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Abstract

The purpose of this work is the investigation of some constitutive and configurational aspects
of phenomenological model formulations for a class of materials with history-dependent gradi-
ent microstructure. The assumption that the behavior of a material point is affected by history-
dependent processes in a finite neighbor of this point yields an extended continuum characterized
by non-simple material behavior and by additional degrees-of-freedom. This includes both stan-
dard micromorphic materials as well as inelastic gradient materials as special cases. As in the case
of simple materials, the corresponding constitutive relations are subject to restrictions imposed by
material frame-indifference and material symmetry. In the latter case, both direct and differen-
tial restrictions are obtained in the case of assuming that the free energy density is an isotropic
function of its arguments. In addtion, the concept of material isomorphism is shown to extend to
inelastic gradient continua, resulting in a gradient generalization of the well-known elastoplastic
multiplicative decomposition of the deformation gradient. Finally, we examine the consequences
of gradient extension for the formulation of configurational field and balance relations, and in
particular for the Eshelby stress. This is carried out with the help of an incremental stress poten-
tial formulation as based on a continuum thermodynamic approach to the coupled field problem
involved.

1 Introduction

The behaviour of many materials of engineering interest (e.g., metals, alloys, granular materials,
composites, liquid crystals, polycrystals) is often influenced by an existing or emergent microstruc-
ture (e.g., phases in multiphase materials, phase transitions, voids, microcracks, dislocation substruc-
tures, texture). In general, the components of such a microstructure have different material proper-
ties, resulting in a macroscopic material behaviour which is highly anisotropic and inhomogeneous.
Attempts to account for these effects in the modeling of such materials have lead to a number of ap-
proaches to and viewpoints on the issue depending in particular on the nature of the microstructure in
question (e.g., Capriz, 1989; Noll, 1967; Šilhavý, 1997). One class of models idealizing the behavior
of such systems phenomenologically is that of gradient continua, including in particular micromor-
phic materials (e.g., Kafadar and Eringen, 1971; Neff and Forest, 2007) and strain-gradient materials
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(e.g., Fleck and Hutchinson, 1997; Neff et al., 2008) as special cases. As a foundation for the sec-
ond part of the current work, our first purpose here is to examine some basic constitutive issues for
such materials, in particular those of material frame-indifference, material isomorphism and material
symmetry. In this, we follow and extend the earlier work of Neff (2008).
Beyond anisotropic and heterogeneousmaterial properties, processes associated with the microstruc-

ture which are represented in the model by continuum fields (e.g., damage and order parameter fields,
director field) also contribute to configurational fields and processes. Such fields represent additional
continuum degrees-of-freedom for which corresponding field relations must be formulated. Contin-
gent on the premise that the corresponding processes contribute to energy flux and energy supply in
the material, field relations for such degrees-of-freedom result from the Euclidean frame-indifference
of the total rate-of-work (e.g., Capriz, 1989), or more generally from that of the total energy balance
(e.g., Capriz and Virga, 1994; Svendsen, 1999, 2001), or even from the exploitation of the dissipation
principle (e.g., Levkovitch and Svendsen, 2006). Once thermodynamically-consistent field relations
and reduced constitutive relations have been obtained, one is in a position to formulate and solve
initial-boundary-value problems. In the context of elastic material behaviour and thermodynamic
equilibrium, such initial-boundary-value problems are often formulated variationally. Examples here
include elastic phase transitions (e.g., Ball and James, 1987), elastic liquid crystals (e.g., Virga, 1994),
configurational fields in elastic materials (e.g., Podio-Guidugli, 2001; Šilhavý, 1997). Formulations
for inelastic continua involving configurational fields and balance relations have been examined by
a number of workers (e.g., Gurtin, 2002; Menzel and Steinmann, 2000, 2007). Recently, it has been
shown (e.g., Carstensen et al., 2003; Miehe, 2002; Ortiz and Repetto, 1999) that direct variational
methods for elastic materials can be carried over to the inelastic case with the help of a so-called
incremental variational formulation. That this is also the case for the formulation of configurational
field and balances has been shown by Svendsen (2005). In the last part of the current work, we ap-
ply this approach to the formulation of the Eshelby stress and configurational force balance for the
case of gradient materials. For simplicity, the formulation in this work is restricted to isothermal and
quasi-static conditions.
Before we begin, a word on notation. Let E3, V 3, Lin(V 3, V 3) and Lin+(V 3, V 3) represent three-

dimensional Euclidean point space, three-dimensional Euclidean vector space, the set of second-order
Euclidean tensors, and the set of all such tensors with positive determinant, respectively. Elements of
V 3, or mappings taking values in this space, are denoted by bold-face, lower-case a, . . . italic letters.
Likewise, upper-caseA, . . ., italic letters denote elements of Lin(V 3, V 3), or mappings taking values
in this set. In particular, let I ∈ Lin(V 3, V 3) represent the second-order identity tensor. The tensor
product a⊗b of any twoa, b ∈ V 3 is interpreted as an element of Lin(V 3, V 3) via (a⊗b)c := (b·c)a
for all c ∈ V 3. As usual, the inner product on V 3 and trace operation on Lin(V 3, V 3) induce the
scalar product A · B := tr(ATB) of any two A, B ∈ Lin(V 3, V 3). Let sym(A) := 1

