
 
 

 
Abstract 

 
Various linear subspace methods can be formulated in 

the notion of matrix factorization in which a cost function is 
minimized subject to some constraints. Among them, 
constraints on sparseness have received much attention 
recently. Some popular constraints such as non-negativity, 
lasso penalty, and (plain) orthogonality etc have been so far 
applied to extract sparse features. However, little work has 
been done to give theoretical and experimental analyses on 

the differences of the impacts of different constraints within 
a framework. In this paper, we analyze the problem in a 
more general framework called Constrained Sparse Matrix 
Factorization (CSMF). In CSMF, a particular case called 
CSMF with non-negative components (CSMFnc) is further 
discussed. Unlike NMF, CSMFnc allows not only additive 
but also subtractive combinations of non-negative sparse 
components. It is useful to produce much sparser features 
than those produced by NMF and meanwhile have better 
reconstruction ability, achieving a trade-off between 
sparseness and low MSE value. Moreover, for optimization, 
an alternating algorithm is developed and a gentle update 
strategy is further proposed for handling the alternating 
process. Experimental analyses are performed on the 
Swimmer data set and CBCL face database. In particular, 
CSMF can successfully extract all the proper components 
without any ghost on Swimmer, gaining a significant 
improvement over the compared well-known algorithms. 
 

1. Introduction 
Learning object representation is an important topic in 

computer vision and pattern recognition. So far, linear 
subspace analysis is popular for object representation. It 
can be formulated in the notion of matrix factorization (MF) 
that training data matrix X is approximately factorized into 
a component matrix W and a coefficient matrix H.  

As a well-known MF technique, principal component 
analysis (PCA) [15] gets the minimum reconstruction error 
conditioned that the extracted components are orthogonal. 
However, PCA can only extract holistic features. In view of 
this, inspired by psychological and physiological studies, 
many methods have been proposed to make W sparse. In 
computer vision, this would help extract local features. 

Local feature analysis (LFA) [4] is an early developed 
algorithm for extraction of sparse features, but it produces 
many redundant features. Independent component analysis 
(ICA) [10] finds statistically independent blind sources. 
Though it is argued that independent components have 
connection to localized edge filter, it is not guaranteed that 
they would be sparse. Recently, sparse principal 
component analysis (SPCA) [14] was proposed by 
incorporating lasso constraint in PCA, but the degree of the 
overlapping between components is not measured. 

Unlike PCA, in non-negative matrix factorization (NMF) 
[1][3] components and coefficients are constrained to be 
non-negative, in accordance with biological evidences. 
However, it is experimentally found that non-negativity 
does not always yield sparsity and additional constraints 
may have to be used for pursuing sparseness. Local NMF 

(LNMF) [11], NMF with sparseness constraint (NMFsc) [8], 
and nonsmooth NMF (nsNMF) [13] etc are then developed. 

Though it is argued that non-negativity is supported by 
biological evidences, mathematical interpretations are still 
not enough for why non-negativity could make sparseness 
and when it would fail. Even though some interpretation is 
given in [12], it is based on the generative model under 
which any positive sample is assumed to be constructed by 
a set of positive bases and this model may not be true. For 
example, any face image is hard to be constructed by a few 
bases. Moreover, we are curious about why imposition of 
non-negativity on both components and coefficients is 
preferred by NMF. Recently, some one-sided non-negativity 

[6][7] based methods are reported, but they fail to extract 
sparse components. Then, why do they fail? Is there any 
advantage of using one-sided non-negativity as constraint?  

Though NMF may extract sparse components in some 
applications, however, not all real data are non-negative. It 
would be useful to seek a more general algorithm for 
potential applications in other domains. Moreover, as lasso 
penalty is popular for sparseness analysis in statistics, what 
if it is imposed on components or coefficients in vision 
problems? How does it make differences? If non-negativity 
is further imposed on components or on both components 
and coefficients, what will the results be? Recently, a 
technique called non-negative sparse PCA [2] is proposed, 
but no discussion on sparseness of coefficients is reported. 

In this paper, we analyze the problem about extraction of 
sparse components in a more general framework called 
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Constrained Sparse Matrix Factorization (CSMF). CSMF 
can provide a platform for discussion of the impacts of 
different constraints, such as absolute orthogonality, (plain) 
orthogonality, lasso penalty and non-negativity. We give 
analysis on why they can be applicable, how they perform 
and what their differences are.  

