e and ω′ ∈ [max{0, ω − f},min{e, ω}].

Lemma 2. For any ω′ ∈ [max{0, ω−f},min{e, ω}], we have

log |Bω′

n | ≤max

{

eH

(

ω′

e

)

+ logn,

1

2

[

eH

(

ω′

e

)

+ fH(p0, p1, p−1)
]

+ 1

}

, (8)

where p0 = (ω′′)2+(f−ω′′)2

f2 , p1 = p−1 = 1−p0

2 , and ω′′ =
ω − ω′. The function H(x) = −x log x − (1 − x) log(1 −
x) stands for the binary Shannon entropy function, while the

function H(p0, p1, p−1) = −p0 log p0−p1 log p1−p−1 log p−1

stands for the entropy of a ternary random variable with the

distribution (p0, p1, p−1) described above.

Proof. Fix ω′ and set Bω′

n = |Bω′

n |. Let {a1, . . . , ar} = {a :
ab ∈ Bω′

n for some b} be the set of all possible prefixes of

the codevectors in Bω′

n . Note that each ai has weight ω′ and

that there are at most r different such vectors, where r ≤
(

e
ω′

)

.

Let Si = {b : aib ∈ Bω′

n }, i ∈ [r], be the (possibly empty)

set of suffixes of codevectors in Bω′

n that have prefix ai. Then,

Bω′

n =

r
∑

i=1

|Si|. (9)

Now consider the set of all pairs of suffixes that belong to the

same group Si for some i ∈ [r], denoted by

D = ∪r
i=1{(b1,b2) : b1,b2 ∈ Si}. (10)

Note that b1 and b2 are allowed to be the same and that

(b1,b2) and (b2,b1) are considered two different pairs,

provided b1,b2 ∈ Si, i ∈ [r], are distinct. Hence, D is a

multiset. Then

|D| =
r

∑

i=1

|Si|
2 ≥

(
∑r

i |Si|)
2

r
=

(Bω′

n )2

r
, (11)

where the bound follows from Cauchy-Schwarz’s inequality.

Furthermore, consider the differences between all pairs in D,

Z = {b1 − b2 : (b1,b2) ∈ D}, (12)

where Z is a multiset. The multiplicity of 0f (the all 0 vector

of length f ) in Z is exactly Bω′

n . In addition, the multiplicity of

any nonzero element in Z is exactly one. To see this, suppose

on the contrary that there exist different pairs of unequal

elements (b1,b2), (b3,b4) ∈ D satisfying b1−b2 = b3−b4.

By definition of D, we have that b1,b2 ∈ Si for some

i ∈ [r] and b3,b4 ∈ Sj for some j ∈ [1, r]. This implies

that aib1, aib2, ajb3, ajb4 are codevectors in Bω′

n . Then,

aib1 − aib2 = ajb3 − ajb4, (13)

contradicting the fact that Bω′

n is a binary B2-sequence.

Next, we generalize the derivation of an information-

theoretic argument from [4]. Uniformly at random pick a pair

from D and denote the outcome by a pair of random variables



(X,Y ). Then, the difference X −Y is uniformly distributed

over Z\{0f} (i.e, conditioned on X − Y 6= 0f ). Let E be

the event {X − Y 6= 0f}. Then, H(X,Y ) equals

H(X,Y ,X − Y ) = H(X − Y ) +H(X,Y |X − Y )

= H(X − Y ) + Pr(E)H(X, Y |X − Y , E)

+ Pr(Ec)H(X,Y |X − Y , Ec). (14)

Clearly, H(X,Y |X − Y , Ec) = 0, since different nonzero

elements in Z have multiplicity one. In addition,

H(X,Y |X − Y , E) = logBω′

n , Pr(E) =
Bω′

n

|D|
≤

r

Bω′

n

,

where the inequality follows from (11). Therefore,

Pr(E)H(X,Y |X − Y , E) ≤
r

Bω′

n

logBω′

n . (15)

Combining (14), (15) with H(X,Y ) = log |D| ≥
(Bω′

n )2

r
, we

obtain

log(
(Bω′

n )2

r
) ≤ H(X − Y ) +

r

Bω′

n

logBω′

n . (16)

In order to obtain an upper bound on Bω′

n , we need an upper

bound on H(X −Y ) specialized for constant-weight vectors.