2 (A + AT),
skw(A) := 1

2 (A−AT), sph(A) := 1
3 tr(A) I , and dev(A) := A−sph(A) represent the symmetric,

skew-symmetric, spherical, and deviatoric, parts, respectively, of any A ∈ Lin(V 3, V 3). Further, let
Sym(V 3, V 3), Skw(V 3, V 3) and Orth(V 3, V 3) represent the subsets of Lin(V 3, V 3) consisting of all
symmetric, skew-symmetric, and orthogonal, elements, respectively. Further, let axi(W )×a := Wa
define the axial vector axi(W ) of any skew-symmetric tensorW , and axi(w)a := w × a define the
axial tensor of any vector w. Third-order Euclidean tensors in this work are interpreted as element
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of Lin(V 3, Lin(V 3, V 3)) ∼= Lin(Lin(V 3, V 3), V 3). Such tensors, or mappings taking values in these
sets, are denoted by upper-case slanted sans-serif charactersA, B, and so on. For example, the gradient
∇T of any second-order tensor field T takes values “naturally” in Lin(V 3, Lin(V 3, V 3)). In this
context, define the switch (ASa)b := (Ab)a of any A ∈ Lin(V 3, Lin(V 3, V 3)) for all a, b ∈ V 3. In
turn, this operation induces symmetric sym(A) := 1

2 (A+AS), skew-symmetric skw(A) := 1
2 (A−AS),

and axial axs(A) := axi(skw(A)), parts of any A ∈ Lin(V 3, Lin(V 3, V 3)). The latter is based on the
definition axi(W)(a × b) := 2 (Wa)b for all a, b ∈ V 3 of axi(W) ∈ Lin(V 3, V 3) induced by any
W ∈ Lin(Skw(V 3, V 3), V 3). Finally, we work with the transpose operations BTA · C := A · BC
and ABT · C := A · CB on third-order tensors in this work. Other concepts and definition will be
introduced as needed along the way.

2 Basic considerations

The first part of the current work is concerned with material theoretic aspects of model formulations
for gradient materials. These include the concepts of material frame-indifference, material isomor-
phism, material symmetry, and material inhomogeneity. In particular, the latter lies at the basis of
the concept of configuration or material forces (e.g., Epstein and Elźanowski, 2007; Gurtin, 2000;
Maugin, 1993). Since all of these are intimitely connected with the notion of configuration, or more
precisely, placement, of a material body in physical space, i.e., in Euclidean point space E 3, it is
useful to express the dependence of the formulation on placement explicitly. To this end, we work
with the concept of an abstract material body B (e.g., Noll, 1967). In this setting, any configuration
Bκ ⊂ E3 of B in E3 is generated by a corresponding (global) placement κ : B → E3 of B into
E3, i.e., Bκ = κ[B] (e.g., Noll, 1955; Truesdell and Noll, 1992). If ϕ : B → Z represent a differ-
entiable field on B taking values in some linear or point space Z , let ∇κϕ := ∇(ϕ ◦ κ−1) ◦ κ :
B → Lin(V 3, Z) represents its gradient with respect to κ. Following Noll (1967), two placements
α, β : B → E3 are referred to as being (first-order) equivalent with respect to κ at b ∈ B if∇κα(b)

= ∇κβ(b) holds. Since all members of the class have in this sense the same gradient at b, we follow
Noll (1967) and represent the class induced by κ at b via the notation∇κ(b). This equivalence class
represents a first-order local placement1 of b ∈ B into E3. Any two such classes ∇κ(b) and ∇γ(b)

are related via the transformation relation

∇γ(b) = ∇κγ(b)∇κ(b) . (1)

Likewise, the transformation
∇κϕ(b) = ∇γϕ(b)∇κγ(b) (2)

follows for the gradient at b of any differentiable field ϕ : B → Z on B with respect to these two
classes. Combining these last two relations, one obtains the intrinsic form

∇ϕ(b) = ∇κϕ(b)∇κ(b) = ∇γϕ(b)∇γ(b) (3)

for the gradient of ϕ with respect to the first-order local placements. In the theory of simple materials
(e.g., Noll, 1967; Truesdell and Noll, 1992), such first-order local placements and the transformation