We will further consider a special case of CSMF, namely 
CSMF with non-negative components (CSMFnc). Unlike 
NMF, CSMFnc allows both subtraction and addition in 
linear combination of components. Unlike some one-sided 
non-negativity based methods [6][7], CSMFnc can extract 
sparse features. Analysis will show the advantage of 
subtractive combination of non-negative components. 

For optimization, we propose an alternating procedure as 
well as an update strategy called gentle update strategy in 
order to handle the alternating process, alleviating the 
problem of plunging into local optimum. 

Experimental analysis as well as theoretical analysis on 
Swimmer and CBCL data sets is given. It is encouraged to 
show that CSMF can well extract all the proper components 
without any ghost on Swimmer, while ghost has been a 
known problem in existing algorithms. 

In the reminder of the paper, we introduce CSMF and 
CSMFnc in Section 2. In Section 3, computational 
algorithms are developed for the optimization of CSMF. In 
Section 4, further theoretical and experimental analyses are 
given. Finally conclusion is provided in Section 5. 

2. Constrained sparse matrix factorization  

2.1. A general framework 
Suppose given the data matrix X=(x1,… ,xN) ∈ Nn×ℜ , 

where xi is the ith sample. Constrained Sparse Matrix 
Factorization (CSMF) is formulated to factorize X into the 
product of W=(w1,… , wl)∈ ln×ℜ  and H=(h1,… , hN)∈ Nl×ℜ , 
where wi=(wi(1),… , wi(n))T and hi=(hi(1),… , hi(l))T, so 
that the reconstruction error ||X-WH||2 

F  is minimized with 
penalty functions and some constraints as follows: 
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where g1 and g2 are penalized functions of W and H 
respectively, and D1 and D2 are domains of W and H 
respectively. D1 and D2 should be specified for different 
problems. In this study, for constructing functions g1 and g2, 
we would like to consider the following possible penalties: 

 Lasso penalty on components, denoted by entrywise 
l1-norm of W, i.e., ||W||1=Σl  

j=1Σn  
c=1|wj(c)|. 

 Lasso penalty on coefficients, denoted by entrywise 
l1-norm of H, i.e., ||H||1=ΣN 

k=1Σl  
j=1|hk(j)|. 

 Penalty of absolute orthogonality between any two 
components w 

j1 and w 
j2, in the form of 

|)(||)(| 2121 1, ccI jjn
cjj ww=∑= . (2) 

The above penalties can be used for extraction of sparse 
and less overlapped components with sparse encodings. 
The lasso penalties are famous in statistics and they would 

yield the sparseness in components and coefficients. The 
absolute orthogonality penalty would yield low overlapping 
between components. When I 

j1,j2=0, i.e., Σn  
c=1|w 

j1(c)||w 
j2(c)|=0 

for any j1≠j2, we then called w 
j1 and w 

j2 are absolutely 
orthogonal, indicating no overlapping between them. The 
absolute operator is useful because even wT 

j1 w 
j2=Σ

n  
c=1w 

j1(c)w 
j2

(c)=0 but it may still exist that Σn  
c=1|w 

j1(c)||w 
j2(c)|>0. In 

Section 4, detailed analysis between absolute orthogonality 
and lasso penalties are given. Using these penalties, g1 and 
g2 are then specified for discussion in this paper as follows: 
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where α, β and λ are non-negative importance weights. 
Many existing subspace algorithms could be involved in 

CSMF. For instance, CSMF is NMF when D1={W≥0}, 
D2={H≥0} and α=β=λ=0; CSMF is PCA when D1={W∈  

ln×ℜ | wT 
j1 w 

j2=0 for ∀ j1≠j2}, D2={H∈ Nl×ℜ } and α=β=λ=0; 
CSMF is ICA when D1={W ∈ ln×ℜ }, D2={H ∈ Nl×ℜ | 
hi(1),… ,hi(l) are independent, ∀ i} and α=β=λ=0. It can 
also be seen that many variants of NMF, PCA and ICA are 
also involved in this framework.  

The contribution of CSMF is to provide a platform for 
discussion of the impacts of different constraints on 
extraction of sparse and localized components. Moreover, 
the optimization algorithm proposed in Section 3 is general 
and can be used to generate some interesting special cases 
of CSMF, such as the CSMFnc discussed in next section. 

