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Abstract. A theorem of Chazelle and Friedman with numerous applications in combi-
natorial and computational geometry asserts that for an €6t lines in the plane and

for any parameter > 1 there exists a subdivision of the plane into at m@st (possibly
unbounded) triangles; a constant, such that the interior of each triangle is intersected
by at mostn/r lines of L. (Such a subdivision is called@/r)-cutting for L.) We give
upper and lower bounds on the const@nt\We also consider the canonical triangulation
of the arrangement of a random sample dihes fromL. Although this typically is not a
(1/r)-cutting, the expectation of tHeh degree average of the number of lines intersecting
a triangle isO(n/r) for any fixedk. We estimate the constant of proportionality in this
result.

1. Introduction

Motivation Numerous algorithms developed in computational geometry use a geo-
metric version of the divide-and-conquer paradigm. If the input is a collection ofpsay,
hyperplanes or simple algebraic surfaces irtfttmensional Euclidean space, the space
is partitioned into several pieces (of a possibly simple shape, such as simplices), and the
situation within each of these pieces is dealt with separately, often by a recursive call of
the same algorithm. Two survey papers considering such algorithms are [15] and [1].
This approach yields the asymptotically most efficient known algorithms for a variety
of problems; many of these problems are of considerable interest. However, the constants
of proportionality hidden in the asymptotic notation for the complexity of such geometric
divide-and-conquer algorithms are seldom made explicit, and trying to estimate them
by following the proofs seems to lead to very large, often astronomically large, values

* Part of this work was done while the author was visiting ETiiizh. Supported by ETH, by the Czech
Republic Grant GER 0194, and by Charles University Grants Nos. 193 and 194.
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(this phenomenon is not restricted to this particular type of algorithms, of course, but it
appears especially pronounced for them). A consequence of this may be a widespread
belief that such algorithms, although theoretically nice, are practically quite useless. This
is probably completely true for complicated higher-dimensional algorithms which only
bring a small theoretical saving in the complexity (improving a n&@\@?) algorithm

to O(n'®), say). On the other hand, in some simple situations, such as divide-and-
conquer in the plane, a closer inspection may show that the algorithms are not so bad or
perhaps they can be made practical by some additional tricks (which are uninteresting
for the asymptotic analysis). The final verdict in this matter should probably come from
implementation experience, but we believe this should be preceded by further theoretical
work focused on analyzing and improving the constants in the algorithms. In such an
effort, encouragement may be gained by the fact that the ideiaafy space partitions

which are data structures used frequently and successfully in practice, is similar in spirit
to geometric divide-and-conquer.

In this paper we investigate quantitative bounds for geometric divide-and-conquer in
the simplest setting: Given a debf n lines in the plane, we want to subdivide the plane
into a possibly small number of regions in such a way that each region is intersected
by at mostn/r of the lines, where is a prescribed parameter (the factor by which the
size of the resulting subproblems is reduced compared with the original problem). In the
literature the regions are usually postulated to be triangles (possibly unbounded ones, i.e.,
intersections of three half-planes). In this case the subdivision with the above property
is called a(1/r)-cutting for L. It is known that, for any., a(1/r)-cutting consisting of
O(r?) triangles can always be produced. This (asymptotically optimal) result was first
proved by Chazelle and Friedman [8] by a probabilistic method, improving a previous
slightly weaker bound 0O (r2log?r) proved by Clarkson [9] and implicitly contained
also in the paper Haussler and Welzl [16]. Two other, considerably different proofs of
the O(r?) bound were given by Mat@ek [17] and by Chazelle [6].

Size of Cuttings In this paper we investigate the constant of the leading quadratic term
in the worst-case bound for the number of triangles in an optityal)-cutting, that is,
we seek asymptotic upper and lower bounds of the f@irh + o(r?) with numerical
values ofC.

For the purpose of obtaining(d/r)-cutting with few regions, triangles do not seem
to be the best shape. For algorithmic applications, trapezoids are equally suitable, and
we can obtain a better bound for them. We also congitlér)-cuttings consisting of
completely arbitrary sets. These are problematic to handle algorithmically, of course,
but they may be interesting for some combinatorial geometry applications, and lower
bounds obtained for them are strongest.

First we give a definition of &1/r)-cutting which seems appropriate for arbitrary
regions.

Leto € R? be a set, and let c R? be a line. We say thatcrossess if o intersects
both the open half-planes definedhyA (1/r)-cuttingfor a setL of n lines in the plane
is a collectiornoy, oy, . .., oy Of subsets of the plane, such tlh;f‘:l oi = R?, and each
oi is crossed by at most/r lines ofL. (The reader may wonder, similarly as the referees
did, if the author did not intend to assume that the regiobg connected or something
like that. Well, we really admit completely arbitrary regions, and the explanation is in
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our definition of crossing: note that a line may cross a disconnected region without
intersecting it, and that any region in a line arrangement crossed by few lines is bound
to lie within a small portion of the arrangement.)

The following theorem summarizes our upper bounds:

Theorem 1. Letr > 1 be a parameterlet L be a set of n lines in the planand
suppose that fr is an even integefthis technical assumption is made to avoid tedious
calculations with integer parjsThen there exist

(i) a(1/r)-cutting for L consisting of at mogt? + 2r + 2 connected sefand
(i) a(1/r)-cutting for L consisting of at mo$t 2 + 6r + 4 trapezoids

For a(1/r)-cutting consisting of triangles, we currently have nothing substantially
better (in the worst case) than taking a cutting consisting of trapezoids as in (ii) and
subdividing each trapezoid into two triangles, which produces$ 360(r) triangles.

The(1/r)-cuttings in this theorem are all constructed by a modification of the method
of [17]. The other two known proofs of existence of asymptotically optimal cuttings
currently seem to yield much worse bounds.

A simple argument showing that @/r)-cutting has to consist of at leas(r?)
sets is as follows (the idea is probably due to Haussler and Welzl (unpublished)): The
arrangement af lines in general position h&s(n?) two-dimensional cells. A set crossed
by n/r lines can only mee®((n/r)?) of these cells, and hen&(r %) sets are needed
to cover all cells. (The argument is usually presented with counting vertices instead of
cells but then there is a technical complication concerning the vertices on the boundaries
of the sets in th&1/r)-cutting.) Our lower bound proofs are all based on this idea; for
three types of shapes of sets in the cutting we refine it in different directions.