1In the language of differential geometry, a first-order jet at b ∈ B .
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properties of independent constitutive variables such as the deformation gradient with respect to these
form the basis for the formulation of concepts such as material isomorphism, uniformity and symme-
try. For the current case of (non-simple) gradient materials, however, the notion of local placement
must be generalized to higher order (e.g., Cross, 1973; Morgan, 1975; Samohýl, 1981). Two global
placements α, β are said to be second-order equivalent at b ∈ B with respect to κ (i) if they are
first-order equivalent there, and (ii) if∇κ∇κα(b) = ∇κ∇κβ(b) holds. Let {∇κ,∇∇κ}(b) represent
the corresponding equivalence class, referred to here as a second-order local placement2 at b ∈ B .
Since these embody the notion of local placement relevant to the formulation of constitutive relations
for gradient materials, we refer to them in what follows simply as local placements.
Analogous to (2) in the first-order case, a change of local placement from {∇κ,∇∇κ}(b) to

{∇γ,∇∇γ}(b) induces the transformations

∇κϕ(b) = ∇γϕ(b)∇κγ(b) ,

∇κ∇κϕ(b) = ∇γ∇γϕ(b)[∇κγ(b),∇κγ(b)] + ∇γϕ(b)∇κ∇κγ(b) ,
(4)

of the first- and second-order gradients at b of any differentiable ϕ : B → Z with respect to the two
classes. Here, A[B, B] represents the third-order tensor defined by (A[B, B]a)b := (A(Ba))Bb
for all a, b ∈ V 3. Whereas (4)1 represents a tensor transformation, note that the second term in (4)2
renders this transformation non-tensorial in general. On the other hand, the pair {∇κϕ,∇κ∇κϕ}(b)
does transform tensorially3, i.e.,

{∇κϕ,∇κ∇κϕ}(b) = {∇γϕ,∇γ∇γϕ}(b) ∗ {∇κγ,∇κ∇κγ}(b) (5)

via the (second-order) “jet” product

{A, A} ∗{ B, B} := {AB, A[B, B] + AB} (6)

on pairs {A, A} and {B, B} of second- and third-order tensors induced by the chain rule for first-
and second-order gradients of point- or linear-space-valued fields. From the constitutive point of
view, then, (5) is relevant for our purposes here. Analogous to (3) in the first-order case, (4) can be
expressed in the intrinsic form

{∇ϕ,∇∇ϕ}(b) = {∇κϕ,∇κ∇κϕ}(b) ∗ {∇κ,∇∇κ}(b) (7)

via (5) and (6). In particular, this holds for the case that ϕ represents a second local placement, i.e.,
ϕ ≡ γ.
Using the notion of placement, a motion, or time-dependent deformation, of the body can be

represented in abstract form as a continuous sequence of such placements in some time-interval I ⊂
2A second-order jet at b ∈ B . If we were dead set on abstract elegance and generality in the spirit of, for example,

Noll (1967), Betounes (1986), or Segev (1994), this would be the point to roll out the full armada of concepts and tools
offered by modern differential geometry (e.g., Abraham et al., 1988) such as differential forms. Since the formulation is
undoubtedly already sufficiently “scary,” however, we refrain from doing this.

3This represents a major insight of modern differential geometry which has been exploited for constitutive purposes
in, e.g., Cross (1973), Morgan (1975), Samohýl (1981), or Epstein and Elźanowski (2007).
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R, i.e., χ : I × B → E3, with χt := χ(t, ·) : B → Bt the placement of B into its current (i.e., time
t) configuration Bt := χt[B ] in E3. We have

{∇χ,∇∇χ}(t, b) = {∇κχ,∇κ∇κχ}(t, b) ∗ {∇κ,∇∇κ}(b) (8)

from (7) for the representation of the first and second gradients of χ with respect to {∇κ,∇∇κ}(b)
via direct generalization. In the context of simple materials, the history of deformation processes in
an infinitesimal neighborhood of b ∈ B , i.e., the history of the deformation gradient F := ∇χ at
this point, determines its behavior. In particular, we assume that the evolution of the material mi-
crostructure influences this local deformation history. For example, in the case of a defect-based mi-
crostructure in metallic single or polycrystals, this microstructure consists of vacancies, interstitials,
and dislocations. As a model for the (local) deformation of the material microstructure at b at t ∈ I ,
we work with the local deformation or deformation-gradient-like quantity FM(t, b) ∈ Lin+(V 3, V 3).
Assuming it represents an elastic material isomorphism and induces a stress-free intermediate (lo-
cal) configuration, for example, FM can be associated with the “usual” inelastic (local) deformation
FP. Or it could represent the microstructural deformation in the context of micromorphic continua
(e.g., Kafadar and Eringen, 1971; Neff and Forest, 2007). Besides FM(t, b) itself, the behavior of any
b ∈ B at a given t ∈ I is assumed to be influenced by its spatial variation in an infinitesimal spatial
neighborhood of b, represented here via the gradient∇FM(t, b) of FM(t, b) at (t, b) ∈ I ×B. Being a
local deformation kinematically analogous to F by definition, it is reasonable to assume that FM and
its gradient have the representation

