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Abstract. A theorem of Chazelle and Friedman with numerous applications in combi-
natorial and computational geometry asserts that for any setL of n lines in the plane and
for any parameterr > 1 there exists a subdivision of the plane into at mostCr2 (possibly
unbounded) triangles,C a constant, such that the interior of each triangle is intersected
by at mostn/r lines of L. (Such a subdivision is called a(1/r )-cutting for L.) We give
upper and lower bounds on the constantC. We also consider the canonical triangulation
of the arrangement of a random sample ofr lines fromL. Although this typically is not a
(1/r )-cutting, the expectation of thekth degree average of the number of lines intersecting
a triangle isO(n/r ) for any fixedk. We estimate the constant of proportionality in this
result.

1. Introduction

Motivation. Numerous algorithms developed in computational geometry use a geo-
metric version of the divide-and-conquer paradigm. If the input is a collection of, say,n
hyperplanes or simple algebraic surfaces in thed-dimensional Euclidean space, the space
is partitioned into several pieces (of a possibly simple shape, such as simplices), and the
situation within each of these pieces is dealt with separately, often by a recursive call of
the same algorithm. Two survey papers considering such algorithms are [15] and [1].

This approach yields the asymptotically most efficient known algorithms for a variety
of problems; many of these problems are of considerable interest. However, the constants
of proportionality hidden in the asymptotic notation for the complexity of such geometric
divide-and-conquer algorithms are seldom made explicit, and trying to estimate them
by following the proofs seems to lead to very large, often astronomically large, values
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(this phenomenon is not restricted to this particular type of algorithms, of course, but it
appears especially pronounced for them). A consequence of this may be a widespread
belief that such algorithms, although theoretically nice, are practically quite useless. This
is probably completely true for complicated higher-dimensional algorithms which only
bring a small theoretical saving in the complexity (improving a naiveO(n2) algorithm
to O(n1.8), say). On the other hand, in some simple situations, such as divide-and-
conquer in the plane, a closer inspection may show that the algorithms are not so bad or
perhaps they can be made practical by some additional tricks (which are uninteresting
for the asymptotic analysis). The final verdict in this matter should probably come from
implementation experience, but we believe this should be preceded by further theoretical
work focused on analyzing and improving the constants in the algorithms. In such an
effort, encouragement may be gained by the fact that the idea ofbinary space partitions,
which are data structures used frequently and successfully in practice, is similar in spirit
to geometric divide-and-conquer.

In this paper we investigate quantitative bounds for geometric divide-and-conquer in
the simplest setting: Given a setL of n lines in the plane, we want to subdivide the plane
into a possibly small number of regions in such a way that each region is intersected
by at mostn/r of the lines, wherer is a prescribed parameter (the factor by which the
size of the resulting subproblems is reduced compared with the original problem). In the
literature the regions are usually postulated to be triangles (possibly unbounded ones, i.e.,
intersections of three half-planes). In this case the subdivision with the above property
is called a(1/r )-cutting forL. It is known that, for anyL, a(1/r )-cutting consisting of
O(r 2) triangles can always be produced. This (asymptotically optimal) result was first
proved by Chazelle and Friedman [8] by a probabilistic method, improving a previous
slightly weaker bound ofO(r 2 log2 r ) proved by Clarkson [9] and implicitly contained
also in the paper Haussler and Welzl [16]. Two other, considerably different proofs of
the O(r 2) bound were given by Matouˇsek [17] and by Chazelle [6].

Size of Cuttings. In this paper we investigate the constant of the leading quadratic term
in the worst-case bound for the number of triangles in an optimal(1/r )-cutting, that is,
we seek asymptotic upper and lower bounds of the formCr2 + o(r 2) with numerical
values ofC.

For the purpose of obtaining a(1/r )-cutting with few regions, triangles do not seem
to be the best shape. For algorithmic applications, trapezoids are equally suitable, and
we can obtain a better bound for them. We also consider(1/r )-cuttings consisting of
completely arbitrary sets. These are problematic to handle algorithmically, of course,
but they may be interesting for some combinatorial geometry applications, and lower
bounds obtained for them are strongest.

First we give a definition of a(1/r )-cutting which seems appropriate for arbitrary
regions.

Let σ ⊆ R2 be a set, and let̀⊂ R2 be a line. We say that̀crossesσ if σ intersects
both the open half-planes defined by`. A (1/r )-cuttingfor a setL of n lines in the plane
is a collectionσ1, σ2, . . . , σm of subsets of the plane, such that

⋃m
i=1 σi = R2, and each

σi is crossed by at mostn/r lines ofL. (The reader may wonder, similarly as the referees
did, if the author did not intend to assume that the regionsσ be connected or something
like that. Well, we really admit completely arbitrary regions, and the explanation is in
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our definition of crossing: note that a line may cross a disconnected region without
intersecting it, and that any region in a line arrangement crossed by few lines is bound
to lie within a small portion of the arrangement.)

The following theorem summarizes our upper bounds:

Theorem 1. Let r > 1 be a parameter, let L be a set of n lines in the plane, and
suppose that n/r is an even integer(this technical assumption is made to avoid tedious
calculations with integer parts). Then there exist

(i) a (1/r )-cutting for L consisting of at most4r 2+ 2r + 2 connected sets, and
(ii) a (1/r )-cutting for L consisting of at most8r 2+ 6r + 4 trapezoids.

For a(1/r )-cutting consisting of triangles, we currently have nothing substantially
better (in the worst case) than taking a cutting consisting of trapezoids as in (ii) and
subdividing each trapezoid into two triangles, which produces 16r 2+ O(r ) triangles.

The(1/r )-cuttings in this theorem are all constructed by a modification of the method
of [17]. The other two known proofs of existence of asymptotically optimal cuttings
currently seem to yield much worse bounds.

A simple argument showing that a(1/r )-cutting has to consist of at leastÄ(r 2)

sets is as follows (the idea is probably due to Haussler and Welzl (unpublished)): The
arrangement ofn lines in general position hasÄ(n2) two-dimensional cells. A set crossed
by n/r lines can only meetO((n/r )2) of these cells, and henceÄ(r 2) sets are needed
to cover all cells. (The argument is usually presented with counting vertices instead of
cells but then there is a technical complication concerning the vertices on the boundaries
of the sets in the(1/r )-cutting.) Our lower bound proofs are all based on this idea; for
three types of shapes of sets in the cutting we refine it in different directions.

Theorem 2. For any sufficiently large r there exist arbitrarily large sets L of lines in
the plane such that

(i) Any (1/r )-cutting for L consisting of arbitrary sets has at least2(1− o(1))r 2

sets.
(ii) Any(1/r )-cutting for L consisting of quadrilaterals has at least2.54(1−o(1))r 2

sets.
(iii) Any(1/r )-cutting for L consisting of triangles has at least4(1− o(1))r 2 sets.