Let nij , i ∈ [f ], j ∈ [r], be the number of suffixes in

Sj whose ith coordinate is 1. By subadditivity of the entropy

function we have

H(X − Y ) ≤

f
∑

i=1

H(Xi − Yi) ≤ fH(

∑f

i=1 p
i

f
), (17)

where pi = (pi0, p
i
1, p

i
−1) is the distribution of Xi − Yi,

pi0 =

∑r

j=1[n
2
ij + (|Sj | − nij)

2]
∑r

j=1 |Sj |2
, pi1 =

∑r

j=1 nij(|Sj | − nij)
∑r

j=1 |Sj |2
,

pi−1 =

∑r

j=1 nij(|Sj | − nij)
∑r

j=1 |Sj |2
. (18)

We show next that the average distribution, denoted as

p∗ =

∑f

i=1 p
i

f
, (19)

satisfies p∗0 ≥ (ω′′)2+(f−ω′′)2

f2 , where ω′′ = ω−ω′ is the weight

for all suffixes of codevectors in Bω′

n , i.e., the weight of vectors

in Sj , j ∈ [r]. From (18), it follows

p∗0 =

∑f

i=1 p
i
0

f
=

∑r

j=1

(
∑f

i=1[n
2
ij + (|Sj | − nij)

2]
)

f(
∑r

j=1 |Sj |2)

≥

∑r
j=1

( (
∑f

i=1 nij)
2

f
+

(
∑f

i=1(|Sj|−nij)
2

f

)

f(
∑r

j=1 |Sj |2)

(a)
=

∑r

j=1

(

|Sj |
2(ω′′)2 + |Sj |

2(f − ω′′)2
)

f2(
∑r

j=1 |Sj |2)

=
(ω′′)2 + (f − ω′′)2

f2
, (20)

where (a) follows from the fact that the weight of the vectors

in Sj is fixed and equal to ω′′. In addition, we have p∗1 = p∗−1

since pi1 = pi−1 from (18). Note that p∗0 ≥ 1
2 and that the

entropy function H(p∗0,
1−p∗

0

2 ,
1−p∗

0

2 ) is decreasing in p∗0 when

p∗0 ≥ 1
2 . Therefore, combined with (20) and (17), we have

H(X − Y ) ≤ fH(p1, p0, p−1), (21)

where p0 = (ω′′)2+(f−ω′′)2

f2 and p1 = p−1 = 1−p0

2 . Combining

(16) (21), we obtain

logBω′

n ≤
1

2
(log r + fH(p0, p1, p−1)) +

r

2Bω′

n

logBω′

n .

(22)

Finally, to prove (8), suppose to the contrary that

logBω′

n > eH

(

ω′

e

)

+ logn, and

logBω′

n >
1

2

[

eH

(

ω′

e

)

+ fH(p0, p1, p−1)
]

+ 1, (23)

From (22), (23), and the fact that r ≤ 2eH( ω′

e
), we have

1 <
r

2Bω′

n

logBω′

n , (24)

as well as the inequality below which contradicts (24):

Bω′

n > n2
eH

(

ω′

e

)

≥ nr ≥ r logBw′

n . (25)

By combining Lemma 2 and (7) we conclude that

logAω
n ≤ max

ω′∈[max{0,ω−f},min{e,ω}]
max

{

eH

(

ω′

e

)

,

1

2

[

eH

(

ω′

e

)

+ fH(p0, p1, p−1)
]

}

+ logn, (26)

where p0 = (ω′′)2+(f−ω′′)2

f2 , p1 = p−1 = 1−p0

2 , and ω′′ =
ω − ω′, for any choice of e and f such that e + f = n.