{FM,∇FM}(t, b) = {FMκ,∇κFMκ}(t, b) ∗ {∇κ,∇∇κ}(b) (9)

at b relative to any {∇κ,∇∇κ}(b) formally analogous to (8). In contrast to standard “local” internal
variable formulations, note that FM represents an additional tensor-valued field in the formulation at
this point, i.e., formally analogous to χ. As such, its constitutive nature is characterized in the current
formulation via an evolution-field constitutive relation. More on this to follow.
In the current work, the behavior of any material point b ∈ B is assumed to be influenced in

particular by the process of energy storage in a neighborhood Nb ⊂ B of this point in the material.
Conceptually, this can be associated here with the notion of the interaction of the material at b ∈ B

with the surroundingmaterial in the body. In the current case of isothermal inelastic gradient continua,
this process is represented by the extended form

ψb(F ,FM) = ψPκ(b)(Fκ,FMκ) = ψκ(b)(Fκ,∇κFκ, FMκ,∇κFMκ) (10)

for the referential free energy density of the material point b ∈ B relative to the local placement

Pκ(b) := {∇κ,∇∇κ}(b) (11)

via the definitions
Fκ := {Fκ,∇κFκ} ,

FMκ := {FMκ,∇κFMκ} .
(12)

Note that this form is tensorial with respect to change of local placement. Indeed, in terms of the
notation

Hγκ(b) := {∇κγ,∇κ∇κγ}(b) , (13)
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one obtains
Hγκ∗(b)ψPκ(b) = det(∇κγ(b)) ψPγ (b) , (14)

for this transformation from Pκ(b) to Pγ(b) = {∇γ,∇∇γ}(b), i.e.,

ψPκ(b)(Fκ,FMκ) = ψPκ(b)(Fγ ∗ Hγκ,FMγ ∗ Hγκ)

=: (Hγκ∗(b)ψPκ (b))(Fγ,FMγ)

= det(∇κγ(b)) ψPγ (b)(Fγ,FMγ) .

(15)

In particular, this tensorial character is required for the formulation of material symmetry (e.g., Cross,
1973; Samohýl, 1981; Šilhavý, 1997), an issue which we examine in what follows.

3 Material frame-indifference

Consider next the formulation of restrictions imposed by material frame-indifference on the basic
constitutive relation (10) for energy storage in a second-order inelastic gradient material point b. As
usual, material frame-indifference is considered in the context of the action of the (representation
of the) orthogonal group Orth(V 3, V 3) with respect to V 3. As discussed for example in detail by
Svendsen and Bertram (1999), material frame-indifference is equivalent to requiring Euclidean frame-
indifference and form invariance. The formulation of the consequences of this in the current setting
is based on the spatial action

sQψPκ(b)(Fκ,FMκ) = ψPκ(b)(sQFκ, sQFMκ) ,

= ψκ(b)(QFκ, Q∇κFκ, FMκ,∇κFMκ)
(16)

of any element Q ∈ Orth(V 3, V 3) of Orth(V 3, V 3) on the form (10) of the free energy density. In
this context, material frame-indifference requires that

sQψPκ(b) = ψPκ(b) , (17)

i.e.,
ψκ(b)(Fκ,∇κFκ, FMκ,∇κFMκ) = ψκ(b)(QFκ, Q∇κFκ, FMκ,∇κFMκ) (18)

for allQ ∈ Orth(V 3, V 3). The most common restriction derived from this is of course form reduction
(e.g., Bertram and Svendsen, 2001; Šilhavý, 1997; Truesdell and Noll, 1992). As in the case of simple
materials, reduction here is based on the arbitraryness of ψκ(b) andQ, the latter facilitating the choice
Q(t) ≡ RT

κ(t, b) in the context of the right polar decomposition Fκ = RκUκ. On this basis, there
exists a reduced form ψr κ(b) of ψκ(b) such that

ψκ(b)(Fκ,∇κFκ, FMκ,∇κFMκ) = ψr κ(b)(Cκ,∇κCκ, FMκ,∇κFMκ) (19)

holds. In particular, this results follows from the functional relations

Cκ = F T
κ Fκ = UκUκ ,

∇κCκ = (∇κF T
κ )SFκ + F T

κ ∇κFκ = (∇κUκ)SUκ + Uκ∇κUκ ,
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between Uκ, Cκ, and their gradients.
Equally important as the direct restrictions (18) in the context of material frame-indifference are

the differential restrictions derived from them (e.g., Šilhavý, 1997, Chapter 8). From a mathematical
point of view, these represent retrictions with respect to the Lie algebra Skw(V 3, V 3) corresponding
to the Lie group Orth(V 3, V 3). To obtain these in the current context, note again that (18) holds
for all orthogonal transformations by design. Consequently, it holds in particular with respect to any
curveQ(s) = exp(Ω s) inOrth(V 3, V 3) generated by the skew-symmetric tensorΩ ∈ Skw(V 3, V 3).
Substituting this form for Q into this last result, taking the derivative of the result with respect to s,
and setting s = 0, one obtains

0 = ∂Q(0)ψPκ(b) · Q ′(0)

= ∂Fκ
ψPκ(b) · sΩFκ

= {(∂Fκ
ψκ(b))F

T
κ + (∂∇κFκ

ψκ(b))(∇κFκ)T} · Ω .