Cuttings with Good Averages. Let σ1, σ2, . . . , σm be sets covering the plane, and let
w(σi ) be the number of lines crossingσi . In the definition of a(1/r )-cutting, we insist
that maxi w(σi ) ≤ n/r , but sometimes this may be an unnecessarily strong condition—
for some applications, it might be sufficient that “most” of the regions are intersected by
few lines. One way to formalize this would be to require that thekth degree average of
thew(σi ) is at mostn/r , for some suitable fixedk. The following definition adapts the
concept ofsemicuttingsof Chazelle [7] to our circumstances.1

1 This concept has a longer history in computational geometry. The paper [12] uses the idea of replacing
maxima by suitable averages in geometric random sampling in an essential way. The first existence proof for
asymptotically optimal(1/r )-cuttings [8] essentially constructs a suitable semicutting first. Newer applications
in computational geometry papers are abundant.
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A collectionσ1, σ2, . . . , σm of sets covering the plane is called akth degree(1/r )-
semicuttingfor a setL of n lines if(

1

m

m∑
i=1

w(σi )
k

)1/k

≤ n

r
.

Similarly as for(1/r )-cuttings, we seek estimates on the constantCk in a bound of
the formCkr 2(1+ o(1)) for the size of akth degree(1/r )-semicutting for a finite set of
lines. This question only makes a good sense fork > 2, since fork ≤ 2, takingm= r 2,
σ1 = R2, andσ2 = σ3 = · · · = σm = ∅makes an excellent(1/r )-semicutting of sizer 2

according to the definition, although it is certainly not something close to the intuitive
notion of a “nearly(1/r )-cutting.”

It can be checked that the lower bounds in Theorem 2 apply to the size ofkth degree
(1/r )-semicuttings for any fixedk > 2 (the observation needed to augment the proofs
in Section 3 is that such akth degree(1/r )-semicutting consisting ofO(r 2) sets must
also be a(1/r ′)-cutting forr ′ = Ä(r 1−2/k); we omit the details). We investigate upper
bounds attained by the following construction, very popular in computational geometry:
Fix a suitable probabilityp, and choose a random sampleR ⊆ L of the given lines
by picking each line ofL independently with probabilityp. Let σ1, σ2, . . . , σm be the
triangles in a suitable triangulation of the arrangement ofR. As follows from the work
of Chazelle and Friedman [8], if we choosep = Kr/n for an appropriate constantK ,
with a positive probability this yields akth degree(1/r )-semicutting forL of sizeO(r 2).
Estimates for the constant of proportionality achievable by this method are studied in
Section 4. For instance, we show that this gives a third degree(1/r )-semicutting of size
11.8r 2 for a large enoughr .

Open Problems. Since we have not obtained matching upper and lower bounds, an
obvious question is how to improve the bounds. It seems that for improving the upper
bound, a considerably different construction is needed.

An interesting question, which we have left aside, is to give good numeric bounds
for (1/r )-cuttings for small specific values ofr , e.g., forr = 2. We remark that a
construction of Yamamoto et al. [20] can be easily modified to yield a(7/8)-cutting
consisting of four quadrants (defined by two lines).

Other obvious problems concern generalizations to other curves than lines and higher-
dimensional generalization (for higher dimension, the cutting construction technique of
[17] does not seem to be applicable anymore).

2. Cutting Constructions

For simplicity, we suppose that the given setL of n lines is in general position, i.e.,
every two lines intersect in exactly one point, no three have a common point, and the
x-coordinates of all intersections are pairwise distinct. (If not, we perturbL slightly to
get general position and construct the(1/r )-cutting. A limit of these(1/r )-cuttings as
the amount of perturbation goes to zero yields the desired(1/r )-cutting forL—we omit
the details.)
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Fig. 1. A level in a line arrangement.

The constructions use the notion of a level in a line arrangement. Thelevelof a point
in the plane is the number of lines ofL lying strictly below it. Consider the setEk of all
edges of the arrangement ofL having levelk (where 0≤ k < n). These edges form an
x-monotone polygonal line, which looks as in Fig. 1. This polygonal line is called the
level kof the arrangement ofL. Let e0,e1, . . . ,et be the edges ofEk (numbered from
left to right;e0 andet are the unbounded rays).

Cutting into Connected Sets. First we describe a construction of a(1/r )-cutting con-
sisting of connected sets, as in Theorem 1(i). Letr be the given parameter, and let
n = |L|. We setq = n/2r (by our assumption, this is an integer). We divide the levels
0 throughn− 1 into q groups: thei th group contains all levelsk with k congruent toi
moduloq (i = 0,1, . . . ,q − 1). Since the total number of edges in the arrangement is
n2, there is ani such that thei th group contains at mostn2/q edges. We fix one suchi .
Let s be the number of the levels in this group, and let the levels in this group be denoted
by30,31, . . . , 3s−1, i.e.,3j denotes the leveljq + i . We haves ≤ dn/qe ≤ 2r + 1
(note that we do not assumer to be an integer). The3j ’s divide the plane intos+ 1
regionsR0, R1, . . . , Rs, whereR0 andRs are the unbounded regions.

We further subdivide each regionRj by vertical segments. Namely, we letx1, x2, . . .

be thex-coordinates of the vertices of the boundary ofRj (from both the top and bottom
portions) listed in the increasing order, and we sliceRj by vertical segments withx-
coordinatesx2q, x4q, x6q,. . . ; see Fig. 2.

Let tj be the number of edges of the level3j ; by the choice of the3j ’s we have∑s−1
j=0 tj ≤ n2/q. The levels3j−1 and3j bounding the regionRj together havetj−1+tj−2

Fig. 2. Subdividing the regionsR0, R1, . . . , Rs (with q = 3).



432 J. Matoušek

Fig. 3. Bounding the number of lines crossingσ .

vertices, henceRj is sliced into no more than(tj−1+ tj )/2q+1 sets (for consistence we
definet−1 = ts = 0). Therefore the total number of sets formed is at most

∑s
j=0[(tj−1+

tj )/2q + 1] ≤ n2/q2+ s+ 1≤ 4r 2+ 2r + 2.
We claim that these sets form a(1/r )-cutting forL, that is, each of them is crossed by

at mostn/r = 2q lines ofL. To check this, we consider one such set,σ , as in Fig. 3 (we
assume that it is bounded; modifications for the unbounded cases are straightforward).
Each line crossingσ shares a segment with the upper or lower portion of the boundary
of σ , or crosses one of the segmentsA′D′, B′C′ (where A′D′ is a vertical segment
connecting the upper and lower boundaries ofσ and lying very close to the segmentAD,
and similarly forB′C′). Moreover, each line contributes at least two such situations, one
when entering the interior ofσ and one when leaving it. The upper and lower portions of
the boundary ofσ together consist of 2q + 1 segments, and each of the segmentsA′D′

andB′C′ is crossed byq − 1 lines. Together this gives the desired bound of at most 2q
lines crossingσ . Part (i) of Theorem 1 is proved.

Cutting into Trapezoids. Here we need the notion ofq-simplificationof a level, which
has been introduced by Edelsbrunner and Welzl [14]. In order to avoid some technicalities
and case analysis in the subsequent proof, we modify their original notion very slightly.
Consider the levelk with edges numberede0,e1, . . . ,et (from left to right), and choose
a point pi in the interior of the edgeei . Theq-simplification of levelk is defined as the
monotone polygonal line containing the parte0 up to the pointp0, the segmentsp0 pq,
pq p2q,. . . , pb(t−1)/qcq pt , and the part ofet from pt on. Thus, theq-simplification has at
mostt/q + 1 vertices. Figure 4 illustrates this fort = 9, q = 4. The new feature of our
definition is that we choose the vertices of theq-simplification inside edges, while in the
literature they are chosen among vertices of the original level. We need the following
property ofq-simplification:

Lemma 3. The q-simplification of level k is contained in the(closed) strip between
levels k− dq/2e and k+ dq/2e.

