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1. Introduction. Due to the “curse of dimensionality,” Markov decision processes typ-
ically have a prohibitively large number of states, rendering exact dynamic programming
methods intractable and calling for the development of approximation techniques. This
paper represents a step in the development of a linear programming approach to approxi-
mate dynamic programming (de Farias and Van Roy 2003; Schweitzer and Seidmann 1985;
Trick and Zin 1993, 1997). This approach relies on solving a linear program that generally
has few variables but an intractable number of constraints. In this paper, we propose and
analyze a constraint sampling method for approximating the solution to this linear pro-
gram. We begin in this section by discussing our working problem formulation, the linear
programming approach, constraint sampling, results of our analysis, and related literature.

1.1. Markov decision processes. We consider a Markov decision process (MDP) with
a finite state space � = �1� � � � � �� ��. In each state x ∈� , there is a finite set of admissible
actions �x. Further, given a choice of action a ∈�x, a cost ga�x�≥ 0 is incurred, and the
probability that the next state is y ∈� is given by Pa�x� y�. A policy u is a mapping from
states to admissible actions. Our interest is in finding an optimal policy, one that minimizes
expected infinite-horizon discounted costs

Ju�x�=
�∑
t=0
�t�P tugu��x�

simultaneously for all initial states x ∈ � . Here, � ∈ �0�1� is the discount factor, Pu is
a matrix whose xyth component is equal to Pu�x��x� y�, and gu is a vector whose xth
component is equal to gu�x��x�.
The cost-to-go function Ju associated with a policy u is the unique solution to Ju = TuJu,

where the operator Tu is defined by TuJ = gu+�PuJ � Furthermore, the optimal cost-to-go
function J ∗ = minu Ju is the unique solution to Bellman’s equation: J ∗ = TJ ∗, where the
operator T is defined by TJ = minu TuJ . Note that the minimization here is carried out
componentwise. For any vector J , we call a policy u greedy with respect to J if TJ = TuJ .
Any policy that is greedy with respect to the optimal cost-to-go function J ∗ is optimal.
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1.2. The linear programming approach. An optimal policy can be obtained through
computing J ∗ and employing a respective greedy policy. However, in many practical con-
texts, each state is associated with a vector of state variables, and therefore the cardinality
of the state space grows exponentially with the number of state variables. This makes it
infeasible to compute or even to store J ∗. One approach to addressing this difficulty involves
approximation of J ∗.
We consider approximating J ∗ by a linear combination of preselected basis functions

�k� � 
→ �� k= 1� � � � �K. The aim is to generate a weight vector r̃ ∈�K such that

J ∗�x�≈
K∑
k=1
�k�x�r̃k�

and to use a policy that is greedy with respect to the associated approximation. We will use
matrix notation to represent our approximation: �r̃ =∑K

k=1�k�x�r̃k, where

�=




� �
�1 · · · �K

� �


 �

In the linear programming approach, weights r̃ are generated by solving a certain linear
program—the approximate linear program (ALP):

maximize cT�r(1)

subject to ga�x�+�
∑
y∈�
Pa�x� y���r��y�≥ ��r��x�� ∀x ∈� � a ∈�x�

where c is a vector of state-relevance weights for which every component is positive,
and cT denotes the transpose of c. As discussed in de Farias and Van Roy (2003), the ALP
minimizes �J ∗ −�r�1� c, subject to the constraints. For any positive vector �, we define the
weighted L1 and L� norms

�J�1� � =
∑
x

��x��J �x��� �J��� � =max
x
��x��J �x���

Further, de Farias and Van Roy (2003) discuss the role of state-relevance weights c and
why, given an appropriate choice of c, minimization of �J ∗ −�r�1� c is desirable.

1.3. Constraint sampling. While the ALP may involve only a small number of vari-
ables, there is a potentially intractable number of constraints—one per state-action pair.
As such, we cannot in general expect to solve the ALP exactly. The focus of this paper is
on a tractable approximation to the ALP: the reduced linear program (RLP).
Generation of an RLP relies on three objects: (1) a constraint sample size m, (2) a prob-

ability measure � over the set of state-action pairs, and (3) a bounding set � ⊆ �K . The
probability measure � represents a distribution from which we will sample constraints.
In particular, we consider a set � of m state-action pairs, each independently sampled
according to �. The set � is a parameter that restricts the magnitude of the RLP solution.
This set should be chosen such that it contains �r̃ . The RLP is defined by

(2) maximize cT�r

subject to ga�x�+�
∑
y∈�
Pa�x� y���r��y�≥ ��r��x�� ∀ �x�a� ∈��

r ∈� �



de Farias and Van Roy: Constraint Sampling in Approximate Dynamic Programming
464 Mathematics of Operations Research 29(3), pp. 462–478, © 2004 INFORMS

Let r̃ be an optimal solution of the ALP and let r̂ be an optimal solution of the RLP. In
order for the solution of the RLP to be meaningful, we would like �J ∗ −�r̂�1� c to be close
to �J ∗ −�r̃�1� c. To formalize this, we consider a requirement that

Pr���J ∗ −�r̂�1� c −�J ∗ −�r̃�1� c� ≤ ��≥ 1− ��
where � > 0 is an error tolerance parameter and � > 0 parameterizes a level of confidence
1− �. This paper focusses on understanding the sample size m needed in order to meet
such a requirement.