Theorem 2. For any sufficiently large r there exist arbitrarily large sets L of lines in
the plane such that

(i) Any(1/r)-cutting for L consisting of arbitrary sets has at le@gi — o(1))r?
sets

(i) Any(1/r)-cutting for L consisting of quadrilaterals has at le@s54(1—o(1))r2
sets

(i) Any(1/r)-cutting for L consisting of triangles has at lea&tl — o(1))r? sets

Cuttings with Good Averages Let o1, 0, ..., oym be sets covering the plane, and let
w(oj) be the number of lines crossing. In the definition of &a1/r)-cutting, we insist

that maxw(oij) < n/r, but sometimes this may be an unnecessarily strong condition—
for some applications, it might be sufficient that “most” of the regions are intersected by
few lines. One way to formalize this would be to require thatktredegree average of
thew(o;) is at mosin/r, for some suitable fixek. The following definition adapts the
concept osemicutting®f Chazelle [7] to our circumstances.

1 This concept has a longer history in computational geometry. The paper [12] uses the idea of replacing
maxima by suitable averages in geometric random sampling in an essential way. The first existence proof for
asymptotically optimad1/r)-cuttings [8] essentially constructs a suitable semicutting first. Newer applications
in computational geometry papers are abundant.
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A collectionoy, oo, . .., o Of sets covering the plane is calleckén degree(1/r)-
semicuttingor a setL of n lines if

m 1/k
1 K n
— E w(oi) <-.
m & r

Similarly as for(1/r)-cuttings, we seek estimates on the cons@nin a bound of
the formCyr2(1 + o(1)) for the size of &th degreg1/r)-semicutting for a finite set of
lines. This question only makes a good senséfsr2, since fork < 2, takingm = r?,

o1 = R?, andoy = 03 = - - - = oy = ¥ makes an excellerii/r )-semicutting of size?
according to the definition, although it is certainly not something close to the intuitive
notion of a “nearly(1/r)-cutting.”

It can be checked that the lower bounds in Theorem 2 apply to the sktk dégree
(1/r)-semicuttings for any fixe#d > 2 (the observation needed to augment the proofs
in Section 3 is that such kth degreg1/r)-semicutting consisting oD (r?) sets must
also be a1/r’)-cutting forr’ = € (r-%%); we omit the details). We investigate upper
bounds attained by the following construction, very popular in computational geometry:
Fix a suitable probabilityp, and choose a random sam@eC L of the given lines
by picking each line oL independently with probabilityp. Let o4, o>, ..., om be the
triangles in a suitable triangulation of the arrangemerRos follows from the work
of Chazelle and Friedman [8], if we choope= Kr /n for an appropriate constait,
with a positive probability this yieldskth degred1/r)-semicutting forL of sizeO(r ?).
Estimates for the constant of proportionality achievable by this method are studied in
Section 4. For instance, we show that this gives a third deg@yeg-semicutting of size
11.8r2 for a large enough.

Open Problems Since we have not obtained matching upper and lower bounds, an
obvious question is how to improve the bounds. It seems that for improving the upper
bound, a considerably different construction is needed.

An interesting question, which we have left aside, is to give good numeric bounds
for (1/r)-cuttings for small specific values of e.g., forr = 2. We remark that a
construction of Yamamoto et al. [20] can be easily modified to yield/8)-cutting
consisting of four quadrants (defined by two lines).

Other obvious problems concern generalizations to other curves than lines and higher-
dimensional generalization (for higher dimension, the cutting construction technique of
[17] does not seem to be applicable anymore).

2. Cutting Constructions

For simplicity, we suppose that the given ¢ebf n lines is in general position, i.e.,
every two lines intersect in exactly one point, no three have a common point, and the
x-coordinates of all intersections are pairwise distinct. (If not, we peftushghtly to

get general position and construct ttigr)-cutting. A limit of these(1/r)-cuttings as

the amount of perturbation goes to zero yields the desikad-cutting forL—we omit

the details.)
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Fig. 1. Alevelin aline arrangement.

The constructions use the notion of a level in a line arrangementeVhkof a point
in the plane is the number of lines bflying strictly below it. Consider the séy of all
edges of the arrangementlofhaving levelk (where 0< k < n). These edges form an
x-monotone polygonal line, which looks as in Fig. 1. This polygonal line is called the
level kof the arrangement df. Let ey, €1, ..., g be the edges dEx (numbered from
left to right; &g ande are the unbounded rays).

Cutting into Connected Sets First we describe a construction of 5/r )-cutting con-
sisting of connected sets, as in Theorem 1(i). Ldie the given parameter, and let
n = |L|. We setg = n/2r (by our assumption, this is an integer). We divide the levels
0 throughn — 1 into q groups: théth group contains all levels with k congruent ta
modulog (i =0, 1,...,q — 1). Since the total number of edges in the arrangement is
n?, there is an such that théth group contains at mosf/q edges. We fix one sudh
Lets be the number of the levels in this group, and let the levels in this group be denoted
by Ao, A1, ..., As_1, i.€., Aj denotes the levejg +i. We haves < [n/q] < 2r +1
(note that we do not assumeto be an integer). Tha;’s divide the plane inte + 1
regionsRy, Ry, ..., Rs, whereRy and Rs are the unbounded regions.

We further subdivide each regid®) by vertical segments. Namely, we bet, o, . . .
be thex-coordinates of the vertices of the boundaryRpf(from both the top and bottom
portions) listed in the increasing order, and we slReby vertical segments with-
coordinatesq, Xaq, Xsq- - - ; S€€ Fig. 2.

Let t; be the number of edges of the leug|; by the choice of the;’s we have
st;(l) tj < n?/q.Thelevels\j_; andA; bounding the regioR; together havg _;+t; —2

Ry

R

Ry

Fig. 2. Subdividing the region&y, Ry, ..., Rs (with g = 3).
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Fig. 3. Bounding the number of lines crossing

vertices, henc&; is sliced into no more thaftj _1 +tj) /29 + 1 sets (for consistence we
definet_; =t = 0). Therefore the total number of sets formed is at r@%:to[(t,-,l +
t)/2q+1] <n?/Q?> +s+1<4?+2r +2.