Proof. For the original notion ofq-simplification, this was proved by Edelsbrunner and
Welzl [14], and the proof remains almost the same for our modified notion (it becomes
simpler if anything). We sketch it for completeness.
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Fig. 4. The 4-simplification of a level.

Imagine walking along some segmentpj pj+q of theq-simplification. We start at an
endpoint, which has levelk. Our current level may only change as we cross a line of
L. Moreover, having traversed the whole segment we must be back to levelk. Thus, to
get from levelk to k + i and back tok we need to cross at least 2i lines on the way.
However, each of these lines shares a segment (edge) with the portion of the levelk
between the pointspj and pj+q, and this portion hasq + 1 edges. From this we get
i ≤ b(q + 1)/2c = dq/2e.

For the construction of a(1/r )-cutting consisting of trapezoids, we again setq = n/2r
and define the levels30,31, . . . , 3s−1 exactly as in the previous proof. We letPj be
the q-simplification of level3j . We note that the polygonal chainsPj never intersect
properly (if they did, a vertex of somePj , which has levelq j+ i , would be strictly above
Pj+1, and this is ruled out by Lemma 3).

We form the vertical decomposition for thePj ’s, that is, we extend vertical segments
from each vertex of eachPj upward and downward, until it hitsPj−1 and Pj+1. The
Pj ’s initially divide the plane intos+ 1 regions. For each vertex of eachPj , the vertical
subdividing segments erected from it increase the number of regions by two. The total
number of vertices of thePj ’s is no more than

∑s−1
j=0(tj /q+1) ≤ n2/q2+s, so altogether

the number of the resulting trapezoids is at most 2n2/q2+ 3s+ 1≤ 8r 2+ 6r + 4.
It remains to prove that each trapezoid is crossed by at most 2q lines ofL. So we look

at some trapezoidσ = ABC D in the strip betweenPj andPj+1; AB is the bottom side
andC D the top side. SupposeAB is contained in an edgeE F of Pj , andC D is an edge
of Pj+1 (see Fig. 5; few other possible cases are discussed similarly and are omitted).
Let A1 be the intersection of level3j with the vertical lineAD, and similarly letB1 be
the intersection of3j with the vertical lineBC.

Each line ofL intersecting the segmentC D, including those passing throughC and
D, shares a segment with the portion of level3j+1 between the pointsC and D, so
the number of such lines is at mostq + 1. Similarly we find that the segmentE F is
intersected by at mostq+1 lines; two of them intersect it at the endpoints, so the interior
of the segmentE F has at mostq− 1 intersections. The interior of each of the segments
D A1 andC B1 is intersected by exactlyq − 1 lines. Hence ifA1 andB1 lie both on or
below the segmentE F, we find that the total number of intersections of lines with the
boundary of the considered trapezoidABC D is at most 4q − 3.

More interesting cases arise whenA1 or B1 lie aboveE F. Suppose for instance that
A1 lies aboveE F andB1 on it or below (as in Fig. 5), and there area lines intersecting
the interior of the segmentAA1 (by a general position assumption, we may suppose that
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Fig. 5. Bounding the number of lines intersecting a trapezoid.

no line passes throughA). The pointA1 has level exactlyk = jq+ i , and so the pointA
has levelk−a. At the same time, the pointE has levelk again, so the segmentE Amust
be crossed by at leasta lines, and thus the segmentAB is intersected by no more than
q − 1− a lines. Summarizing, the total number of intersections of the lines ofL with
the boundary ofABC D is at mostq + 1 (for the sideC D) plus 2(q − 1) (for interiors
of AA1 andC B) plusa+ 1 (for A1A) plusq− 1−a (for AB). Together we get 4q, and
a similar counting for the case when bothA1 andB1 lie aboveE F yields at most 4q+1
intersections. In all cases, the total number of lines crossing the considered trapezoid is
at most 2q. This proves Theorem 1(ii).

Remark. One can also consider bounds for a(1/r )-cutting consisting ofk-gons, i.e.,
sets whose boundary consists of at mostk segments. By a construction similar to the
two given above, an upper bound of 4((k − 2)/(k − 3))r 2 + O(r ) can be obtained for
the number ofk-gons in such a(1/r )-cutting.

3. Lower Bounds

General Sets and Triangles. As was mentioned in the Introduction, our lower bound
proofs are based on the idea that a single set in a(1/r )-cutting cannot cover too many
cells (or vertices) of the arrangement. A setσ crossed byq lines cannot be incident to
more cells than there are in an arrangement ofq lines, i.e.,q2/2+O(q). However, if the
setσ lies in a portion of the arrangement where the pattern of lines looks like a rectangular
grid, thenσ can only coverq2/4+ O(q) cells (if it is crossed by somea “vertical” and
b “horizontal” lines,a+ b ≤ q, then it is incident to at most(a+ 1)(b+ 1) cells). So
we need to exhibit an arrangement where almost all cells lie within approximate affine
copies of grid-like patterns.

We construct arrangementsL0, L1, . . . inductively;L0 consists of an arbitrary single
line andLk has 2k lines`1, `2, . . . , `2k . For the induction, we assume that, forLk, there
is a parallelogramPk that is intersected by all lines ofLk in “regular stripes.” More
precisely, we require that the parallelogramPk can be affinely mapped to the rectangle
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Fig. 6. ConstructingLk+1 from Lk.

R= [0,2]× [0,1] so that each segmentPk ∩ `i is mapped to a segment with Hausdorff
distance at mostεk from the horizontal segment{(x, y) ∈ R; y = (i − 1

2)/2
k}. Here

εk > 0 is a real number which can be assumed as small as needed for the subsequent
steps to work.

In the inductive step we take an affine copyL ′k of Lk under an affine mapping sending
Pk to R as in the inductive assumption. Then we letL ′′k be Lk reflected around the line
x = y, and we setLk+1 = L ′k ∪ L ′′k (see Fig. 6). It remains to specify the parallelogram
Pk+1; clearly, a very thin rectangle whose axis is the linex + y = 2 has the required
property.

In the inductive step we have created a 2k × 2k grid pattern in the square [0,1]2

in Lk+1. Moreover, the arrangement ofLk+1 contains affine copies of other, smaller
grid patterns created in previous steps (the construction is such that the parallelograms
enclosing these grid patterns are all disjoint).

Let n = 2k, let q = n/r be given, and suppose thatq = o(n). Call a cell in the
arrangement ofLk deepif it is contained in one of the grid patterns inLk and it is
separated by at leastq + 1 lines from each of the sides of the parallelogram bounding
the considered grid pattern. An easy calculation shows that(n2/2)(1− o(1)) cells are
deep ones.