Therefore, an upper bound on Rω̄ is given by

Rω̄ ≤ max
ē∈[0,1]

max
ω̄′∈[max{0,ω̄−1+ē},min{ē,ω̄}]

max
{

ē H

(

ω̄′

ē

)

,

1

2

[

ē H

(

ω̄′

ē

)

+ (1− ē)H(p0, p1, p−1)
]

}

, (27)

where p0 = (ω̄′′)2+(1−ē−ω̄′′)2

(1−ē)2 , p1 = p−1 = 1−p0

2 , and ω̄′′ =

ω̄− ω̄′. Note that the bound (27) is smaller than the bound 0.6
in [2] whenever ω < n

2 , and is smaller than the best known

upper bound 0.5753 for unconstrained binary B2-sequences

reported in [3] whenever ω ≤ 0.345n. See Table I for more

details regarding the actual values of the upper bounds.



III. A LOWER BOUND

We describe next a construction for constant-weight binary

B2 codes Aω
n of size (n

ω
)

ω
2 +o(ω) and

(
⌊n

ω

⌋

)
ω⌈ n

ω
⌉−n

2(⌈ n
ω

⌉−⌊n
ω

⌋) (
⌈n

ω

⌉

)
n−ω⌊n

ω
⌋

2(⌈ n
ω

⌉−⌊n
ω

⌋) 2o(ω),

for the case that n
ω

is an integer and a noninteger real value,

respectively. The construction implies that Rω̄ ≥ ω̄
2 log( 1

ω̄
)

whenever 1
ω̄

is an integer, and

Rω̄ ≥
ω̄⌈ 1

ω̄
⌉ − 1

2(⌈ 1
ω̄
⌉ − ⌊ 1

ω̄
⌋)

log(

⌊

1

ω̄

⌋

) +
1− ω̄⌊ 1

ω̄
⌋

2(⌈ 1
ω̄
⌉ − ⌊ 1

ω̄
⌋)

log(

⌈

1

ω̄

⌉

)

otherwise. An important observation is that our construction,

although conceptually simple, results in codes with rate at

least 1
4 th of the largest possible rate of unconstrained constant-

weight codes,
(

n
ω

)

.

In what follows, we assume for simplicity that n
ω

is an

integer, and as before, we let ω ≤ n
2 . The idea is to find

a surjective linear mapping F : {0, 1, 2}n → [0, (n
ω
)ω − 1]

that converts any length-n vector over the alphabet {0, 1, 2}
into an integer in [0, (n

ω
)ω − 1]. More precisely, the mapping

F is required to satisfy the following two properties:

(A) For any integer i ∈ [0, (n
ω
)ω − 1], there exists a vector

c ∈ {0, 1}n of weight ω, such that F (c) = i.
(B) For any vectors c, c′ ∈ {0, 1}n, we have that F (c) +

F (c′) = F (c+ c′). Note that c+ c′ ∈ {0, 1, 2}n.

Given the mapping F , we construct an integer Sidon set [23]

from the set [0, (n
ω
)ω − 1]. By the Bose-Chawla construction,

there exists a set of integers {i1, . . . , i( n
ω
)
ω
2

+o(ω)} ⊂ [0, (n
ω
)ω−

1] of size (n
ω
)

ω
2 +o(ω) such that the sums of any two integers

in the set are distinct. Then from property (A) of the mapping

F , for every ij , j ∈ [1, (n
ω
)

ω
2 +o(ω)], there exists a vector

cj ∈ {0, 1}n of weight ω such that F (cj) = ij . Finally, by

property (B) of the mapping F and the definition of the set

{i1, . . . , i(n
ω
)
ω
2

+o(ω)}, the set {c1, . . . , c( n
ω
)
ω
2

+o(ω)} is a binary

B2 codebook of weight ω.

For any integer k ∈ [0, n − 1], let k = akω + bk, where

ak = ⌊ k
ω
⌋ and bk = k mod ω. For any c ∈ {0, 1, 2}n define

F (c) ,

n
∑

i=1

ai−1

(n

ω

)bi−1

ci. (28)

It is obvious that F satisfies property (B). To show that F
satisfies (A), we note that any integer m ∈ [0, (n

ω
)ω − 1] has

a n
ω

-ary representation m =
∑ω−1

i=0 mi

(

n
ω

)i
, where mi ∈

[0, n
ω
−1]. Let cm be a vector in {0, 1}n, whose indices of the

1 bits are given by {miω + i : i ∈ [0, ω − 1]}. Then, cm has

weight ω and F (cm) =
∑ω−1

i=0 amiω+i(
n
ω
)bmiω+i = m. Hence

F satisfies property (B).
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APPENDIX

We split every vector c = ab ∈ Aω
n into a ∈ {0, 1}e and

b ∈ {0, 1}f . Next, we group the vectors c ∈ Aω
n based on

the weight of a, and use the definitions Bω′

= {c : c = ab ∈
Aω

n , a ∈ {0, 1}e, |a| = ω′}.