We claim that these sets form(#/r )-cutting forL, that is, each of them is crossed by
atmostn/r = 2q lines ofL. To check this, we consider one such setas in Fig. 3 (we
assume that it is bounded; modifications for the unbounded cases are straightforward).
Each line crossing shares a segment with the upper or lower portion of the boundary
of o, or crosses one of the segmeltdd’, B'C’ (where A'D’ is a vertical segment
connecting the upper and lower boundaries ahd lying very close to the segmehD,
and similarly forB’C’). Moreover, each line contributes at least two such situations, one
when entering the interior af and one when leaving it. The upper and lower portions of
the boundary o& together consist of®@+ 1 segments, and each of the segmexi3’
andB’C’ is crossed by — 1 lines. Together this gives the desired bound of at mgst 2
lines crossingr. Part (i) of Theorem 1 is proved.

Cutting into Trapezoids Here we need the notion gfsimplificationof a level, which

has beenintroduced by Edelsbrunner and Welzl [14]. In order to avoid some technicalities
and case analysis in the subsequent proof, we modify their original notion very slightly.
Consider the levet with edges numberes), ey, . . ., & (from left to right), and choose

a pointp; in the interior of the edge . Theq-simplification of levelk is defined as the
monotone polygonal line containing the pagtup to the pointpy, the segmentgo pg,
PgP2q- - -+ PLt-1)/q)q P, and the part o& from p; on. Thus, the-simplification has at
mostt/q + 1 vertices. Figure 4 illustrates this foe= 9, q = 4. The new feature of our
definition is that we choose the vertices of theimplification inside edges, while in the
literature they are chosen among vertices of the original level. We need the following
property ofg-simplification:

Lemma 3. The g-simplification of level k is contained in tfetosed strip between
levels k— [q/2] and k+ [q/2].

Proof.  Forthe original notion of-simplification, this was proved by Edelsbrunner and
Welzl [14], and the proof remains almost the same for our modified notion (it becomes
simpler if anything). We sketch it for completeness.
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P4

Po
ps Do

Fig. 4. The 4-simplification of a level.

Imagine walking along some segmemip; 4 of theq-simplification. We start at an
endpoint, which has leved. Our current level may only change as we cross a line of
L. Moreover, having traversed the whole segment we must be back tklelelis, to
get from levelk to k + i and back tdk we need to cross at least Bnes on the way.
However, each of these lines shares a segment (edge) with the portion of thk level
between the point; and pj.q4, and this portion hag + 1 edges. From this we get
i = @+1/2] =T[q/2]. u

Forthe construction of @ /r )-cutting consisting of trapezoids, we againget n/2r
and define the levelao, Ay, ..., As_1 exactly as in the previous proof. We IBf be
the g-simplification of levelA;. We note that the polygonal chaif% never intersect
properly (if they did, a vertex of sorg, which has levet|j +i, would be strictly above
P, +1, and this is ruled out by Lemma 3).

We form the vertical decomposition for tii’s, that is, we extend vertical segments
from each vertex of eacR, upward and downward, until it hit®_; and P;,1. The
P,’s initially divide the plane intes + 1 regions. For each vertex of eaBh the vertical
subdividing segments erected from it increase the number of regions by two. The total
number of vertices of thBj’s is no more tharzjs;(l,(tj /q+1) < n?/g%+s, so altogether
the number of the resulting trapezoids is at mogy/22 + 3s + 1 < 8% 4 6r + 4.

It remains to prove that each trapezoid is crossed by at ngdsi&s ofL. So we look
at some trapezoid = ABC Din the strip betweer®, and P 1; AB is the bottom side
andC D the top side. Suppos&B is contained in an edge F of P;, andC D is an edge
of P11 (see Fig. 5; few other possible cases are discussed similarly and are omitted).
Let A; be the intersection of level; with the vertical lineAD, and similarly letB; be
the intersection of\; with the vertical lineBC.

Each line ofL intersecting the segme@tD, including those passing throughand
D, shares a segment with the portion of levgl,; between the point€ and D, so
the number of such lines is at mast+ 1. Similarly we find that the segmeRF is
intersected by at mogt+ 1 lines; two of them intersect it at the endpoints, so the interior
of the segmenE F has at most| — 1 intersections. The interior of each of the segments
D A; andCB; is intersected by exactly — 1 lines. Hence ifA; and B; lie both on or
below the segmerit F, we find that the total number of intersections of lines with the
boundary of the considered trapez#dC Dis at most 4 — 3.

More interesting cases arise whap or B; lie aboveE F. Suppose for instance that
A, lies aboveE F andB; on it or below (as in Fig. 5), and there adines intersecting
the interior of the segmem{ A; (by a general position assumption, we may suppose that
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N

Aj

Fig. 5. Bounding the number of lines intersecting a trapezoid.

no line passes through). The pointA; has level exactik = jq +i, and so the poinA

has levek — a. At the same time, the poirt has levek again, so the segmeBtA must

be crossed by at leaatlines, and thus the segmeAB is intersected by no more than

g — 1 — alines. Summarizing, the total number of intersections of the linds wfith

the boundary oABC Dis at mostg + 1 (for the sideC D) plus 2q — 1) (for interiors

of AA; andC B) plusa+ 1 (for A1 A) plusq — 1 — a (for AB). Together we getd, and

a similar counting for the case when baihandB; lie aboveE F yields at most ¢ + 1
intersections. In all cases, the total number of lines crossing the considered trapezoid is
at most 2. This proves Theorem 1(ii). O

Remark. One can also consider bounds foflar )-cutting consisting ok-gons, i.e.,
sets whose boundary consists of at mlosegments. By a construction similar to the
two given above, an upper bound ai(® — 2)/(k — 3))r? + O(r) can be obtained for
the number ok-gons in such &1/r)-cutting.

3. Lower Bounds

General Sets and Triangles As was mentioned in the Introduction, our lower bound
proofs are based on the idea that a single set(ity B)-cutting cannot cover too many
cells (or vertices) of the arrangement. A setrossed by lines cannot be incident to
more cells than there are in an arrangementlafes, i.e.q?/2+ O(q). However, if the
seto liesin a portion of the arrangement where the pattern of lines looks like a rectangular
grid, theno can only coven?/4 + O(q) cells (if it is crossed by some “vertical” and
b “horizontal” lines,a + b < g, then it is incident to at mosa + 1)(b + 1) cells). So
we need to exhibit an arrangement where almost all cells lie within approximate affine
copies of grid-like patterns.