Let σ be an arbitrary set crossed by at mostq lines ofLk. We claim that it is incident
to at mostq2/4+ O(q) deep cells. Indeed, ifσ is incident to at least one deep cell, then
it is completely contained in the parallelogramP enclosing the grid pattern of that deep
cell. We delete all lines that do not crossσ and then draw the boundary ofP. The number
of cells intersected byσ is unchanged. All these cells lie inP, and the number of cells
there after the deletion is at mostq2/4+ O(q). This shows that any(1/r )-cutting for
Lk has 2r 2(1− o(1)) sets as claimed in Theorem 2(i).

If the consideredσ is a triangle, it can only intersectsq2/8+ O(q) cells of the grid:
Map the parallelogram enclosing the considered grid pattern onto an axis-parallel square
so that the grid lines have unit spacing. Then the length of the orthogonal projection of
σ to thex-axis plus the length of the orthogonal projection to they-axis are together
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smaller thanq + 5, and hence the area ofσ is at mostq2/8+ O(q). Thusσ encloses
at most this many grid cells completely and its boundary intersects at mostO(q) more
cells. This proves Theorem 2(ii).

Quadrilaterals. For a cutting consisting of quadrilaterals, the above method based on
grids only gives the same bound as for general sets. A random construction described
next does slightly better.

Let S2 be the unit sphere inR3 centered at the origin 0. For a pointx ∈ S2 we
definex∗ as the great circle whose plane is perpendicular to the vector 0x. Let µ be
the rotation-invariant probability measure onS2 (the usual surface measure divided by
the normalizing factor 4π ). We define a probability measureτ on the setG of all great
circles by settingτ(G) = µ({x; x∗ ∈ G}) for G ⊆ G (whenever the right-hand side is
defined).

We identifyR2 with the planez= 1 inR3, and letU be the upper open hemisphere
of S2. Let p: U → R2 be the central projection with center at 0. Ifg is a great circle
distinct from the horizontal one,p(g) is a line inR2. Given a sufficiently large parameter
r , we choosen much larger thanr , sayn ≥ r 10, and we letG be a random set ofn great
circles onS2, obtained byn independent random draws from the distributionτ (the same
circle may be drawn several times but this happens with probability 0). We letL be the
set of thep-images of the great circles ofG; this is the set of lines for which we want to
show a lower bound on the size of a(1/r )-cutting.

The way to think aboutG is that these are “all the great circles”; only because
cuttings are considered for finite sets of lines do we need to take a finite sample. We
need a technical result showing that the random sampleG approximates the setG of all
great circles well enough in a suitable sense. Fortunately, the required approximation
properties are special cases of known general results.

For a subsetX ⊆ S2 and a setG ⊆ G of great circles, we letGX denote the set of all
great circles ofG intersectingX. Similarly we writeG2

X for the set of all ordered pairs of
distinct great circles ofG such thatX contains at least one of their two intersection points.
We also recall that a setX ⊆ S2 is called (strongly) spherically convexif it contains no
two antipodal points and every great circle intersects it in a connected segment.

Lemma 4. Letε > 0 be a real number with Cε−2 log(1/ε) < n for a sufficiently large
absolute constant C(in particular, ε = n−1/3 will do). Then the sample G has both of
the following properties with a positive probability:

(i) For any spherically convex quadrilateral Q(bounded by at most four arcs of
great circles) we have ∣∣∣∣τ(GQ)− |GQ|

n

∣∣∣∣ ≤ ε.
(ii) Let C⊆ S2 be a spherically convex set. Then we have∣∣∣∣τ 2(G2

C)−
|G2

C|
n2

∣∣∣∣ ≤ ε
(τ 2 denotes the product measure onG × G).
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Proof sketch. As was mentioned above, a proof follows from general results in the
literature. Since this part has little to do with the main topics of this paper, we do not
recall all the necessary definitions, and we only present brief remarks that should be
sufficient for those familiar with the referred papers. Condition (i) says thatG is anε-
approximationfor the set system{GQ; Q is a spherically convex quadrilateral}, and the
required result follows from a theorem of Vapnik and Chervonenkis [19] plus a standard
VC-dimension estimate (see, e.g., [16] for the definition ofε-approximation and related
notions). Part (ii) is a special case of a result of Chazelle [6] on the so-calledproduct
range spaces. In that paper the result is formulated in a special setting of hyperplanes
in Rd, and a more general formulation directly implying the property we need is given
in [4].

In the rest of the proof suppose that a suitable setG with properties (i) and (ii) as in
Lemma 4 has been fixed. Letσ ⊆ R2 be a quadrilateral crossed by at mostq = n/r
lines ofL. We want to show thatσ cannot contain too many intersections of lines ofL.
Clearly, we may assumeσ is convex. LetQ = p−1(σ ) ⊆ U be the spherically convex
pre-image ofσ in S2.

SinceQ is intersected by at mostq+O(1) great circles ofG, property (i) ofG implies
thatτ(GQ) ≤ (1/r )(1+ o(1)) (the value ofn was chosen so that the relative accuracyε

in (i) is much smaller than 1/r , and even than 1/r 2, which is needed in the next step).
Further, by (ii), the number of ordered pairs of great circles inG with intersections inQ
is at mostn2(τ 2(G2

Q)+ ε), whereε ¿ 1/r 2 is as in Lemma 4. Hence it suffices to show

Lemma 5. Let Q⊆ S2 be a spherically convex quadrilateral(bounded by great circle
arcs) with τ(Q) = δ, whereδ < δ0 for a suitable absolute constantδ0 > 0. Then we
haveτ 2(G2

Q) ≤ δ2/2.54.

Proof. The set(GQ)
2 of all ordered pairs or great circles intersectingQ hasτ 2-measure

δ2. Hence it suffices to show that ifδ is small enough, then the probability that two great
circles randomly chosen fromGQ intersect insideQ is at most 1/2.54. We derive it from
an analogous result in the plane (it is quite likely that a corresponding result for the
sphere is known as well, but I could not find it in the literature).

Let ν denote a motion-invariant measure on the set of all lines in the plane. As is well
known, this measure is unique up to a scaling factor. For a line` not passing through
the origin, letρ(`), ϕ(`) be the polar coordinates of the point of` closest to the origin.
Then theν-measure of a set of linesL is the Lebesgue measure of the image ofL in the
(ρ, ϕ)-plane, that is,

ν(L) =
∫

L
dρ(`)dϕ(`).

For any convex setC, an appropriate scalar multiple ofν is a probability distribution
on the set of all lines intersectingC, and it is known that if we pick two lines̀, `′ from
this distribution randomly and independently, then the probability that` and`′ intersect
within C equals

2π area(C)

perimeter(C)2
(1)
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[18, p. 56]. Among convex quadrilaterals of given perimeter, the square has the largest
area, and for the square the value of (1) isπ/8< 1/2.54.

It remains to transfer this result to the sphere. The considered quadrilateralQ with
τ(GQ) = δ has diameterO(δ) (since theτ -measure of the set of all great circles inter-
secting an arc of a great circle of angular length 2πx is 2x for x ≤ 1

2). By symmetry,
we may suppose thatQ lies in anO(δ)-neighborhood of the “north pole”(0,0,1) of S2.
Let Q′ = p(Q) be the projection ofQ into thez= 1 plane. It suffices to show that for
δ ↘ 0, the probability distribution on the set of all lines intersectingQ′ induced by the
projection ofτ converges uniformly to the distribution given byν. This seems intuitively
obvious, and it can be checked by calculation as follows.