2.2. Constrained sparse matrix factorization with 
non-negative components (CSMFnc) 

In particular, we study the case when only the 
components are constrained to be non-negative, obtaining 
the following criterion, termed Constrained Sparse Matrix 
Factorization with non-negative components (CSMFnc): 
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s.t. W≥0 & H∈ Nl×ℜ  

(5) 

  

Unlike the NMF based methods in which only additive 
combination of non-negative components is allowed, 
CSMFnc allows both subtractive and additive combination 
of non-negative components. It is intuitively understood 
that representation of a complex object such as face using 
CSMFnc can be done by adding some sparse non-negative 
components and meanwhile removing some ones. If 
sometimes sparse encodings rather than sparse components 
are highly desirable, CSMFnc rather than NMF may be 
preferred. For example, there are six images illustrated in 
Fig. 1 (a), where black pixel indicates the zero gray value. 
Then, CSMFnc could ideally yield at least two smallest 
groups of components as shown in (d) and (e) respectively, 
but NMF only yields Fig. 1 (e) as its basis components. 
Imagining the pessimistic case that the first image where an 



 
 

entire white rectangle exists in the left in Fig. 1 (a) appears 
frequently in an image series, NMF then will not yield 
sparse encodings of the image series. In contrast, sparse 
encodings could be gained by CSMFnc when Fig. 1 (d) is 
selected as the basis components. 

Some one-sided non-negativity based algorithms such as 
NICA [6] which in contrast imposes non-negativity on the 
coefficients in ICA, so far could not exact sparse and 
non-negative components. Some reasons may be because 
no absolute orthogonality or sparseness constraint is used. 
Moreover the maximum number of the components learned 
by NICA would depend on PCA due to the whitening step 
and NICA may fail to extract proper components required. 

3. Optimization algorithms 
In Section 3.1, an alternating algorithm is first developed 

for optimization of the criterion of CSMF given by Eq. (1). 
In Section 3.2, a gentle update strategy is further provided 
to handle the alternating process. Convergence of the 
algorithm is finally discussed. Analysis could be 
generalized to CSMFnc with tiny modifications. 

3.1. An alternating algorithm for optimization 
As Eq. (1) is not convex, it may be hard to find a globally 

optimal solution. Thus, we herein develop an alternating 
algorithm to find a locally optimal solution. The algorithm 
first addresses the general case when D1={W∈ ln×ℜ } and 
D2={H∈ Nl×ℜ } and can be easily generalized to other cases. 

 

  Optimize wi(r) for fixed {wj(c),(c,j)≠(r,i)} and {hk(j)} 
We first rewrite the criterion so that it is useful for 

derivation of the optimal solution. Denote WT by W~  and 
let W~ )~,,~( 1 nww= , where T

ccc l))(~),...,1(~(~ www =  and 
)()(~ cj jc ww = . Denote )~,,~(~

1 n
T xxXX == , then the 

criterion could be rewritten as follows: 
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Note that optimizing wi(r) is equal to optimizing )(~ irw . Thus 
for fixed {wj(c),(c,j)≠(r,i)} and {hk(j)}, )(~ irw  can be 
equivalently optimized  by minimizing the formula below: 
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With some efforts, we can have: 
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where Cr,i 
1  and Cr,i 

2  are constant values independent of 
)(~ irw . It thus can be verified that for fixed 

{ }),(),(),(~ irjcjc ≠w  and {hk(j)}, minimizing G(W,H) with 
respect to )(~ irw  is equal to minimizing the following 
formula with respect to )(~ irw : 
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It is interesting to show the possible existing styles of 
function ))(~(

~ , iG r
ir w  in Fig. 2, where Fig. 2 (d) would not 

exist because 0)(~2 ,1 ≥+∑ ≠= βjα r
l

ijj w  for ever. 
Finally, the optimal solution is given by the following 

lemma and theorem, and the proofs are omitted. 
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 Optimize )(ish  for fixed {wj(c)} and {hk(j), (k,j)≠(s,i)} 
We know ||X-WH||2 

F =Σ N 
k=1||xk-Whk||2 

F . Hence for fixed 
{wj(c)} and {hk(j), (k,j)≠(s,i)}, minimizing ),( HWG  with 
respect to )(ish  is equal to minimizing the formula below: 
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Figure 1. Illustration of the decomposition using CSMFnc. (a) 
Six image samples; (b) and (c) are two examples of construction; 
(d) and (e) are two alternative bases found by CSMFnc from (a).