(20)

SinceΩ is arbitrary, this implies the restriction

(∂Fκ
ψκ(b))F

T
κ + (∂∇κFκ

ψκ(b))(∇κFκ)T symmetric (21)

on the derivative of ψκ(b) with respect to its first two arguments. This represents a direct generalization
to gradient continua of the classic result (e.g., Noll, 1955; Truesdell and Noll, 1992, §84) for simple
materials that material frame-indifference requires the Cauchy stress, or equivalently the Kirchhoff
stress to be symmetric in the hyperelastic context. Indeed, if we neglect the gradient dependence
in (21), it reduces to the Kirchhoff stress (∂Fκ

ψκ(b))F
T
κ , at any material point b and with respect to

any first-order local configuration ∇κ(b). This is perhaps the most well-known example of the fact
that material frame-indifference, implicating spatial isotropy, provides restrictions both on the form
of constitutive relations and their derivatives. As shown by the current results (18), (19) and (21), this
is true for inelastic gradient continua as well.

4 Material isomorphism

In the context of simple materials, the elastoplastic multiplicative decomposition of F has long been
recognized as being perhaps the most prominant example of the modeling of FM ≡ FP as a so-called
(elastic) material isomorphism or time-dependent change of local reference placement (e.g., Bertram,
1998; Svendsen, 2001; Wang and Bloom, 1974). In the current context, this represents a first-order
material isomorphism. As it turns out, there is a generalization of this to the current case of second-
order inelastic or inelastic gradient materials in terms of FM as based on the jet product (6). Indeed,
by direct analogy, FM(t, b) represents such an isomorphism or change of local placement for b at any
time t ∈ I when there exists a reduced form ψi b of ψb such that

ψb(F ,FM) = ψPκ(b)(Fκ,FMκ) = det(FMκ) ψiPκ(b)(FEκ) , (22)

i.e.,
ψκ(b)(Fκ,∇κFκ, FMκ,∇κFMκ) = det(FMκ) ψi κ(b)(FEκ,∇iFEκ) , (23)
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holds with respect to some Pκ(b). Here,

FEκ := Fκ ∗ F−1
Mκ

= {FκF−1
Mκ,∇κFκ[F−1

Mκ, F−1
Mκ] − FκF−1

Mκ∇κFMκ[F−1
Mκ, F−1

Mκ]}

= {FEκ,∇iFEκ} ,

(24)

with
FEκ := FκF−1

Mκ ,

∇iFEκ := (∇κFEκ)F−1
Mκ ,

(25)

represents the second-order elastic local deformation, formally analogous to, and containing, its first
order counterpart FEκ. Since

FEκ = Fκ ∗ F−1
Mκ

= Fγ ∗ Hγκ ∗ H−1
γκ ∗ F−1

Mγ

= Fγ ∗ F−1
Mγ

= FEγ

holds via (6) and (13), note that FEκ is in fact independent of the choice of local placement. In this
case, we have

det(FMκ) ψiPκ(b)(FEκ) = det(∇κγ(b)) det(FMγ) ψiPγ (b)(FEγ) = det(FMκ) ψiPγ (b)(FEκ)

from (15) and the fact that FMκ(t, b) = FMγ(t, b)∇κγ(b). As such,

ψiPκ(b) = ψiPγ (b)

follows. In other words, the form of the reduced free energy density ψiPκ(b) is independent of the
choice of local placement Pκ(b).
Assume further that (second-order local) intermediate configuration is stress-free with respect to

some Pκ(b), i.e.,
ψiPκ(b)(FEκ = I) = ψi κ(b)(FEκ = I,∇iFEκ = 0) = 0 . (26)

In this case, the modeling of FM as a second-order material isomorphism or second-order change of
local placement induces the generalization

F = FE ∗ FM (27)

of the well-known elastoplastic multiplicative decomposition of the deformation gradient (e.g., Lee,
1969) to the case of gradient continua. In particular, this takes the form

Fκ = FEκ FMκ

∇κFκ = ∇iFEκ[FMκ, FMκ] + FEκ∇κFMκ ,
(28)
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with respect to any local placement Pκ(b) via (6). The latter relation can be rewritten in the form

∇iFEκ = ∇κFκ[F−1
Mκ, F−1

Mκ] − FEκ∇κFMκ[F−1
Mκ, F−1

Mκ] (29)

for ∇iFEκ (see (24)). To examine this result more closely, it is useful to look at its symmetric and
skew-symmetric parts, i.e.,

sym(∇iFEκ) = sym{∇κFκ[F−1
Mκ, F−1

Mκ]} − FEκ sym{∇κFMκ[F−1
Mκ, F−1

Mκ]} ,

skw(∇iFEκ) = −FEκ skw{∇κFMκ[F−1
Mκ, F−1

Mκ]} .
(30)