We calculate the measureτ ′ induced on the set of all lines inR2 by thep-image ofτ .
We introduce the polar coordinates(ρ, ϕ) in thez = 1 plane (with origin at(0,0,1)),
and spherical coordinates(ϑ, ϕ) on S2 (whereϕ is the “latitude” andϑ = arccosz is the
angle from the north pole). Then the surface measure element onS2 is const. sinϑ dϑ dϕ
(the normalizing constant is unimportant so we leave it unspecified). If` is a line in the
z = 1 plane, letv = v(`) ∈ U be the point ofS2 such that the projection of the great
circlev∗ is the line`. It is easy to find that if the point of̀nearest to the origin has polar
coordinates(ρ, ϕ), thenv has spherical coordinates(arccotρ,−ϕ). From this we get
that the element ofτ ′ is

dτ ′ = const. sin(arccotρ)d(arccotρ)dϕ = const.

(1+ ρ2)3/2
dρ dϕ .

In a small enough neighborhood of the origin this converges to a suitable constant
multiple of dν.

Remark. This lower bound proof can be applied also for cuttings consisting of convex
k-gons for any fixedk. The resulting constant atr 2 is the reciprocal of the value of (1)
for the regular convexk-gon, which is(2k/π) tan(π/k) (and withk→∞ it converges
to 2).

4. Upper Bounds for Semicuttings

As was remarked in the Introduction, we are going to analyze a simple probabilistic
construction of a semicutting. This construction goes back to Clarkson [10], and our
analysis is mainly based on the method of Chazelle and Friedman [8].

Since the alphabet does not seem to have sufficiently many convenient letters, the
notation in this section reuses many letters with meaning quite different from the one in
previous sections.

4.1. Canonical Triangulations

First we define acanonical triangulation CT(S) for a finite collectionS of lines in the
plane. We suppose that the lines ofS are in general position (including the assumption
that no line ofS is horizontal). The triangulation is obtained by drawing, for each cell
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Fig. 7. An example of a canonical triangulation.

C of the arrangement ofS, all the diagonals ofC incident to the lowest vertex ofC. In
order to handle the unbounded cells properly (note that a cell unbounded from below has
no lowest vertex), we may for instance formally add three lines “at infinity” toS, say the
linesx = −K , y = x − K , andy = −x + K for a very largeK > 0 (we assume that
these lines are also in general position relative to the lines ofS). In reality this means
that we specify how unbounded cells are subdivided into regions with at most three
edges by drawing suitable semi-infinite rays; see Fig. 7 for an example of the resulting
triangulation.

Note thatCT(S) may also contain unbounded convex polygons (with at most three
sides). When we speak of triangles ofCT(S)we include also these unbounded polygons.
Moreover, for the subsequent analysis, it is technically convenient to include the edges
(sides) of the triangles inCT(S) into CT(S) as separate objects.

Let L be a given finite set of lines in general position. We letT = ⋃S⊆L CT(S) be
the collection of all triangles and all edges that appear in the canonical triangulation for
some subset ofL. Forσ ∈ T , let I (σ ) be the set of lines ofL intersecting the interior of
σ (for an edge, we mean the relative interior), and we putw(σ) = |I (σ )|. Let D(σ ) ⊆ L
be an inclusion-minimal subset ofL with σ ∈ CT(D(σ )). As is not difficult to check, for
lines in general position,D(σ ) is unique (these are the lines definingσ “geometrically”)
and it always consists of at most five lines. We putb(σ ) = |D(σ )|. We writeTb for the
set of allσ ∈ T with b(σ ) = b. The triangles and edges inTb are calledb-canonical.
Figure 8 shows examples ofb-canonical triangles for various values ofb. The reader
may want to check that edges can beb-canonical forb = 1,2,3,4.

A key property expressing the “canonicality” ofCT(S) is the following: For any set
S⊆ L and any triangle or edgeσ ∈ T , we have

σ ∈ CT(S) if and only if D(σ ) ⊆ S and I (σ ) ∩ S= ∅ (2)

(see [8]). A large part of our subsequent analysis will apply not only to the specific canon-
ical triangulation in the plane, but to a general abstract framework. In this framework
we have two finite setsL andT and two mappingsI , D: T → 2L , where|D(σ )| ≤ b0

for all σ ∈ T (b0 is some constant). In this abstract setting, the elements ofT are often
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Fig. 8. Examples ofb-canonical triangles.

calledregions. Taking (2) as an axiom, we can thendefine

CT(S) = {σ ∈ T ; D(σ ) ⊆ Sand I (σ ) ∩ S= ∅}

(see [2] for a more detailed discussion of abstract frameworks of this type in computa-
tional geometry).

Lemma 6. Let S be a set of q lines in the plane, and let CT(S) be the canonical
triangulation of the arrangement of S.

(i) If Fb denotes the number of b-canonical edges in CT(S), then F1 ≤ 1, F2 =
O(q), F3 = q2+ O(q), and F4 = q2/2+ O(q).

(ii) If Gb denotes the number of b-canonical triangles in CT(S), then G0 ≤ 1,
G1 ≤ 2, G2 = O(q), G3 + G4 + G5 = q2 + O(q), |G3 − G5| = O(q), and
G3 ≤ q2/3+ O(q).

Proof. Concerning (i), a 1-canonical edge can only appear ifS consists of a single
line, and 2-canonical edges are always unbounded parts of the lines ofS. The claimed
bounds forb-canonical edges withb = 3,4 have anO(q) error term, so we can ignore
unbounded cells safely. In a bounded cell, a 3-canonical edge is just a bounded edge of
the arrangement ofS, and there areq2+O(q) of such edges. The 4-canonical edges are
diagonals of the bounded cells. The drawing of all triangles in bounded cells determines
a planar graph withq2/2+O(q) vertices and with all faces triangular except for the outer
one which hasO(q) edges, hence there are3

2q2+O(q) edges in total, andq2/2+O(q)
of them are the diagonals.

In part (ii), we can ignore unbounded cells again. ThenG3+G4+G5 is the total number
of triangles, which is asymptotically twice the number of vertices of the arrangement of
S. Now 3-canonical triangles are just triangular facets of the arrangement ofS, and it
is known that this number is at mostq2/3+ O(q) (and this can be attained) [13]. The
4-canonical triangles are those lying in a cell with at least four sides and sharing one
side with that cell, and the remaining ones are 5-canonical. Hence a cell withi edges has
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i − 4 5-canonical triangles except wheni = 3. If fi denotes the number of cells withi
edges, we thus haveG5 =

∑
i (i −4) fi +G3. On the other hand,

∑
i fi = q2/2+O(q)

(the total number of cells) and
∑

i i f i = 2q2+ O(q) (twice the total number of edges),
hence

∑
i (i − 4) fi = O(q).

4.2. Higher Moments for the Canonical Triangulation

Given a setL of n lines in the plane in general position, we fix a suitable probabilityp ∈
(0,1). We choose a random sampleR⊆ L by picking each line ofL independently with
probability p, and the semicutting we want to investigate is the canonical triangulation
CT(R).