We construct arrangemerits, L4, ... inductively; Lo consists of an arbitrary single
line andLy has % lines¢y, €5, ..., £x. For the induction, we assume that, oy, there
is a parallelogranPy that is intersected by all lines dfy in “regular stripes.” More
precisely, we require that the parallelogréncan be affinely mapped to the rectangle
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"
Ly

Pk+l I

R

Fig. 6. ConstructingLg+1 from L.

R = [0, 2] x [0, 1] so that each segmeR{ N ¢; is mapped to a segment with Hausdorff
distance at mostx from the horizontal segmentx,y) e R, y = (i — %)/Zk}. Here

ek > 0is a real number which can be assumed as small as needed for the subsequent
steps to work.

In the inductive step we take an affine cdgyof L under an affine mapping sending
P« to R as in the inductive assumption. Then wellgtbe L reflected around the line
x =Yy, and we set,1; = L, U L{ (see Fig. 6). It remains to specify the parallelogram
Px.1; clearly, a very thin rectangle whose axis is the line- y = 2 has the required
property.

In the inductive step we have created a2 2% grid pattern in the square [Q]?
in Lx,1. Moreover, the arrangement &f,; contains affine copies of other, smaller
grid patterns created in previous steps (the construction is such that the parallelograms
enclosing these grid patterns are all disjoint).

Letn = 2, letq = n/r be given, and suppose that= o(n). Call a cell in the
arrangement oty deepif it is contained in one of the grid patterns I and it is
separated by at leagt+ 1 lines from each of the sides of the parallelogram bounding
the considered grid pattern. An easy calculation shows(tifa®) (1 — o(1)) cells are
deep ones.

Leto be an arbitrary set crossed by at mgdines of L. We claim that it is incident
to at mosty?/4 + O(q) deep cells. Indeed, i is incident to at least one deep cell, then
it is completely contained in the parallelogrdrenclosing the grid pattern of that deep
cell. We delete all lines that do not crassnd then draw the boundary Bf The number
of cells intersected by is unchanged. All these cells lie i, and the number of cells
there after the deletion is at magt/4 + O(q). This shows that anyl/r)-cutting for
Ly has 22(1 — o(1)) sets as claimed in Theorem 2(i).

If the considered is a triangle, it can only intersectg/8 + O(q) cells of the grid:

Map the parallelogram enclosing the considered grid pattern onto an axis-parallel square
so that the grid lines have unit spacing. Then the length of the orthogonal projection of
o to thex-axis plus the length of the orthogonal projection to yhaxis are together
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smaller tharg + 5, and hence the area ofis at mostg?/8 + O(q). Thuso encloses
at most this many grid cells completely and its boundary intersects at@ogdtmore
cells. This proves Theorem 2(ii). O

Quadrilaterals For a cutting consisting of quadrilaterals, the above method based on
grids only gives the same bound as for general sets. A random construction described
next does slightly better.

Let S? be the unit sphere iR3 centered at the origin 0. For a poiRte S* we
definex* as the great circle whose plane is perpendicular to the vegtok &} i be
the rotation-invariant probability measure 8f (the usual surface measure divided by
the normalizing factor #). We define a probability measureon the setj of all great
circles by setting (G) = u({x; x* € G}) for G € G (whenever the right-hand side is
defined).

We identify R? with the planez = 1 in R3, and letU be the upper open hemisphere
of S Let p: U — R? be the central projection with center at 0glfs a great circle
distinct from the horizontal onga(g) is a line inR?. Given a sufficiently large parameter
r, we choose much larger than, sayn > r% and we le(G be a random set of great
circles onS?, obtained byn independent random draws from the distributiofthe same
circle may be drawn several times but this happens with probability 0). Webetthe
set of thep-images of the great circles &f; this is the set of lines for which we want to
show a lower bound on the size ofH/r )-cutting.

The way to think aboutG is that these are “all the great circles”; only because
cuttings are considered for finite sets of lines do we need to take a finite sample. We
need a technical result showing that the random sa@@pproximates the sét of all
great circles well enough in a suitable sense. Fortunately, the required approximation
properties are special cases of known general results.

For a subsek € S and a seG C G of great circles, we leGx denote the set of all
great circles ofs intersectingX. Similarly we writeG% for the set of all ordered pairs of
distinct great circles 0 such thaiX contains at least one of their two intersection points.
We also recall that a set € S is called trongly) spherically conveX it contains no
two antipodal points and every great circle intersects it in a connected segment.

Lemma4. Lets > Obe areal number with € 2log(1/¢) < n for a sufficiently large
absolute constant @in particular, ¢ = n~Y/3 will do). Then the sample G has both of
the following properties with a positive probability

(i) For any spherically convex quadrilateral pounded by at most four arcs of
great circleg we have

G
7(Gqg —% <e

(i) Let C C S be a spherically convex s&then we have

2
IGc|
n2

t2(G3) —

<e¢

(r2 denotes the product measure @rx G).
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Proof sketch As was mentioned above, a proof follows from general results in the
literature. Since this part has little to do with the main topics of this paper, we do not
recall all the necessary definitions, and we only present brief remarks that should be
sufficient for those familiar with the referred papers. Condition (i) saysGhistane-
approximatiorfor the set systeriGqo; Q is a spherically convex quadrilateyahnd the
required result follows from a theorem of Vapnik and Chervonenkis [19] plus a standard
VC-dimension estimate (see, e.g., [16] for the definition-afpproximation and related
notions). Part (ii) is a special case of a result of Chazelle [6] on the so-qatbeldict
range spacesn that paper the result is formulated in a special setting of hyperplanes
in RY, and a more general formulation directly implying the property we need is given
in [4]. O

In the rest of the proof suppose that a suitableGetith properties (i) and (i) as in
Lemma 4 has been fixed. Let € R? be a quadrilateral crossed by at mgs& n/r
lines of L. We want to show that cannot contain too many intersections of lined of
Clearly, we may assume is convex. LetQ = p~1(c) C U be the spherically convex
pre-image ot in S%.