  

 
Figure 2. (a)~(c) are examples of ))(~(

~ , iG r
ir w  exist in 3 possible 

ways, while the case (d) would not exist. Blue solid curve 
indicates ))(~(~ , iG r

ir w−  and red dot curve indicates ))(~(
~ , iG r

ir w+ .  
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Without proofs, we similarly get the following conclusions. 
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Based on the above optimization scheme of CSMF, 
optimization scheme of CSMFnc for minimizing Eq. (5) 
could be easily derived by only changing the update rule of 
the components. First, we find that when 0)(~ ≥irw , 

))(~(~ , iG r
ir w  in Eq. (8) could be reduced to: 
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Then the components in CSMFnc are updated as follows. 
 

Theorem 3. Suppose )(~ iopt
rw  is the minimum solution of 

))(~(~ , iG r
ir w  when 0)(~ ≥irw . Then 

)0,max())(~(~minarg)(~
,

,

2
,

0)(~
ir

ir

r a
b

r
ir

i
opt
r iGi +−== +≥ ww w  (11) 

3.2. Gentle update strategy 
In the last section, a locally optimal solution is obtained. 

However, it would highly depend on the implementation of 
the alternating procedure and an unsatisfied locally optimal 
solution may be learned. In view of this, we propose an 
adaptive strategy to handle the alternating process for 
learning a better local optimum. The proposed strategy is to 
select a subset of parameters either from the component 
part or from the coefficient part for update at each step, 
rather than updating all of them. We call this strategy the 
gentle update strategy. Algorithm 1 is an overview of the 
strategy and details are given as follows.  
 

 Gentle update of components. As W can be updated by 
the update of W~ , at the tth step a subset w

w t
j

N
ji 1' }~{ =  constituted 

by two parts is then selected for update. For the first part, Nw 
t,1 

indexes }'~,,'~{
1,1 w

tNii  are cyclicly selected from {1,… ,n} 
in an orderly manner from the start of the alternating 
process. For the second part, Nw 

t,2 indexes }'ˆ,,'ˆ{
2,1 w

tNii  
are selected such that the subset }}'ˆ,,'ˆ{),~(~{
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By Eq. (6)~(7), we find that )~(~
rG w  can fully reflect the 

contribution of rw~  in minimization of the criterion. (Eq. 
(12) can also be used for CSMFnc). Denote the selected 
indexes by }'ˆ,,'ˆ{}'~,,'~{}',,'{

2,1, 111 www
ttt NNN iiiiii ∪= . 

Then, the first part of this subset gives the opportunity to 
update all parameters and the second part is to 
appropriately accelerate the convergence of the algorithm. 
 

 Gentle update of coefficients. Similarly, at the tth step, 
there are two parts constituting a subset h

h t
j

N
ji 1}{ =′′  for update. 

First, Nh 
t,1  indexes }~,,~{

1,1 h
tNii ′′′′  are cyclicly selected from 

},,1{ N in an orderly manner from the start of the 
alternating process. Second, the rest Nh 

t,2 indexes }ˆ,,ˆ{
2,1 h

tNii ′′′′  
are selected such that the subset }}ˆ,,ˆ{),(~{

2,1 hh
tNs iisG ′′′′∈  

consists of the largest Nh 
t,2 values in },,1),(~{ NsG s =h , where 
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It is based on Eq. (9). So, for update of the coefficients, the 
selected index set is }ˆ,,ˆ{}~,,~{},,{
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For implementation of gentle update strategy, in the 
experiment we let Nw 

t,1, Nw 
t,2, Nh 

t,1 and Nh 
t,2  be constants Nw 

0,1, Nw 
0,2

, Nh 
0,1 and Nh 

0,2 respectively, being independent of t as shown 
in Algorithm 1. Also, we will control the algorithm by the 
maximum iteration number while setting ε very small. 

 

Convergence. The alternating algorithm would be 
converged, because G(W,H)≥0 for any W and H, and the 
function G will decrease after each update. So there must be 
a step at which ε<− |),(),(| 00 HWHW GG  in Algorithm 1. 
 