We assume thatp < n−α and np > nα for some constantα > 0. Then|R| =
np(1+ o(1)) holds with high probability (the probability of this failing is exponentially
small inn). This follows from a suitable tail estimate for the binomial distribution; see,
e.g., the Appendix in [3]. Hence, when estimating the expectation of quantities lying
between 1 andnO(1), we make a negligibly small error by restricting ourselves to the
samplesR with |R| = np(1+ o(1)).

We are interested in estimating the expectation of thekth moment

MTk (p) = E

[ ∑
σ∈CT(R)

w(σ )k

]
.

In particular,MT0 (p) is the expected size ofCT(R).
This definition refers to the abstract setting mentioned above. If we want to refer to

thekth moment for the triangles in the canonical triangulation of a line arrangement, we
write M triang

k , and similarlyMedge
k refers to thekth moment for the edges of the canonical

triangulation.
It has been known that for anyk > 0 there exists a constantAk such thatM triang

k (p) ≤
Ak(np)2 p−k for p¿ 1, pnÀ 1 [8]. This means that thekth degree average ofw(σ)over
the canonical triangulation of a random sample isO(1/p) with a positive probability.
Here we investigate numerical bounds onAk.

From the canonicality condition (2), we get that ifR⊆ L is a random sample selected
as above with probabilityp, then, for anyσ ∈ T ,

Pr[σ ∈ CT(R)] = (1− p)w(σ)pb(σ ).

Hence ifN(b)
w denotes the number ofσ ∈ Tb with w(σ) = w, we can writeMTk (p) =∑

b MT ,(b)k (p), where

MT ,(b)k (p) =
∞∑
w=0

N(b)
w wk pb(1− p)w. (3)

We could try to estimate the numbersN(b)
w directly, but this looks quite challenging

already for the simplest planar cases (the number of 4-canonical segments in a line ar-
rangement, say). Instead, following the Chazelle–Friedman method, we use information
aboutMT0 (p

′) for variousp′ to boundMTk (p).
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4.3. Bounding Moments for b-Canonical Objects

Here we consider boundingMT ,(b)k (p) for a single fixed value ofb. We omit the super-
scriptsT ,(b) in the notation in this part.

We consider the situation when we do not know anything about theNw ’s directly,
and we only assume certain estimates forM0(sp) for suitable values of a real parameter
s> 0 (we only need to consider values ofs not much larger than 1). The question is how
well can we boundMk(p). In our application for semicuttings and in similar geometric
situations, we usually have estimates of the form

M0(sp) = sd M0(p)+ smaller order terms.

For instance, for the 4-canonical edges of the canonical triangulation of a line arrange-
ment in the plane, Lemma 6(i) tells us thatMedge,(4)

0 (sp) = 1
2s2(np)2 + O(snp). Two

different cases to consider are when we can estimateM0(sp) both from above and below,
and when we only have an upper bound; the latter case gives a slightly weaker upper
bound for Mk(p) even if the upper bounds forM0(sp) are the same. The following
proposition deals with these two cases.

Proposition 7. Let k > 0 and b > d be fixed real numbers. Let p ∈ (0,1) be a
parameter; the asymptotic notation “o(1)” in the subsequent formulas is with respect to
p→ 0.

(i) Set s0 = (b− d)/(b− d+ k). Suppose that M0(s0 p) ≤ sd
0 M0(p)(1+ o(1)), and

moreover that M0(s′0 p) = O(M0(p)) holds for some fixed s′0 < s0. Then

Mk(p) ≤ Bk,b−d(1+ o(1))
M0(p)

pk
,

where

Bk,δ = (δ + k)δ+k

ekδδ
.

(ii) Let k≥ 1 be an integer, and letγ > 0 be a fixed real number. Suppose that

M0(sp) = sd M0(p)(1+ o(1))

holds for all s∈ (1− γ,1+ γ ). Then

Mk(p) = B̃k,b−d(1+ o(1))
M0(p)

pk
,

whereB̃k,δ = δ(δ + 1)(δ + 2) · · · (δ + k− 1).

Remarks. Table 1 shows some numerical values of the constantsB1/k
k,δ and B̃1/k

k,δ (the
kth roots seem more instructive in this context).

The estimate in part (i) is best possible in a certain sense (a precise formulation is
given in Lemma 9 below).
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Table 1. Constants in the estimates for the momentsMk(p).

δ = 1 δ = 2 δ = 3 δ = 4

k B1/k
k,1 B̃1/k

k,1 B1/k
k,2 B̃1/k

k,2 B1/k
k,3 B̃1/k

k,3 B1/k
k,4 B̃1/k

k,4

1 1.47 1.00 2.48 2.00 3.49 3.00 4.49 4.00
2 1.91 1.41 2.94 2.45 3.96 3.46 4.97 4.47
3 2.34 1.82 3.39 2.88 4.41 3.91 5.43 4.93
4 2.75 2.21 3.82 3.31 4.86 4.36 5.89 5.38
5 3.16 2.65 4.25 3.73 5.30 4.79 6.33 5.83

Part (ii) of this Proposition is somewhat related to a work of Clarkson [11]. For an
arrangement ofn lines (or hyperplanes), Clarkson considers a random sampleR of
exactlyr lines (this is a technical difference to our setting). For a certain combinatorial
quantity depending onR (not related to the canonical triangulation), he determines an
analogue of ourM0(p) exactly for all sample sizesr , and he reconstructs the underlying
distribution (an analogue of ourNw ’s) from it exactly by matrix inversion.

Proof of Proposition7. In this proof we assume thats > 0 ands = 2(1) (in other
words,s lies in a fixed interval(s1, s2) with s1 > 0). From (3) we have

Mk(sp) =
∞∑
w=0

Nww
k(sp)b(1− sp)w.

First we want to manipulate this expression into a more convenient form; by a suitable
rescaling we will be able to get fewer parameters. We introduce the substitutionw = t/p,
wheret is a new variable. We letν be the measure on [0,∞) concentrated at the points
0, p,2p,3p, . . .assigning the mass of(pb/M0(p))Nw to the pointpw,w = 0,1,2, . . . .
With this notation, we obtain

Mk(sp) = M0(p)

pb

∞∑
w=0

ν(wp)wk(sp)b(1− sp)w

= M0(p)sb

pk

∫ ∞
0

tk(1− sp)t/p dν(t) (4)

(for future considerations it seems more natural to write the finite sum formally as an
integral). Using the inequality 1− sp≤ e−sp we get

Mk(sp) ≤ M0(p)

pk
sb
∫ ∞

0
tke−st dν(t). (5)

We writemk(s) =
∫∞

0 tke−st dν(t). We want to show that (5) actually is an equality up
to a 1+ o(1) factor, i.e., that replacing 1− spby e−sp does no harm. This is expressed
in the following lemma:
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Lemma 8. Let s> 0, s = 2(1), and suppose that̃s ∈ (0, s) is a number such that
both s̃ and s− s̃ are bounded away from zero by a positive constant, and such that
M0(s̃ p) ≤ K M0(p) holds for some constant K. Then we have

Mk(sp) = (1+ o(1))
M0(p)

pk
sbmk(s). (6)

Proof of Lemma8. These are rather routine estimates. In view of (5), we only need to
show the inequality “≥”, which means showing∫ ∞

0
tk(1− sp)t/p dν(t) ≥ (1− o(1))

∫ ∞
0

tke−st dν(t).