The second of these follows from the fact that skw(∇κFκ), or skw{∇κFκ[F−1
Mκ, F−1

Mκ]}, vanishes
identically. Note that the axial form

Grκ := curlκFMκ = axs(∇κFMκ) = axi(skw(∇κFMκ)) (31)

of skw(∇κFMκ) represents the referential dislocation tensor, and

Giκ := axs{∇κFMκ[F−1
Mκ, F−1

Mκ]}

= det(FMκ)−1 (curlκFMκ)F T
Mκ

= Grκ cof(F−1
Mκ)

(32)

represents the intermediate dislocation tensor (Bilby et al., 1955; Cermelli and Gurtin, 2001; Kröner,
1960; Levkovitch and Svendsen, 2006; Nye, 1953). As shown by (30)2, this tensor is also determined
by F −1

Eκ skw(∇iFEκ). As such, a dependence of the free energy density on Giκ represents a special
case of the material isomorphic form (22)-(23) of the free energy density.
At this point, it is interesting to compare the current formulation for gradient materials with mi-

crostructure with those (e.g., Cermelli and Gurtin, 2001; Gurtin, 2002; Levkovitch and Svendsen,
2006; Menzel and Steinmann, 2000; Neff, 2008; Svendsen, 2002) in which the assumed free energy
density is consistent with the (formal) special case

ψb = ψκ(b)(Fκ, FPκ,∇κFPκ) (33)

of (10) in the current notation, i.e., neglecting the dependence on ∇κFκ. These have been consid-
ered, e.g., for non-local extension of crystal plasticity. As discussed by Cermelli and Gurtin (2001)
or Levkovitch and Svendsen (2006), for this class of materials, the non-tensorial nature of the trans-
formation of∇κFPκ upon change of (global) reference placement leads to a dependence of this form
of the free energy density on compatible (i.e., curl-less) such changes interpreted as deformations.
Such compatible deformations have been shown (e.g., Davini, 1986; Davini and Parry, 1989) to leave
crystallographic dislocation measures unchanged, representing as such “elastic” changes of local ref-
erence placement. The idea here is that the form of the free energy and other consitutive relations
depending on such measures should then be invariant with respect to such changes of global reference
placement, or alternatively, with respect to compatible deformations. This has lead many workers to
work with the restriction

ψκ(b)(Fκ, FPκ,∇κFPκ) = ψrκ(b)(Fκ, FPκ, Grκ) (34)
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of the form (33) to one depending only on the skew-symmetric part of skw(∇κFMκ)which transforms
tensorially. As shown by the current results, this is not the case for the current class of gradient
materials as based on (10). Indeed, the transformation of FPκ based on the second-order jet product
is tensorial, facilitating a corresponding transformation (15) of the free energy density.

5 Material symmetry & isotropy

Consider next the consequences of material symmetry for the material isomorphic form (22) of (10).
In the current context, then, material symmetry is formulated with respect to the intermediate local
configuration. More generally, this can be formulated with respect to both the intermediate and ref-
erence configurations, as done by Neff (2008). To this end, we treat FE = {FE,∇iFE} formally as
a (time-dependent) structure tensor (field). Then the free energy density, e.g., in the form (23), is an
isotropic function of its arguments with respect to the intermediate local configuration as induced by
FM(t, b) (configuration) at any time t ∈ I .
As usual, the material symmetry of constitutive relations like (10) for the case of solid behavior

is characterized by the action of Orth(V 3, V 3) on such relations. In particular, this action takes the
form

iQψPκ(b)(Fκ,FMκ) = ψPκ(b)(iQFκ, iQFMκ)

= ψκ(b)(Fκ,∇κFκ, QFMκ, Q∇κFMκ)
(35)

in the intermediate case. If FM is modeled as a material isomorphism, this can also be expressed in
the form

iQψPκ(b)(Fκ,FMκ) = det(iQFMκ) ψiPκ(b)(iQFEκ)

= det(QFMκ) ψi κ(b)(FEκQT,∇iFEκ[QT, QT])
(36)

from (22) and (23). Assume next that ψPκ(b) is an isotropic function of its arguments with respect to
the intermediate local configuration. Then

iQψPκ(b) = ψPκ(b) (37)

holds. This implies

ψκ(b)(Fκ,∇κFκ, FMκ,∇κFMκ) = ψκ(b)(Fκ,∇κFκ, QFMκ, Q∇κFMκ) (38)

for allQ ∈ Orth(V 3, V 3) in general, or alternatively

ψκ(b)(Fκ,∇κFκ, FMκ,∇κFMκ) = det(QFMκ) ψi κ(b)(FEκQT,∇iFEκ[QT, QT]) (39)

for allQ ∈ Orth(V 3, V 3) in the case that FM is modeled as a material isomorphism. Proceeding now
by formal analogy with the case of material frame-indifference, the fact that these relations holds for
all orthogonal transformations implies that they do so in particular with respect to any curveQ(s) =

exp(Ω s) in Orth(V 3, V 3) generated by the skew-symmetric tensorΩ ∈ Skw(V 3, V 3). Substituting
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this form for Q into this last result, taking the derivative of the result with respect to s, and setting
s = 0, one obtains