Discussion. Though alternating technique is welcome for 
optimization of non-convex problem, however, little work 
is proposed for handling the alternating process. 
Alternating technique implemented in traditional way, for 
instance in our learning, will at each step first update all 
components and then update all coefficients. That is to set 
Nw 

0,1=n, Nw 
0,2=0, Nh 

0,1=N and Nh 
0,2=0 in gentle update strategy. 

However, our study shows handling the process is 
important. Due to the limited room of the paper, we can 
only show an example in Fig. 4 (c) that the update using the 
traditional way would yield an unsatisfied result. Hence, 
handling the alternating process is useful. 

4. Theory & experiment analyses 
We first further interpret the sparseness in CSMF. Then 

experimental analysis and theoretical analysis are given on 
synthetic and real-world data sets in Section 4.2. 
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4.1. Sparseness in CSMF  
As we state absolute orthogonality and lasso constraints 

can make components or coefficients sparse, the followings 
theorems tell how they work and the proofs are omitted. 

 

Theorem 3. If α→+∞ or β→+∞, then by lemma 1, 0)(~ →+ irw  
and 0)(~ →− irw , and consequently 0)(~ →iopt

rw  in theorem 1. 
 

Theorem 4. If λ→+∞, then by lemma 2, 0)( →+ ish  and 
0)( →− ish ,  and consequently hopt 

s (i)→0 in theorem 2. 
 

In applications, the sparseness could be gained without 
assigning large values to α, β and λ. Interestingly, both α 
and β could control the degree of component sparseness by 
theorem 3. Their differences would be analyzed later. 

Next, we know that CSMF is NMF when D1={W≥0}, 
D2={H≥0}and α=β=λ=0. However, though non-negativity 
is popularly used for extracting sparse features, it still lacks 
of mathematical interpretations when it works, when it will 
fail and why imposing non-negativity on components and 
coefficients simultaneously are preferred. We now try to 
give some interpretations based on the optimization scheme 
in Section 3. First, we develop an alternative algorithm for 
solving NMF within the framework of CSMF. By modifying 
theorem 1 and theorem 2, the update rule is as follows. 

 

Theorem 5. For D1={W≥0}, D2={H≥0} and α=β=λ=0, 
CSMF is updated by (1) )0,max()(~)(~

,

,

2 ir

ir

a
b

r
opt
r ii +−== +ww ; (2) 
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It shows when br,i 
+  or isb ,~

+  is positive, )(~ iopt
rw  or )(iopt

sh  
will be zero, yielding sparseness in components or 
coefficients. This interprets why non-negativity constraint 
may yield sparseness. However, if br,i 

+  or isb ,~
+  is negative, 

)(~ iopt
rw  or )(iopt

sh  will then be positive. Thus just imposing 
non-negativity may not be enough always. So additional 
constraints are used since larger positive values α, β and λ 
would bring br,i 

+  and isb ,~
+  towards positive values, where in 

[9] sparseness is imposed on coefficients. With similar 
reason, when only one-sided non-negativity is imposed, the 
positivity of br,i 

+  or isb ,~
+  seems more undetermined according 

to their formulas. Next section will give some more insight. 
As a more general model of NMF, the CSMF with 

non-negative components and coefficients (CSMFncc) will 
be used for comparison in next section. Theorem 5 is still 
applicable for the optimization of CSMFncc and the 
condition “α=β=λ=0” can be removed from the theorem. 

4.2. Evaluation & analysis 
We discuss the impacts of different constraints in CSMF 

in two cases: ground truth decomposition and approximate 
decomposition. In the experiment, the components of all 
iterative algorithms are initialized with the same positive 

values. The coefficients of CSMF and CSMFnc are 
initialized as the least square solutions of the reconstruction 
term since non-negativity is not needed, and for NMF 
based methods they are randomly initialized with the same 
positive values. The parameters of the compared methods 
are tuned by trying our best or suggested by the authors. 

4.2.1 Case of ground truth decomposition 
In ground truth decomposition, it is assumed that a group 

of images could be completely represented using local 
features without any overlapping. So experiment as well as 
theoretical analysis is performed on Swimmer data set [12]. 
It is constituted by 256 images of size 32× 32. Each image 
is represented by five parts, a centered invariant part called 
“torso” of 12 pixels and four “limbs” of 6 pixels appear in 
one of 4 positions. Some images are shown in Fig. 3.  