Using the asymptotics 1− p = e−p+o(p), we get(1 − sp)t/p ≥ e−(1−o(1))st. For an
arbitrarily large but fixedt0, we havee−st(1−o(1)) = (1− o(1))e−st for all t ≤ t0. Hence∫ ∞

0
tk(1− sp)t/p dν(t) ≥

∫ t0

0
tk(1− sp)t/p dν(t)

≥ (1− o(1))
∫ t0

0
tke−st dν(t).

It remains to show that, for large enought0, the integral
∫∞

t0
tke−st dν(t) is negligibly

small, smaller than a prescribedε > 0, and here we use the assumption ons̃. Set
β = (s− s̃)/2s, and lett0 be so large thateβst0 > (K/εs̃b) tk

0 (K is the constant from
the assumption oñs). We then have∫ ∞

t0

tke−st dν(t) ≤ εs̃
b

K

∫ ∞
t0

e−(1−β)st dν(t).

Sincee−(1−β)st = e−(1+β)s̃t ≤ (1 − s̃ p)t/p for p small enough, the last displayed
expression is certainly at most

εs̃b

K

∫ ∞
0
(1− s̃ p)s̃t/p dν(t) ≤ εs̃

b

K

M0(s̃ p)

M0(p)s̃b
≤ ε

by the assumption onM0(s̃ p).

We continue the proof of Proposition 7. In view of (6) and of the assumptions on
M0(sp) in Proposition 7, it is now sufficient to boundmk(1) in terms ofm0(s) for
suitables’s. This is done in the next lemma.

Lemma 9. Let k, δ > 0 be fixed real numbers and letν be a measure on[0,∞). Put
mk(s) =

∫∞
0 tke−st dν(t), and writemk = mk(1).

(i) Let s0 = δ/(δ + k). Suppose thatν is such that

m0(s) ≤ 1

sδ
(7)

holds for s= s0. Thenmk ≤ Bk,δ, where Bk,δ is as in Proposition7.This estimate
cannot be improved even if we assume that(7)holds for all s> 0simultaneously.
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(ii) Let k ≥ 1 be an integer, and letγ > 0 be a fixed real number. Then, for every
ε > 0, anη = η(ε, γ, δ, k) > 0 exists with the following property: if we assume
that

1

sδ
− η ≤ m0(s) ≤ 1

sδ
+ η

holds for all s∈ [1,1+ γ ), thenB̃k,δ − ε ≤ mk ≤ B̃k,δ + ε, whereB̃k,δ is as in
Proposition7.

Remarks. Part (ii) can be formulated with a general functiong(s) instead ofs−δ. We
need to assume thatg is (k+1)-times differentiable in(1,1+γ ), and the result is thatmk

is close to(−1)kg(k)(1)g(1); we omit a detailed formulation as we have no immediate
application (the details can be recovered from the proof below).

We should also note that the lemma is essentially about the Laplace transform. Namely,
we have some information about the Laplace transform of dν, and we are asking what
bounds can be inferred for the Laplace transform oftk dν.

Proof of Lemma9. (i) The value ofs0 given in the statement comes from a solution
to a simple minimization problem. For any givens < 1, we can calculate the smallest
numbera = a(s, k) such that

tke−t ≤ ae−st (8)

holds for allt ∈ [0,∞). Thisa is the minimum value attained by the (convex) function
t 7→ tke−(1−s)t . Elementary calculus shows that the minimum is att = k/(1− s), and
we geta = kk/ek(1− s)k. By integrating both sides of (8) according toν(t), we get
mk ≤ am0(s) ≤ a/sδ. By minimizing the right-hand side as a function ofs, we arrive
at the values0 = δ/(δ + k), for which the upper bounda/sδ becomes justBk,δ.

The lower bound is equally simple (but it is a little surprising that the above straight-
forward method gives the best possible result). Namely, we consider the measureν with
massN = (e(k+ δ)/δ)δ concentrated at a single pointt0 = δ+ k. For thisν, we obtain
mk = Ntk

0e−t0 = Bk,δ, while m0(s) = Ne−st0. With some more calculus one shows that
Ne−st0 ≤ s−δ holds for alls> 0, hence (7) is satisfied.

(ii) It seems that a similar result (in greater generality) must be known in probability
theory, say, but having found no reference so far I present a proof.

Here is thesimpleunderlying idea.Up tosmallerorder terms,weassume
∫∞

0 e−st dν(t)
= s−δ. If we were allowed to differentiate both sides as a function of the parame-
ter s and move the differentiation operator inside the integration sign, we would get∫∞

0 tke−st dν(t) = δ(δ + 1) · · · (δ + k − 1)s−δ−k, and substitutings = 1 would give
what we want. Of course, this does not quite work since we only assume an approxi-
mate equality

∫∞
0 e−st dν(t) ≈ s−δ and so the derivatives of both sides might be entirely

different.
To make everything work, we approximate differentiation by a suitable finite differ-

encing operator. For instance, we may use theforward differencing operator1, which
acts on a real functionf as follows:

(1h f )(x) = f (x + h)− f (x)
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(h > 0 is a real parameter). Thek-fold iteration of1 can be expressed as

1k
h f (x) =

k∑
i=0

(−1)k−i

(
k

i

)
f (x + ih). (9)

For a functionf having a(k+ 1)st derivative on(0, kh), we have

1k
h f (x) = hk f (k)(x)+ O(hk+1 max{ f (k+1)(ξ); x < ξ < x + t}) (10)

(with an absolute constant in theO-notation; see, e.g., [5]). Leth > 0 be sufficiently
small (in terms ofε), and setsi = 1+ ih, ai = (−1)k−i

(k
i

)
h−k, i = 0,1, . . . , k. Then for

any function f we have
∑k

i=0 ai f (si ) = h−k1k
h f (1), which is a good approximation to

f (k)(1) for a smoothf by (10).
Applying this with f (x) = e−xt, we get

∑k
i=0 ai e−si t = (−t)ke−t + O(htk+1e−t ) =

(−t)ke−t + O(he−t ) (for all t). Integrating both sides according toν(t) gives∫ ∞
0

tke−t dν(t) = mk = (−1)k
k∑

i=0

(
ai

∫ ∞
0

e−si t dν(t)

)
+ O

(
h
∫ ∞

0
e−t dν(t)

)

=
k∑

i=0

ai m0(si )+ O(hm0).

Using our assumptions−δi − η ≤ m0(si ) ≤ s−δi + η, we can further write

mk = (−1)k
k∑

i=0

ai

sδi
+ O

(
h+ η

k∑
i=0

|ai |
)
= (−1)k

k∑
i=0

ai

sδi
+ O(h+ ηh−k).

Finally, using the definition of theai ’s and the finite differencing formula (10) again we
get

mk = (−1)k
(

dk(s−δ)
dsk

∣∣∣∣
s=1

)
+O(h+ηh−k) = δ(δ+1) · · · (δ+k−1)+O(h+ηh−k).

By choosingh¿ ε andη ¿ hk we get the claim of the lemma.