Lemma 3. For any ω′ ∈ [max{0, ω−f},min{e, ω}], we have

log |Bω′

n | ≤max

{

H(
ω′

e
) · e+ log(n+ 1) + 1,

1

2

[

H(
ω′

e
) · e + log(n+ 1) +H(

2ω′′

f
) · f

+ 2ω′′ + log(n(n+ 1))
]

+ 1

}

, (29)

where ω′′ = min{ f
4 , ω − ω′} and H(x) = −x log2 x − (1 −

x) log2(1− x) is the entropy function.

Proof. The first part of the proof follows along the same

lines as that of Lemma 2. We set {a1, . . . , ar} = {a : a ∈
{0, 1}e, ab ∈ Bω′

n for some b}, Si = {b : aib ∈ Bω′

n }, and

D = ∪r
i=1{(b1,b2) : b1,b2 ∈ Si}. This establishes (11).

The remainder of the proof differs from the one provided for

Lemma 2, as we use combinatorial arguments [2].

Let {v1, . . . ,v|D|} = {b1 − b2 : (b1,b2) ∈ D} be the

set of vectors that are the differences of the pairs of suffixes

in D, with multiplicities. Then, the multiplicity of 0f in

{v1, . . . ,v|D|} is Bω′

n and the multiplicity of each nonzero

vector in {v1, . . . ,v|D|} is one. For i ∈ [|D|], j ∈ [1, f ], let

hij = 1, if the the j-th bit of vi is 0, and hij = −1 otherwise.

Then,
∑|D|

i=1 hij ≥ 0 for j ∈ [1, f ] and
∑|D|

i=1

∑f
j=1 hij ≥ 0.

Since
∑f

j=1 hij = f − 2k for each vi with k non-zero

entries, we have
∑f

j=1 hij ≤ 0 for any vi having at least f
2

non-zero entries. In addition, the number of possible difference

vectors with k non-zero entries is at most
(

f
k

)

2k. Let |vi|
denote the number of nonzero entries in vi, i ∈ [|D|]. Then,

0 ≤

|D|
∑

i=1

f
∑

j=1

hij

(a)

≤ fBω′

n +
∑

i:|vi|≥1

(

f
∑

j=1

hij)

(b)

≤ fBω′

n +
∑

i:1≤|vi|≤min{ f
2 ,2(ω−ω′)}

(

f
∑

j=1

hij)

−
∑

i:|vi|>
f
2

1
(c)

≤ fBω′

n + 2fω′′

(

f

2ω′′

)

22ω
′′

−
∑

i:|vi|>
f
2

1,

(30)

where ω′′ = min{ω − ω′, f
4 }, (a) follows from the fact that

the multiplicity of 0f in {v1, . . . ,vs} is Bω′

n , (b) follows from

the fact that
∑f

j=1 hij < 0 when |vi| >
f
2 and the fact that

|vi| ≤ 2(ω−ω′), and (c) follows from the fact that the number

of vi with |vi| = k is at most
(

f
k

)

2k and the fact that this

number increases with k when k ≤ min{ f
2 , 2(ω − ω′)}. Eq.

(30) implies that

|D| ≤(f + 1)|Bω′

n |+ 2(f + 1)ω′′

(

f

2ω′′

)

22ω
′′

≤(f + 1)|Bω′

n |+ 2fH( 2ω′′

f
)+2ω′′+log(n(n+1)) (31)

Combining (11) and (31), we have

|Bω′

n |2 ≤ (f + 1)|Bω′

n |r + 2fH( 2ω′′

f
)+2ω′′+log(n(n+1))r.

Since r ≤ 2eH(ω′

e
), we then have (29). Based on Lemma 3

and (7), we have (5).
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