0 = ∂Q(0)ψPκ(b) · Q ′(0)

= ∂FMκ
ψPκ(b) · iΩFMκ

= {(∂FMκ
ψκ(b))F

T
Mκ + (∂∇κFMκ

ψκ(b))(∇κFMκ)T} · Ω .

(40)

SinceΩ is arbitrary, this implies the differential restriction

(∂FMκ
ψκ(b))F

T
Mκ + (∂∇κFMκ

ψκ(b))(∇κFMκ)T symmetric (41)

on the form of ψκ(b). Analogously, in the case that FM is modeled as a material isomorphism, (39)
implies the differential restriction

F T
Eκ(∂FEκ

ψi κ(b)) + (∇κFEκ)T(∂∇κFEκ
ψi κ(b)) symmetric (42)

on the form of ψi κ(b). Again, note the formal analogy here with the differential restriction (21) on the
free energy density in the case of material frame-indifference. Note also that if we neglect the gradient
dependence, (41) and (42) reduce to the symmetry of −(∂FMκ

ψκ(b))F
T
Mκ = F T

Eκ(∂FEκ
ψi κ(b)). Con-

sequently, this represents a direct generalization to inelastic gradient continua of the result (Svend-
sen, 2001) for simple inelastic materials that the stress measure4 thermodynamically-conjugate to
LM ≡ LP is symmetric when the free energy density is an isotropic function of its arguments with
respect to the intermediate local configuration.

6 Thermodynamic & configurational field relations

Up to this point, we have discussed issues pertaining to the material behavior of a single material
point b ∈ B . Now the question arises as to whether or not the material points of B all represent the
“same material.” In other words, whether or not the behavior of each b ∈ B is described by the same
form of ψb. If this is not the case, the material is heterogeneous or inhomogeneous, and one speaks
of material inhomogeneity (e.g., Epstein and Elźanowski, 2007; Noll, 1967; Šilhavý, 1997; Truesdell
and Noll, 1992). An abstract means of characterizing whether or not two material points represent the
same material is that of a material uniformity (Epstein and Elźanowski, 2007; Noll, 1967). This has
been shown to be related to the formulation of the Eshelby stress in the elastic (e.g., Maugin, 1993)
and inelastic (e.g., Svendsen, 2001) context.
More recently, the focus has shifted away from the abstraction of material inhomogeneity or uni-

formity and onto Eshelby or configurational mechanics (e.g., Gurtin, 2000; Maugin, 1993). As in
the classical special case of the J-integral, the formulation of the Eshelby stress and configurational
force balance are, strictly-speaking, restricted to models admitting (stress) potentials. As such, the
incremental variational approach of (e.g., Carstensen et al., 2003; Miehe, 2002; Ortiz and Repetto,
1999) and corresponding incremental stress potential provides a means to generalize the formula-
tion of configuration fields and balance relations to the case of inelastic, history-dependent material

4Sometimes referred to as the Mandel stress (Mandel, 1971), but this is a matter of convention.
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models (Svendsen, 2005). The physical basis of this approach is the continuum thermodynamic field
formulation of such models as based on a rate potential (e.g., Svendsen, 2004), representing the sum
of the energy storage rate and dissipation potential. The purpose of this last section is to apply this
approach to the current formulation of gradient materials with microstructure.
As stated above, the coupled-field problem here involves the deformation χ and inelastic local

deformation FM fields as basic unknowns. Restricting attention for simplicity to isothermal and
quasi-static conditions, as well as smooth fields, the entropy balance for such a material takes the
form5 ∫

κ

ψ̇κ + δκ =

∫

∂κ

tκ · χ̇κ + Mκ · ∇κχ̇κ + ΦMκ · ḞMκ (43)

integrated over the reference configuration Bκ in terms of the dissipation-rate density δκ, boundary
traction tκ, boundary traction momentMκ, and boundary flux ΦMκ associated with ḞMκ. As shown
in Svendsen (2004, 2005), the variational formulation of balance and consitutive relations emanating
as restrictions from the dissipation principle as based on (43) can be formulated variationally as a
minimization problem in terms of a dissipation potential dPκ

and corresponding rate potential

rPκ
(Fκ,FMκ, Ḟκ, ḞMκ, b) := ψ̇Pκ

(Fκ,FMκ, Ḟκ, ḞMκ, b) + dPκ
(Fκ,FMκ, Ḟκ, ḞMκ, b) . (44)

Integrating this over the reference configuration and taking its first variation, we obtain

δ

∫

κ

rκ =

∫

κ

∂∇κχ̇rκ · ∇κδχ̇ + ∂∇κ∇κχ̇rκ · ∇κ∇κδχ̇ + ∂
ḞMκ

rκ · δḞMκ + ∂∇κḞMκ
rκ · δ ∇κḞMκ

=

∫

∂κ

tκ · δχ̇κ + Mκ · δ∇κχ̇κ + ΦMκ · δḞMκ .