SinceQ is intersected by at mogt+ O(1) great circles o6, property (i) ofG implies
thatt(Go) < (1/r)(1+ o(1)) (the value oin was chosen so that the relative accuracy
in (i) is much smaller than /x, and even than /2, which is needed in the next step).
Further, by (ii), the number of ordered pairs of great circleS with intersections irQ
is at mosn?(z%(G3) + ¢), wheres < 1/r?is as in Lemma 4. Hence it suffices to show

Lemmab5. Let Q< S?be aspherically convex quadrilaterélounded by great circle
arc9) with t(Q) = §, whereé < & for a suitable absolute constadg > 0. Then we
haver?(G3) < §2/2.54.

Proof. The setGq)? of all ordered pairs or great circles intersectipdasr>-measure
82. Hence it suffices to show thatdfis small enough, then the probability that two great
circles randomly chosen frofy intersect inside is at most ¥2.54. We derive it from
an analogous result in the plane (it is quite likely that a corresponding result for the
sphere is known as well, but | could not find it in the literature).

Letv denote a motion-invariant measure on the set of all lines in the plane. As is well
known, this measure is unique up to a scaling factor. For adlinet passing through
the origin, letp (¢), ¢ (£) be the polar coordinates of the point®€losest to the origin.
Then thev-measure of a set of lindsis the Lebesgue measure of the imagé af the
(p, p)-plane, that is,

v(L) :/L do (£) de(£).

For any convex set, an appropriate scalar multiple ofis a probability distribution
on the set of all lines intersectir@, and it is known that if we pick two lineg, ¢’ from
this distribution randomly and independently, then the probability4fsetd¢’ intersect
within C equals

2 areqC)

perimete(C)?2 @
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[18, p. 56]. Among convex quadrilaterals of given perimeter, the square has the largest
area, and for the square the value of (13 j8 < 1/2.54.

It remains to transfer this result to the sphere. The considered quadril@evah
7(Gg) = 8 has diamete©(§) (since ther-measure of the set of all great circles inter-
secting an arc of a great circle of angular lengttxds 2x for x < %). By symmetry,
we may suppose th& lies in anO(8)-neighborhood of the “north polg0, 0, 1) of S?.
Let Q' = p(Q) be the projection of) into thez = 1 plane. It suffices to show that for
8 \{ 0, the probability distribution on the set of all lines intersect@gnduced by the
projection ofr converges uniformly to the distribution given byThis seems intuitively
obvious, and it can be checked by calculation as follows.

We calculate the measutéinduced on the set of all lines IR? by the p-image ofr.
We introduce the polar coordinatés, ¢) in thez = 1 plane (with origin at0, 0, 1)),
and spherical coordinatés, ¢) on S? (wherey is the “latitude” andy = arccos is the
angle from the north pole). Then the surface measure elemesttisiconst. sind di dyp
(the normalizing constant is unimportant so we leave it unspecifiedjslé line in the
z = 1 plane, letv = v(¢) € U be the point ofS? such that the projection of the great
circlev* is the line¢. Itis easy to find that if the point dfnearest to the origin has polar
coordinateqp, ¢), thenv has spherical coordinatéarccotp, —¢). From this we get
that the element of is

, . const.
dt’ = const. sifarccotp) d(arccotp) dp = W dop dy .
In a small enough neighborhood of the origin this converges to a suitable constant
multiple of dv. O

Remark. This lower bound proof can be applied also for cuttings consisting of convex
k-gons for any fixek. The resulting constant af is the reciprocal of the value of (1)
for the regular convek-gon, which is(2k/x) tan(x/k) (and withk — oo it converges

to 2).

4. Upper Bounds for Semicuttings

As was remarked in the Introduction, we are going to analyze a simple probabilistic
construction of a semicutting. This construction goes back to Clarkson [10], and our
analysis is mainly based on the method of Chazelle and Friedman [8].

Since the alphabet does not seem to have sufficiently many convenient letters, the
notation in this section reuses many letters with meaning quite different from the one in
previous sections.

4.1. Canonical Triangulations
First we define @anonical triangulation CTS) for a finite collectionS of lines in the

plane. We suppose that the lines®#re in general position (including the assumption
that no line ofSis horizontal). The triangulation is obtained by drawing, for each cell
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Fig. 7. An example of a canonical triangulation.

C of the arrangement d, all the diagonals o€ incident to the lowest vertex @&. In

order to handle the unbounded cells properly (note that a cell unbounded from below has
no lowest vertex), we may for instance formally add three lines “at infinity3,teay the

linesx = —K,y = x — K, andy = —x + K for a very largeK > 0 (we assume that
these lines are also in general position relative to the lines).ofih reality this means

that we specify how unbounded cells are subdivided into regions with at most three
edges by drawing suitable semi-infinite rays; see Fig. 7 for an example of the resulting
triangulation.

Note thatC T(S) may also contain unbounded convex polygons (with at most three
sides). When we speak of triangles®T (S) we include also these unbounded polygons.
Moreover, for the subsequent analysis, it is technically convenient to include the edges
(sides) of the triangles i@ T(S) into CT(S) as separate objects.

Let L be a given finite set of lines in general position. WeZet | Jg-, CT(S) be
the collection of all triangles and all edges that appear in the canonical triangulation for
some subset df. Foro € 7, letl (o) be the set of lines df intersecting the interior of
o (for an edge, we mean the relative interior), and weypit) = |1 (o)|. LetD(o) C L
be an inclusion-minimal subsetbfwitho € CT(D(0)). Asis not difficult to check, for
lines in general positior (o) is unique (these are the lines defininggeometrically”)
and it always consists of at most five lines. We p@t) = |D(0)|. We write7Z, for the
set of allo € 7 with b(o) = b. The triangles and edges i are calledb-canonical
Figure 8 shows examples bfcanonical triangles for various values lmf The reader
may want to check that edges cantbeanonical fob = 1, 2, 3, 4.

A key property expressing the “canonicality” 6fT (S) is the following: For any set
S C L and any triangle or edge € 7, we have

o €CT(S ifandonlyif D(c)< S and l(c)NS=0 2

(see[8]). Alarge part of our subsequent analysis will apply not only to the specific canon-
ical triangulation in the plane, but to a general abstract framework. In this framework
we have two finite setk and7 and two mappings, D: 7 — 2-, where|D(0)| < by
forallo € T (bp is some constant). In this abstract setting, the elemerifsark often
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0-canonical (whole plane) l-canonical 9-canonical
3-canonical 4-canonical 5-canonical

Fig. 8. Examples ob-canonical triangles.

calledregions Taking (2) as an axiom, we can thdefine
CT(S ={oeT; D(o) C Sandl (6)NS= 0}

(see [2] for a more detailed discussion of abstract frameworks of this type in computa-
tional geometry).