So far many algorithms have been tested on this data set. 
However, to the best of our knowledge, ghost is still a 
problem and the exact 17 factors are still not factorized out. 
 

          
Figure 3. Some Images in Swimmer Data Set. 

 

 Absolute orthogonality. In ground truth decomposition, 
a group of images could be completely represented by a set 
of sparse components w1,… ,wl with no overlapping between 
them. So the components should be absolutely orthogonal. 
Then, it is optimistic to only use absolute orthogonality for 
extraction of sparse features and get the same reconstruction 
performance as PCA. It is because when β=λ=0 for any α>0, 
if absolute orthogonality is satisfied, we have: 

2
21

2 )()(),( FF ggG WHXHWWHXHW −=++−= . (14) 
In the experiment, when α=0.05, β=λ=0, Nw 

0,1=600, Nw 
0,2=200, 

N h 
0,1 =200 and N h 

0,2 =100, CSMF extracts all the proper 
components as shown in Fig. 4(a) and the difference of 
MSE (mean square error) results between CSMF and PCA 
is 1.4×10−29. Moreover, in Fig. 4(e), we see absolute 
orthogonality is also useful for CSMFnc, where parameter 
setting for update is: Nw 

0,1=200, Nw 
0,2=100, Nh 

0,1=100 and Nh 
0,2=50. 

 

 Lasso ||W||1 Constraint. As analyzed in theorem 3, ||W||1 
can also be used to control the sparseness of a component, 
and as shown in Fig. 4 (b) all the proper components are 
also extracted. In ground truth experiment, the differences 
between ||W||1  and the absolute orthogonality in theory are: 
(1). Absolute orthogonality measures the redundancy 
(overlapping) between components while ||W||1 only 
measures the average cardinality of each component. 
(2). In the optimistic case when global optimum is achieved, 

the learned components with absolute orthogonality penalty 
are also the best for reconstruction. The ones using constraint 
||W||1 is not sure, since G(W,H)>||X-WH||2 

F for β>0. 
 

 Lasso ||H||1 Constraint. To our surprise, in the ground 
truth decomposition as analyzed above, ||H||1 is not required 
to find all the proper components. However ||H||1 in 
CSMFnc is useful sometimes for learning sparse codings as 
exemplified in Section 2.2, and as seen later ||H||1 is helpful 
for extraction of sparse components on real-world data set. 
 

 Non-negativity. The experiment of NMF on Swimmer 
was reported [13] and it is known NMF can not remove the 
ghost between components. Here we implement its three 
well-known variants, nsNMF, LNMF and NMFsc, where 
the parameters of nsNMF and NMFsc have been tuned by 
our best. The tuned parameter of nsNMF is not the same as 



 
 

the one reported in [13] since the initialization is different. 
The results in Fig. 4 show a ghost depicting the “torso” 
exists in each component learned by the variants of NMF. 
 

Finally, Fig. 4(d) additionally shows the result of CSMF 
with λ=0.1, α=0.01, β=0.01 and Nw 

0,1=600, Nw 
0,2=200, Nh 

0,1=150 
and Nh 

0,2=50, and Fig. 4(f) shows the results of CSMFnc with 
λ=0.01, α=0.01, β=0.01 and Nw 

0,1=600, Nw 
0,2=200, Nh 

0,1=150 and 
N h 

0,2 =50. So, success of CSMF is not restricted to one 
specific parameter setting. 
 

Summary. (1) While lasso penalty has been widely used 
for constraint on generic data, in CSMF we introduce the 
absolute orthogonality penalty and justify its usefulness in 
ground truth experiment; (2) While non-negativity is 
popularly used as constraint for extraction of sparse 
components, CSMF and CSMFncc show constraints using 
absolute orthogonality and lasso penalties are also useful 
for matrix factorization to achieve this goal. Moreover, 
they help further remove the ghost and extract all proper 
components, while non-negative constraint may not do that. 
 

4.2.2 Case of approximate decomposition 
Unlike the ground truth experiment, there is no strong 

evidence that a group of face images could be completely 
represented using (a few) limited sparse components. 
However approximate decomposition with sparse 
components is still welcome. For evaluation, we first define 
the average overlapping degree (AOD) between 
components by the following formula: 

 

'1'
1
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rr

l
rllAOD wwW +=
−
=

− ∑∑−⋅⋅=  (15) 
 

where [ ] |)(||)(|)( 1
1 iii rrn

ir www ⋅∑= −
= . We see that AOD(W) is 

a normalized absolute orthogonality measurement. If there 
is no overlapping between components, AOD(W) is zero. 
Otherwise it shall be large, with maximum value being 1. 