(45)
Integration by parts und application of the divergence theorem then yield

0 =

∫

∂κ

{tκ − (δ∇κχ̇rκ)nκ} · δχ̇ + {Mκ − (∂∇κ∇κχ̇rκ)nκ} · δ∇κχ̇

+

∫

∂κ

{ΦMκ − (∂∇κḞMκ
rκ)nκ} · δḞMκ

+

∫

κ

divκ(δ∇κχ̇rκ) · δχ̇ − δ
ḞMκ

rκ · δḞMκ

(46)

in terms of the variational derivative

δxf := ∂xf − div(∂∇xf) . (47)

From this, we obtain the necessary field relations

divκ(δ∇κχ̇rκ) = 0 ,

δ
ḞMκ

rκ = 0 ,
(48)

5We dispense with the surface da and volume dv elements in the corresponding integrals in what follows for notational
simplicity.
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on Bκ and boundary conditions

tκ = (δ∇κχ̇rκ)nκ ,

Mκ = (∂∇κ∇κχ̇rκ)nκ ,

ΦMκ = (∂∇κḞMκ
rκ)nκ ,

(49)

on the flux part of ∂Bκ. In particular, (48)1 represents a generalization to the current rate context of
the standard extended momentum balance for a Mindlin or strain-gradient continuum (e.g., Fleck and
Hutchinson, 1997; Neff et al., 2008). Furthermore, (48)2 represents a rate-based generalization of a
Cahn-Allen-type field relation for FMκ, identifying it in this context as a type of tensor-valued phase
field.
With this basic continuum thermodynamic variational formulation in hand, we are now in a posi-

tion to obtain its incremental variational form. This is based on the corresponding incremental form

wκe,s(Fκe,∇κFκe, FMκe,∇κFMκe, κ(b))

:=

∫ te

ts

rκ

= ψκe(Fκe,∇κFκe, FMκe,∇κFMκe, κ(b)) − ψκs +

∫ te

ts

dκ

= ψκe(Fκe,∇κFκe, FMκe,∇κFMκe, κ(b)) − ψκs

+ te,s dκe,s(Fκe,∇κFκe, FMκe,∇κFMκe, κ(b))

(50)

of rκ obtained via time-integration over a finite time-interval [ts, te] of duration te,s := te − ts, with

dκe,s(Fκe,∇κFκe, FMκe,∇κFMκe, κ(b))

:= dκ

(
Fκs,∇κFκs, FMκs,∇κFMκs,

Fκe,s

te,s
,
∇κFκe,s

te,s
,
FMκe,s

te,s
,
∇κFMκe,s

te,s
, κ(b)

) (51)

the corresponding form of the dissipation potential. Note that we have chosen explicit or forward-
Euler time-integration in the process for simplicity; implicit or backward-Euler integration is also
possible (e.g., Carstensen et al., 2003; Miehe, 2002). In this later case, however, one must take care to
preserve the potential structure of the incremental formulation. Since the dissipation potential is nec-
essarily convex in its rate arguments, i.e., in order to satisfy the dissipation principle (i.e., sufficiently),
this is automatically given in the explicit approach considered here.
Given the form (51) of the incremental potential, application of the approach in Svendsen (2005)

to the formulation of configurational fields and balance relations yields the result

0 = divκEκe,s − ∂κwκe,s (52)

for the (now incremental) generalized configurational force balance as based on the corresponding
form

Eκe,s = wκe,sI − (∇κχe)
T(∂∇κχe

wκe,s) − (∇κFMκe)
T(∂∇κFMκ e

wκe,s) (53)
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of the (incremental) Eshelby stress. Again, both of these represent generalizations to the case of
history-dependent behavior. This fact is expressed explicitly in the form of Eκe,s via its dependence
on the third term. Furthermore, if both the free energy and dissipation potential are objective-isotropic
functions of their arguments as discussed above, it will be symmetric. As in the general case, mate-
rial inhomogeneity appears in the configurational force balance (52) in the guise of the source term
∂κwκe,s due to the assumed inhomogeneity of the material response. Material homogeneity would
imply translational invariance of this response. In this latter case, ∂κwκe,s vanishes, and the configu-
rational force balance is equivalent to the Eshelby stress being a null Lagrangian (e.g., Olver, 1986;
Šilhavý, 1997).
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