Lemma6. Let S be a set of q lines in the plarend let CT(S) be the canonical
triangulation of the arrangement of. S

(i) If Fp denotes the number of b-canonical edges in(S§Tthen R < 1, F, =
O(@), F3 =02+ O(q), and Ry = g2/2 + O(q).

(i) If Gy, denotes the number of b-canonical triangles in GJ, then G < 1,
G1 <2,G2 = 0(q), Gz + G4 + Gs = g° + O(q), |Gz — Gs| = O(q), and
Gs < g?/3+ O(a).

Proof. Concerning (i), a 1-canonical edge can only appe& dbnsists of a single
line, and 2-canonical edges are always unbounded parts of the lii®Sbé claimed
bounds forb-canonical edges with = 3, 4 have anO(q) error term, so we can ignore
unbounded cells safely. In a bounded cell, a 3-canonical edge is just a bounded edge of
the arrangement @, and there arg? + O(q) of such edges. The 4-canonical edges are
diagonals of the bounded cells. The drawing of all triangles in bounded cells determines
aplanar graph witlj?/2+ O(q) vertices and with all faces triangular except for the outer
one which ha®(q) edges, hence there a}q2 + O(q) edges in total, ang?/2+ O(q)
of them are the diagonals.

In part (i), we canignore unbounded cells again. T8gR- G4+ G5 is the total number
of triangles, which is asymptotically twice the number of vertices of the arrangement of
S. Now 3-canonical triangles are just triangular facets of the arrangemetaofd it
is known that this number is at maogt/3 + O(q) (and this can be attained) [13]. The
4-canonical triangles are those lying in a cell with at least four sides and sharing one
side with that cell, and the remaining ones are 5-canonical. Hence a celledtes has
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i — 4 5-canonical triangles except whiee= 3. If f; denotes the number of cells with
edges, we thus hav@s = ) ; (i —4) fi + Gs. On the other hand,_; fi = q2/2+ 0(q)
(the total number of cells) anFl, i fi = 29 + O(q) (twice the total number of edges),
henced; (i — 4) fi = O(Q). O

4.2. Higher Moments for the Canonical Triangulation

Given a set. of nlines in the plane in general position, we fix a suitable probablity

(0, 1). We choose a random sameC L by picking each line ot independently with
probability p, and the semicutting we want to investigate is the canonical triangulation
CT(R).

We assume thap < n™® andnp > n* for some constan > 0. Then|R| =
np(1+ o(1)) holds with high probability (the probability of this failing is exponentially
small inn). This follows from a suitable tail estimate for the binomial distribution; see,
e.g., the Appendix in [3]. Hence, when estimating the expectation of quantities lying
between 1 ana®®, we make a negligibly small error by restricting ourselves to the
samplesR with |R] = np(1 + 0(1)).

We are interested in estimating the expectation okthenoment

MY (p) = E [ > w(o)k} :

5eCT(R)

In particular,MOT(p) is the expected size @ T(R).

This definition refers to the abstract setting mentioned above. If we want to refer to
thekth moment for the triangles in the canonical triangulation of a line arrangement, we
write M\"®"9, and similarlyMS®®refers to thekth moment for the edges of the canonical
triangulation. '

It has been known that for arky> O there exists a constaAk such that,"*"%(p) <
Ac(np)?2p~Kfor p « 1, pn > 1[8]. This means that tHeh degree average af(o') over
the canonical triangulation of a random sampl®igl/ p) with a positive probability.
Here we investigate numerical bounds An

From the canonicality condition (2), we get thaRfcC L is arandom sample selected
as above with probability, then, for anyw € 7,

Prlo e CT(R)] = (1 — p)* @ p°@.

Hence ifN(® denotes the number of € 7, with w(o) = w, we can writeM (p) =
> M7 ® (p), where

o0
M P () = D0 NPk - p)". 3
w=0
We could try to estimate the numbel§® directly, but this looks quite challenging
already for the simplest planar cases (the number of 4-canonical segments in a line ar-
rangement, say). Instead, following the Chazelle—Friedman method, we use information
aboutM{ (p') for variousp’ to boundM/? (p).
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4.3. Bounding Moments for b-Canonical Objects

Here we consider boundirig,?‘b)(p) for a single fixed value ab. We omit the super-
scripts”-® in the notation in this part.

We consider the situation when we do not know anything about\tfis directly,
and we only assume certain estimatesNty(s p) for suitable values of a real parameter
s > 0 (we only need to consider valuessafot much larger than 1). The question is how
well can we boundVi(p). In our application for semicuttings and in similar geometric
situations, we usually have estimates of the form

Mo(sp) = s Mo(p) + smaller order terms

For instance, for the 4-canonical edges of the canonical triangulation of a line arrange-
ment in the plane, Lemma 6() tells us tHdf"**® (sp) = is%(np)2 + O(snp. Two
different cases to consider are when we can estivigte p) both from above and below,

and when we only have an upper bound; the latter case gives a slightly weaker upper
bound for Mi(p) even if the upper bounds fdvip(sp) are the same. The following
proposition deals with these two cases.

Proposition 7. Let k > 0 and b > d be fixed real numberdet p € (0,1) be a
parameteythe asymptotic notation “@d)” in the subsequent formulas is with respect to
p— 0.

(i) Setg = (b—d)/(b—d+Kk). Suppose that Msop) < sg Mo(p)(1+ 0(1)), and
moreover that M(sjp) = O(Mo(p)) holds for some fixed,s< . Then

M
M(P) < Bip_a(L+ (1)) ;(kp),

where

B, _ Bk
T Tk

(i) Letk> 1be anintegerand lety > 0 be a fixed real numbeBuppose that
Mo(sp) = s"Mo(p)(L + 0(1)
holds forall se (1—y,1+ y). Then

- M
Mi(P) = Bico_a(L+ o(1)) f)(kp),

whereBe s =8 + 1D +2)--- (8 +k—1).