Experiment are performed on the training set of CBCL1 
[5] constituted by 2429 face images of size 1919 × . The 
pixel values of images are ranging from 0 to 1. In the 
experiment, 49 components are found. For convenience of 
analysis, the parameters of gentle update strategy are fixed 
and indicated in Fig. 5. 

First we investigate the effects of absolute orthogonality 
and lasso constraints on extraction of sparse components 
without the non-negativity constraint, i.e., D1={W∈ ln×ℜ } 
and D2={H∈ Nl×ℜ } in CSMF. Table 1 and 2 show the 
impact of lasso penalty on coefficients in extraction of 
sparse components, where either absolute orthogonality or 
lasso penalty on components is used; table 3 and 4 show the 
impacts of absolute orthogonality and lasso penalty on 
components respectively when no penalty is imposed on 
coefficients. As shown, using lasso ||H||1 as constraint is 
good for extracting sparse features on real-world data, 
though in ground truth experiment, it may not be needed. 
From table 1 to 3 we see that using absolute orthogonality 
penalty could accelerate the process of producing sparse 
features, while in table 4 using lasso constraint on 
components seems less effective. This can be further shown 
by table 2 as compared to table 1. However, we find that 
larger α would be easier to get AOD(W)=NaN. It indicates 
there are some over-learned components, which are (almost) 
empty, because [ ] 1

1 |)(| −
=∑ irn

i w →+∞. In this case, one can set α 
properly large and then go on producing sparser components 
by further increasing β and λ as shown in table 5. 

Next, we investigate the effect of non-negativity 
constraint and its differences from other constraints. First, 
 
1No preprocessing is done on CBCL here, while some preprocessing, such 
as removing mean, clipping etc, are first applied by Lee [1] and Hoyer [8] 
in their codes (it is not clear in [13]). The preprocessing may perform some 
nonlinear transform on the data. 

   
(a) CSMF (λ=0,α=0.05,β=0) (b) CSMF (λ=0,α=0,β=1) (c) Over-learned CSMF (λ=0,α=0.05,β=0) 

   
(d) CSMF (λ=0.1,α=0.01,β=0.01)  (e) CSMFnc, (λ=0,α=0.01,β=0) (f) CSMFnc, (λ=0.01,α=0.01,β=0.01)   

   
(g) LNMF (h) NMFsc (0.9,0.4) (i) nsNMF (θ=0.1) 

 

Figure 4. Experiment on Swimmer. (1) For CSMF, its absolute images are shown so that the more the darker pixels are the sparser the 
component is; (2) Dark pixels are for (almost) zero entries and white pixels are for positive ones;  (3) The maximum iteration number in 
all methods is 2000; (4) For NMFsc, the parameters of controlling the component and coefficient sparseness are 0.9 and 0.4 respectively; 
for nsNMF, θ is defined in [13]; (5) See text for the parameter settings of CSMF and CSMFnc; (6) (c) is discussed at the end of Section 3. 
 



 
 

we give some visual results in Fig. 5. In the first four 
columns, non-negativity is gradually imposed in CSMF. It 
is imposed on components in the second row and on both 
components and coefficients in the third row. Note that in 
Fig. 5(k), CSMFncc is actually the NMF implemented by 
theorem 5. We see that non-negativity helps produce sparse 
components as supported by theorem 5. However, when 
non-negativity is imposed on components and coefficients 
simultaneously, it shows that the ghosts in some 
components are hard to be removed and also further 
incorporating other constraints is not effective to alleviate 
the overlapping between components, since there is no 
apparent difference among Fig. 5(k), Fig. 5(l) and Fig. 5(m). 
With further results shown in table 6 when non-negativity 
is imposed on both components and coefficients, AOD(W) 
only changes a little when other constraints are used. In 
contrast, AOD(W) changes obviously in table 3 and 4. 
Moreover, in the third row and fourth column CSMFncc is 
over-learned. This may be due to the improperly large 
weights of the constraints. As some more results of 
CSMFncc are shown in Fig. 6 with different parameter 
settings, it can still show that no significant change exhibits. 
On the other hand, when non-negativity is not 
simultaneously imposed on components and coefficients, 
the components become sparser when absolute 
orthogonality and lasso constraints are further imposed as 
shown from Fig. 5(a) to Fig. 5(d) and from Fig. 5(f) to Fig. 
5(i). Very interestingly, using lasso constraint ||H||1 could 
further remove the ghost in the components. 