1.4. Results of our analysis. To apply the RLP, given a problem instance, one must
select parameters m, �, and � . In order for the RLP to be practically solvable, the sample
size m must be tractable. Results of our analysis suggest that if � and � are well-chosen,
an error tolerance of � can be accommodated with confidence 1−� given a sample size m
that grows as a polynomial in K, 1/�, and log�1/��, and is independent of the total number
of ALP constraints.
Our analysis is carried out in two parts:
(i) Sample complexity of near-feasibility. The first part of our analysis applies to con-

straint sampling in general linear programs—not just the ALP. Suppose that we are given a
set of linear constraints

"Tz r +$z ≥ 0� ∀ z ∈��

on variables r ∈�K , a probability measure � on �, and a desired error tolerance � and con-
fidence 1− �. Let z1� z2� � � � be independent identically distributed samples drawn from �
according to �. We will establish that there is a sample size

m=O
(
1
�

(
K ln

1
�
+ ln 1

�

))
�

such that, with probability at least 1− �, there exists a subset Z ⊆� of measure ��Z�≥
1− � such that every vector r satisfying

"Tzi r +$zi ≥ 0� ∀ i= 1� � � � �m�
also satisfies

"Tzi r +$zi ≥ 0� ∀ z ∈Z�
We refer to the latter criterion as near-feasibility—nearly all the constraints are satisfied.
The main point of this part of the analysis is that near-feasibility can be obtained with high
confidence through imposing a tractable number m of samples.
(ii) Sample complexity of a good approximation. We would like the error �J ∗ −�r̂�1� c

of an optimal solution r̂ to the RLP to be close to the error �J ∗ −�r̃�1� c of an optimal
solution to the ALP. In a generic linear program, near-feasibility is not sufficient to bound
such an error metric. However, because of special structure associated with the RLP, given
appropriate choices of � and � , near-feasibility leads to such a bound. In particular, given
a sample size

m=O
(

A)

�1−���
(
K ln

A)

�1−��� + ln
1
�

))
�

where A=maxx ��x�, with probability at least 1− �, we have
�J ∗ −�r̂�1� c ≤ �J ∗ −�r̃�1� c + ��J ∗�1� c�
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The parameter ), which is to be defined precisely later, depends on the particular MDP
problem instance, the choice of basis functions, and the set � .
A major weakness of our error bound is that it relies on an idealized choice of �.

In particular, the choice we will put forth assumes knowledge of an optimal policy. Alas,
we typically do not know an optimal policy—that is what we are after in the first place.
Nevertheless, the result provides guidance on what makes a desirable choice of distribu-
tion. The spirit here is analogous to one present in the importance sampling literature. In
that context, the goal is to reduce variance in Monte Carlo simulation through intelligent
choice of a sampling distribution and appropriate distortion of the function being integrated.
Characterizations of idealized sampling distributions guide the design of heuristics that are
ultimately implemented. The set � also plays a critical role in the bound. It influences the
value of ), and an appropriate choice is necessary in order for this term to scale gracefully
with problem size. Ideally, given a class of problems, there should be a mechanism for
generating � such that ) grows no faster than a low-order polynomial function of the num-
ber of basis functions and the number of state variables. As we will later discuss through
an example involving controlled queueing networks, we expect that it will be possible to
design effective mechanisms for selecting � for practical classes of problems.
It is worth mentioning that our sample complexity bounds are loose. Our emphasis is on

showing that the number of required samples can be independent of the total number of
constraints and can scale gracefully with respect to the number of variables. Furthermore,
our emphasis is on a general result that holds for a broad class of MDPs, and therefore
we do not exploit special regularities associated with particular choices of basis functions
or specific problems. In the presence of such special structure, one can sometimes provide
much tighter bounds or even methods for exact solutions of the ALP, and results of this
nature can be found in the literature, as discussed in the following literature review. The sig-
nificance of our results is that they suggest viability of the linear programming approach to
approximate dynamic programming even in the absence of such favorable special structure.