Remarks. Table 1 shows some numerical values of the constﬁﬁjéand B&fsk (the
kth roots seem more instructive in this context).

The estimate in part (i) is best possible in a certain sense (a precise formulation is
given in Lemma 9 below).
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Table 1. Constants in the estimates for the momevitg p).

§=1 §=2 §=3 §=4

1/k =1/k  p1/k =1/k  pl/k =1/k  p1/k =1/k
k B1 Bl B B> B Bis Bia B4

1.47 1.00 248 2.00 3.49 3.00 4.49 4.00
191 141 294 245 3.96 3.46 4.97 4.47
2.34 182 3.39 2.88 441 391 543 4.93
2.75 221 3.82 3.31 4.86 436 5.89 5.38
3.16 2.65 4.25 3.73 5.30 479 6.33 5.83

a b wNPE

Part (ii) of this Proposition is somewhat related to a work of Clarkson [11]. For an
arrangement oh lines (or hyperplanes), Clarkson considers a random sampé
exactlyr lines (this is a technical difference to our setting). For a certain combinatorial
quantity depending oR (not related to the canonical triangulation), he determines an
analogue of ouMg( p) exactly for all sample sizas and he reconstructs the underlying
distribution (an analogue of ol,,'s) from it exactly by matrix inversion.

Proof of Proposition7. In this proof we assume that> 0 ands = ®(1) (in other
words,s lies in a fixed intervals;, s,) with s; > 0). From (3) we have

Mk(sp) = Y N,w*(sp°(1—sp"”.
w=0

First we want to manipulate this expression into a more convenient form; by a suitable
rescaling we will be able to get fewer parameters. We introduce the substiiutioty p,
wheret is a new variable. We let be the measure on [60) concentrated at the points

0, p, 2p, 3p, ... assigning the mass 0p®/Mo(p))N,, to the pointpw, w = 0,1, 2, .. ..

With this notation, we obtain

M o0
M(sp) = E)(bp) Y vwpwk(sp®d—sp”
w=0
b 00
= Mol(o—f)sfo t“(1 — spPdu(t) (4)

(for future considerations it seems more natural to write the finite sum formally as an
integral). Using the inequality + sp < e P we get

M (sp) < %s‘)/wtke‘“ du(t). (5)
0

We writemg(s) = f0°° tke~stdy(t). We want to show that (5) actually is an equality up
to a 14+ o(1) factor, i.e., that replacing + spby e 3P does no harm. This is expressed
in the following lemma:
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Lemma8. Lets> 0,s = ®(1), and suppose that € (0, s) is a number such that
both § and s— § are bounded away from zero by a positive constantl such that
Mo(8p) < K Mp(p) holds for some constant.Krhen we have

Mi(sp) = (1+ o(1) ;(p) &

m(S). (6)

Proof of Lemma&. These are rather routine estimates. In view of (5), we only need to
show the inequality =", which means showing

/OO t“(1— spPdu(t) > (1 — o(1)) /Oo t“e=Stdu(t).
0 0

Using the asymptotics + p = e PP, we get(l — sp¥/P > e @-oWst For an
arbitrarily large but fixedp, we havee*s“1 o) = (1 —o(1))e Stforall t < ty. Hence

v

/ t“(1 — spPdu(t) /Otk(l—sp)‘/pdu(t)
0 0

v

to
1- o(l))/ t“e~Stdu(t).
0

It remains to show that, for large enoug the integral/;™” t“e~>'dv(t) is negligibly

small, smaller than a prescribed> 0, and here we use the assumption3rSet

B = (s —8)/2s, and letty be so large thagse > (K /e8P) t§ (K is the constant from
the assumption of). We then have

fe'e] 8§b (o)
/ tke Stdu(t) < — / e =Pstdyt).
to K o

Sincee=1-Ast — g~ IH+ASt < (1 — §pY/P for p small enough, the last displayed
expression is certainly at most

s st/p e8P MoSp _
/ =P = My =

by the assumption oy (S p).

We continue the proof of Proposition 7. In view of (6) and of the assumptions on
Mo(sp) in Proposition 7, it is now sufficient to bounay (1) in terms ofmg(s) for
suitables’s. This is done in the next lemma.

Lemma9. Letk § > 0be fixed real numbers and letbe a measure ofD, co). Put
mi(s) = [, tke Stdu(t), and writemy = my (1).

(i) Lets =48/(8 + k). Suppose thai is such that
1
Mo() < ()

holds for s= 5. Thenmy < By 5, where R ;s is as in Propositiory. This estimate
cannot be improved even if we assume {figholds for all s> 0 simultaneously
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(i) Letk > 1be an integerand lety > 0 be a fixed real numbeThen for every
e > 0,ann = n(e, y, 8, k) > 0 exists with the following propertyf we assume
that

1 1
g—ﬂ§m0(5)§§+77

holds for all se [1, 1+ y), then Bkﬁ —e<mg< L5>k,5 + e, WhereBk,(; isasin
Proposition?.

Remarks. Part (i) can be formulated with a general functig(s) instead ofs~%. We
need to assume thgis (k+ 1)-times differentiable i1, 1+ ), and the result is tham
is close to(—1)kg® (1)g(1); we omit a detailed formulation as we have no immediate
application (the details can be recovered from the proof below).

We should also note thatthe lemma s essentially about the Laplace transform. Namely,
we have some information about the Laplace transformwgfadd we are asking what
bounds can be inferred for the Laplace transforrtfaf.

Proof of Lemma. (i) The value ofyy given in the statement comes from a solution
to a simple minimization problem. For any given< 1, we can calculate the smallest
numbera = a(s, k) such that

tke™t < ae™st (8)

holds for allt € [0, oo). Thisa is the minimum value attained by the (convex) function
t > tke1-9t Elementary calculus shows that the minimum i$ at k/(1 — s), and
we geta = kk/e¢(1 — s)%. By integrating both sides of (8) accordingi¢t), we get
my < amg(s) < a/s’. By minimizing the right-hand side as a functionmfwe arrive

at the valuesy = 8/(8 + k), for which the upper bound/s’® becomes jusBy s.

The lower bound is equally simple (but it is a little surprising that the above straight-
forward method gives the best possible result). Namely, we consider the measgitite
massN = (e(k + 8)/8)® concentrated at a single poigt= & + k. For thisv, we obtain
mg = Nt(‘je—tO = By.5, While mg(s) = Ne s, With some more calculus one shows that
Ne st < 579 holds for alls > 0, hence (7) is satisfied.