4.4. Planar Semicuttings

Estimate via Edges. We return to the specific planar situation, and consider estimating
the momentsM triang

k (p) for the canonical triangulation of a random sampleR⊆ L. Our
first approach is based on estimating the momentMedge

k first. Given a triangleσ ∈ CT(R)
with edgese1,e2,e3, we note thatw(σ) = 1

2

∑3
i=1w(ei ) (since each line intersectingσ

intersects two of its edges). From this we get

w(σ)k = 1

2k

(
3∑

i=1

w(ei )

)k

≤ 3k−1

2k

3∑
i=1

w(ei )
k

(by Hölder’s inequality
∑

i xi yi ≤ (
∑

i xk
i )

1/k(
∑

i xk/(k−1)
i )(k−1)/k with xi = w(ei ),
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yi = 1). Every edge contributes to two triangles, henceM triang
k (p) ≤ (3/2)k−1Medge

k (p).
For estimatingMedge

k (p) we combine Lemma 6 and Proposition 7(ii), which yields

Medge
k (p) = (B̃k,1+ 1

2 B̃k,2)(1+ o(1))(np)2 p−k.

Write q = np. SinceCT(R) has almost surelyq2(1+o(1)) triangles, we get that the
expectation of thekth degree average ofw(σ) overσ ∈ CT(R) is

(1+ o(1))

[
M triang

k (p)

q2

]1/k

≤ (1+ o(1))A1/k
k

n

q
,

whereAk = (3/2)k−1(B̃k,1+ 1
2 B̃k,2). If this kth degree average should be at mostn/r as

required by the definition ofkth degree(1/r )-semicutting, we must chooseq = A1/k
k r ,

and hence the resulting(1/r )-semicutting has size(1+ o(1))A2/k
k r 2. This yields

Theorem 10. For any fixed integer k≥ 3, sufficiently large parameter r, and a suffi-
ciently large collection L of lines in the plane, the above randomized construction yields,
with a positive probability, a kth degree(1/r )-semicutting for L consisting of at most
C′kr

2(1+o(1)) triangles, where C′k = 9
4(k! (k+3)/3)2/k. Approximate numerical values

are C′3 ≈ 11.8, C′4 ≈ 16.8, C′5 ≈ 22.6.

We should perhaps stress that these are results concerning the particular randomized
construction of a semicutting via canonical triangulation. For instance, already fork = 4,
the construction of a(1/r )-cutting consisting of 16r 2+O(r ) triangles provides a better
result than the randomized construction as in Theorem 10.

Direct Estimate via Triangles. For triangles, we cannot give precise bounds for the
number ofb-canonical triangles for eachb; for instance, the number of 3-canonical and
5-canonical triangles can be aboutq2/3 each, or, as another extreme, essentially all the
triangles can be 4-canonical. The proportion of the 3-canonical and 5-canonical triangles
for a random sample taken with probabilityspmay moreover vary withs (although this
intuitively does not look very likely). Thus, rather than using Proposition 7 directly, we
employ the method from its proof. As in the proof of Lemma 9, we bound the function
tke−t by a function of the formae−st for the smallest possiblea = a(k, s). By the
considerations in the proof of Proposition 7, we get that, for any fixeds ∈ (0,1),

M triang
k (p) ≤ (1+ o(1))a(k, s)

5∑
b=3

1

sb pk
M triang,(b)

0 (sp).

By Lemma 6 we know thatM triang,(b)
0 (sp) = gbs2 p2(1+ o(1)) for some real numbers

g3, g4, g5 satisfyinggb ≥ 0, g3+ g4+ g5 ≤ 1, andg3 = g5 ≤ 1
3, hence we obtain

M triang
k (p) ≤ (1+ o(1))

(np)2

pk
a(k, s)

5∑
b=3

gb

sb−2
.

For a fixeds, the expression(g3/s + g4/s2 + g5/s3) is maximal, under the above
conditions on thegb’s, for g3 = g4 = g5 = 1

3. Hence we need to minimize the function
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s 7→ a(s, k)(s−1 + s−2 + s−3)/3. This can be done analytically but the expressions
are fairly messy. The resulting numerical bounds for the size of thekth degree(1/r )-
semicutting are approximately 13.4r 2 (k = 3), 17.2r 2 (k = 4), 21.3r 2 (k = 5). This is
slightly worse than the bounds obtained via edges in Theorem 10.
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4. H. Brönnimann, B. Chazelle, and J. Matouˇsek. Product range spaces, sensitive sampling, and derandom-

ization. InProc. 34th Ann. IEEE Symp. Found. Comput. Sci., pages 400–409, 1993. Revised version is to
appear inSIAM J. Comput.

5. R. L. Burden, J. D. Faires, and A. C. Reynolds.Numerical Analysis. PWS Publishing, Florence, KY, 1989.
6. B. Chazelle. Cutting hyperplanes for divide-and-conquer.Discrete Comput. Geom., 9(2):145–158, 1993.
7. B. Chazelle. An optimal convex hull algorithm in any fixed dimension.Discrete Comput. Geom., 10:377–

409, 1993.
8. B. Chazelle and J. Friedman. A deterministic view of random sampling and its use in geometry.Combi-

natorica, 10(3):229–249, 1990.
9. K. L. Clarkson. New applications of random sampling in computational geometry.Discrete Comput.

Geom., 2:195–222, 1987.
10. K. L. Clarkson. A randomized algorithm for closest-point queries.SIAM J. Comput., 17:830–847, 1988.
11. K. L. Clarkson. A bound on local minima of arrangements that implies the upper bound theorem.Discrete

Comput. Geom., 10:427–433, 1993.
12. K. L. Clarkson and P. W. Shor. Applications of random sampling in computational geometry, II.Discrete

Comput. Geom., 4:387–421, 1989.
13. H. Edelsbrunner.Algorithms in Combinatorial Geometry. EATCS Monographs on Theoretical Computer

Science, volume 10. Springer-Verlag, Heidelberg, 1987.
14. H. Edelsbrunner and E. Welzl. Constructing belts in two-dimensional arrangements with applications.

SIAM J. Comput., 15:271–284, 1986.
15. L. Guibas and M. Sharir. Combinatorics and algorithms of arrangements. In J. Pach, editor,New Trends in

Discrete and Computational Geometry, pages 9–36. Algorithms and Combinatorics, volume 10. Springer-
Verlag, New York, 1993.

16. D. Haussler and E. Welzl. Epsilon-nets and simplex range queries.Discrete Comput. Geom., 2:127–151,
1987.

17. J. Matouˇsek. Construction ofε-nets.Discrete Comput. Geom., 5:427–448, 1990.
18. L. A. Santal´o. Integral Geometry and Geometric Probability. Addison-Wesley, Reading, MA, 1976.
19. V. N. Vapnik and A. Ya. Chervonenkis. On the uniform convergence of relative frequencies of events to

their probabilities.Theory Probab. Appl., 16:264–280, 1971.
20. P. Yamamoto, K. Kato, K. Imai, and H. Imai. Algorithms for vertical and orthogonalL1 linear approxi-

mation of points. InProc. 4th Ann. ACM Symp. Comput. Geom., pages 352–361, 1988.

Received October1, 1996,and in revised form September25, 1997.