Finally, besides the example shown in Section 2, to see 
the further advantage of allowing subtraction of non- 
negative sparse components, we tabulate the MSE results 
corresponding to the visual results in Fig. 5 and Fig. 6 on 
CBCL in table 7. Compared to NMF [1], CSMFnc can 
produce much sparser (more localized) features while 
lower MSE values can be gained. Note that the MSE of 

CSMFnc with λ=0.05, α=0.1 and β=1 is 0.70183, while NMF 
is 0.8631 and CSMFncc is 0.76566. Though nsNMF is 
motivated for pursuing sparseness in both components and 
coefficients, however Fig. 5(i) is sparser than Fig. 5(o) with 
smaller MSE. Though LNMF and NMFsc can extract 
sparser features, their MSEs are high, being 5.051 and 
1.3577 respectively. In fact there should be some trade-off 
between sparseness and reconstruction ability. Moreover, 
in Fig. 4 LNMF and NMFsc can not remove the ghost. So, 
allowing both additive and subtractive combinations of a set 
of non-negative sparse components may be more useful for 
representation of complex object in a more accurate way. 
 

Summary. (1) Absolute orthogonality can accelerate the 
process of producing sparse components; (2) Lasso 
constraint ||H||1 helps remove ghost in the components; (3) 
Non-negativity is useful, but it seems hard to deal with the 
ghost problem; (4) Subtractive combination of non-negative 
sparse components may be good for a trade-off between 
sparseness and lower MSE value. 

5. Conclusions 
In this paper, the impacts of different constraints for 

pursuing sparse components and the relationship among 
them are theoretically and experimentally analyzed in the 
framework called Constrained Sparse Matrix Factorization 
(CSMF). The conditions when non-negativity constraint is 
useful for extraction of sparse components are investigated. 
It is also found that subtractive combination of non-negative 
sparse components is effective. Moreover, a gentle update 
strategy, as a useful technique for pursuing a better local 
optimum, is suggested for the optimization in CSMF. The 
proposed model has been finally justified to be effective for 
elimination of the ghost between components. In future, we 
will further consider the impacts of different constraints for 
pursuing sparse components in the aspect of classification. 
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Figure 6. More results of CSMFnc and CSMFncc on CBCL (other parameter settings are the same as Fig. 5). 

     
(a) CSMF, λ=0,α=0,β=0 (b) CSMF, λ=0,α=0.1,β=0 (c) CSMF, λ=0,α=0.1,β=1 (d) CSMF, λ=0.2,α=0.1,β=1 (e) LNMF 

     
(f) CSMFnc, λ=0,α=0,β=0 (g) CSMFnc, λ=0,α=0.1,β=0 (h) CSMFnc, λ=0,α=0.1,β=1 (i) CSMFnc, λ=0.2,α=0.1,β=1 (j) NMFsc (0.8,0) 

     
(k) CSMFncc, λ=0,α=0,β=0 (l) CSMFncc, λ=0,α=0.1,β=0 (m) CSMFncc, λ=0,α=0.1,β=1 (n) CSMFncc, λ=0.2,α=0.1,β=1 (o) nsNMF (θ=0.6) 

 

Figure 5. Experiment on CBCL. See text for detailed analysis. Setting: (1) For CSMFnc and CSMFncc, white pixels denote (almost) zero 
gray value and darker ones denote positive gray values; (2) The maximum iteration in all algorithms is 1000; (3) Figures of CSMF are 
shown as their absolute images, so the less the dark pixels are the sparser the component is. (The roles of the white and dark pixels here 
are different from those in Fig. 4 because of the traditional use for visualization); (4) Parameters of NMFsc are suggested in [8]; (5) The 
parameter setting of the gentle update strategy for CSMF, CSMFnc and CSMFncc is: Nw 

0,1=100, Nw 
0,2=50, Nh 

0,1=300 and Nh 
0,2=100. 

 