(i) It seems that a similar result (in greater generality) must be known in probability
theory, say, but having found no reference so far | present a proof.

Hereisthe simple underlyingidea. Up to smaller orderterms, we asgﬁ’rm—:-St dv(t)
= s7%. If we were allowed to differentiate both sides as a function of the parame-
ter s and move the differentiation operator inside the integration sign, we would get
Jo the=Stdu(t) = 8(8 + 1) -+ (8 + k — 1)s~*~¥, and substituting = 1 would give
what we want. Of course, this does not quite work since we only assume an approxi-
mate equalityf0°° e Stdu(t) ~ s® and so the derivatives of both sides might be entirely
different.

To make everything work, we approximate differentiation by a suitable finite differ-
encing operator. For instance, we may useftimvard differencing operator\, which
acts on a real functior as follows:

(An ) = f(x+h) = fx)
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(h > Ois areal parameter). Tlefold iteration of A can be expressed as
s (K
ARF(0) =) (=D (I) f(x+ih). 9)
i=0

For a functionf having a(k + 1)st derivative on0, kh), we have
AKT(x) = h*F®Ox) + O max F &V (£); x <& < x+1)) (10
(with an absolute constant in th@-notation; see, e.g., [5]). Lét > 0 be sufficiently

small (in terms ot), and set = 1+ih,a = (—1*()h~%,i = 0,1, ..., k. Then for
any functionf we havezik:0 a f(s) = h ™ Ak f (1), which is a good approximation to
f® (1) for a smoothf by (10).

Applying this with f (x) = e, we get} ¥ ,ae st = (—t)ke ! + O(ht<tlet) =
(—t)ke ! + O(he™) (for all t). Integrating both sides accordingit@) gives

00 k 00 00
/ thke tdv(t) = mg = (—1)kz (a- f g St dv(t)) +0 <h/ et dv(t))
0 i—0 0 0

k
= Y _amo(s) + O(hmo).

i=0

Using our assumptio:q*‘S —n <Mp(§) < sf“ + 1, we can further write

K . k kK .
my = (—1>k23+ 0 (h+n2|eu|) = (—1)k23+ O(h + nh™).
i=0 i=0 i=0

Finally, using the definition of the,’s and the finite differencing formula (10) again we
get

dk(s~?
mg = (—1) < Ejsk ) ) +0(+nh™) =806+1)--- (S +k—1) +O(h+nh™).
s=1
By choosingh « ¢ andn <« h¥ we get the claim of the lemma. O

4.4. Planar Semicuttings

Estimate via Edges We return to the specific planar situation, and consider estimating
the momentsv,"*"%(p) for the canonical triangulation of a random sam@le L. Our
firstapproach is based on estimating the monmff¥first. Given atriangle € CT(R)

with edgese,, e, €3, we note thatv (o) = % Z?zl w(g) (since each line intersectirg
intersects two of its edges). From this we get

1 (3 A
w(o) = % (Zw(a)) < S D we)
i=1 i=1

(by Holder's inequalityy xiyi < (3 XKV xK/®Dyk=D/k with x, = w(e),
I I | [
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yi = 1). Every edge contributes to two triangles, heM{E"9(p) < (3/2)k- MU p).
For estimatingM, edos (p) we combine Lemma 6 and Proposition 7(ii), which yields

M®%p) = (Brs + 1B (1 + o) (p2p~.

Write g = np. SinceC T (R) has almost surelg?(1 + o(1)) triangles, we get that the
expectation of th&th degree average af(o) overo € CT(R) is

triang 1/k
(1+0(1)) [W} <1+ o(l))Al/kq ,

whereA, = (3/2)%1(By 1+ 3By 2). If this kth degree average should be at mD/Stas
required by the definition dfth degreg1/r)-semicutting, we must choosg= Ak /Ky
and hence the resultind/r)-semicutting has siz€l + o(l))Ak/k 2. This yields

Theorem 10. For any fixed integer k> 3, sufficiently large parameter,rand a suffi-
ciently large collection L of lines in the plange above randomized construction yields
with a positive probabilitya kth degree(1/r)-semicutting for L consisting of at most
C{<r2(1+o(1)) triangles where G = %(k! (k+3)/3)%*. Approximate numerical values
are C; ~ 11.8,C, ~ 16.8, C; ~ 22.6.

We should perhaps stress that these are results concerning the particular randomized
construction of a semicutting via canonical triangulation. For instance, alreaklyfet,
the construction of &L/r)-cutting consisting of 16 + O(r) triangles provides a better
result than the randomized construction as in Theorem 10.

Direct Estimate via Triangles For triangles, we cannot give precise bounds for the
number ofb-canonical triangles for eadd) for instance, the number of 3-canonical and
5-canonical triangles can be abady'3 each, or, as another extreme, essentially all the
triangles can be 4-canonical. The proportion of the 3-canonical and 5-canonical triangles
for a random sample taken with probabilgp may moreover vary witk (although this
intuitively does not look very likely). Thus, rather than using Proposition 7 directly, we
employ the method from its proof. As in the proof of Lemma 9, we bound the function
te~t by a function of the formae st for the smallest possibla = a(k, s). By the
considerations in the proof of Proposition 7, we get that, for any fixed0, 1),

5
) 1 )
Mlt(”ang( p) < (1+o(l)alk,s) Z Sb—pk M(l)rlang(b) (sp.
b=3

By Lemma 6 we know thaby *"%® (sp) = g,s2p2(1 + o(1)) for some real numbers
03, U4, 95 satisfyinggp > 0,093 + g4 + 95 < 1, andgs = gs < %, hence we obtain

For a fixeds, the expression(gs/s + gs/s> + 95/53) is maximal, under the above
conditions on they,’s, forgs = g4 = g5 = % Hence we need to minimize the function
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s > a(s, k) (st + s72 + s73)/3. This can be done analytically but the expressions
are fairly messy. The resulting numerical bounds for the size oktihelegree(1/r)-
semicutting are approximately #82 (k = 3), 17.2r% (k = 4), 213r? (k = 5). This is
slightly worse than the bounds obtained via edges in Theorem 10.
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