1.5. Literature review. We classify approaches to solving the ALP and, more generally,
linear programs with large numbers of constraints into two categories. The first focusses
on exploiting problem-specific structure, whereas the second devises general methods for
solving problems with large numbers of constraints. Our work falls into the second category.
We begin by reviewing work from the first category. Morrison and Kumar (1999) for-

mulate approximate linear programming algorithms for queueing problems with a specific
choice of basis functions that renders all but a relatively small number of constraints redun-
dant. Guestrin et al. (2003) exploit the structure arising when factored linear architectures
are used for approximating the cost-to-go function in factored MDPs. In some special cases,
this allows for efficient exact solution of the ALP, and in others, this motivates alternative
approximate solution methods. Schuurmans and Patrascu (2002) devise a constraint genera-
tion scheme, also especially designed for factored MDPs with factored linear architectures.
The worst-case computation time of this scheme grows exponentially with the number of
state variables, even for special cases treated effectively by the methods of Guestrin et al.
(2003). However, the proposed scheme requires a smaller amount of computation time,
on average. Grötschel and Holland (1991) present a cutting-plane method tailored for the
travelling salesman problem.
As for the second category, Trick and Zin (1993, 1997) study several constraint generation

heuristics for the ALP. They apply these heuristics to solve fairly large problems, involving
thousands of variables and millions of constraints. This work demonstrates promise for
constraint generation methods in the context of the ALP. However, it is not clear how
the proposed heuristics can be applied to larger problems involving intractable numbers of
constraints.
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Clarkson’s Las Vegas algorithm (1995) is another general-purpose constraint sampling
scheme for linear programs with large numbers of constraints. Las Vegas is a constraint
generation algorithm where constraints are iteratively selected by a method designed to
identify binding constraints. There are a couple of important differences between Las Vegas
and our constraint sampling scheme. First, Las Vegas is an exact algorithm, meaning that
it produces the optimal solution, whereas all that can be proved about the RLP is that it
produces a good approximation to an optimal solution of the ALP with high probability.
Second, Las Vegas’s expected run time is polynomial in the number of constraints, whereas
the RLP entails run time that is independent of the number of constraints. Given the pro-
hibitive number of constraints in the ALP, Las Vegas will generally not be applicable.
Finally, we note that, after the original version of this paper was submitted for publication,

Calafiore and Campi (2003) independently developed a very similar constraint sampling
scheme and sample complexity bound. Their work focusses on the number of samples
needed for near-feasibility of an optimal solution to an optimization problem with sampled
constraints. It is not intended to address relations between near-feasibility and approximation
error. Their work is an important additional contribution to the topic of constraint sampling,
as there are several notable differences from what is presented in this paper. First, their work
treats general convex programs, rather than linear programs. Second, their analysis is quite
different and focusses on near-feasibility of a single optimal solution to an analog of the
RLP, rather than uniform near-feasibility over all feasible solutions to an RLP. If their result
is applied to a linear program as discussed in Item (i) of §1.4, their sample complexity bound
is O�K/���. Depending on the desired confidence 1−�, their sample complexity bound of
O�K/��� can be greater than or less than the bound of O��1/���K ln 1/� + ln 1/��� that
we use. The bounds may be reconciled by the opportunity to “boost confidence” (Haussler
et al. 1991). In particular, loosely speaking, in the design of learning algorithms a factor
of ln 1/� can be traded for a multiple of 1/�. Interestingly, this suggests that the bound
of Calafiore and Campi (2003), which ensures near-feasibility of a single optimal solution
to the RLP is equivalent—up to a constant factor—to a bound that ensures near-feasibility
of all feasible solutions. This observation does not extend, however, to the case of general
convex programs.

1.6. Organization of the paper. The remainder of the paper is organized as follows.
In §2, we establish a bound on the number of constraints to be sampled so that the RLP gener-
ates anear-feasible solution. In §3, we extend the analysis to establish a bound on the number
of constraints to be sampled so that the RLP generates a solution that closely approximates
an optimal solution to the ALP. To facilitate understanding of this bound, we study in §4
properties of the bound in a context involving controlled queueing networks. Our bounds
require sampling a number of constraints that grows polynomially on the number of actions
per state, which may present difficulties for problems with large action spaces. We propose
an approach for dealing with large action spaces in §5. Section 6 concludes the paper.

2. Sample complexity of near-feasibility. Consider a set of linear constraints

(3) "Tz r +$z ≥ 0� ∀ z ∈��

where r ∈ �K and � is a set of constraint indices. We make the following assumption on
the set of constraints:

Assumption 2.1. There exists a vector r ∈�K that satisfies the system of inequalities (3).

We are interested in situations where there are relatively few variables and a possibly
huge finite or infinite number of constraints; i.e., K� ���. In such a situation, we expect
that almost all the constraints will be irrelevant, either because they are always inactive or
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Figure 1. Large number of constraints in a low-dimensional feasible space. No constraint can be removed
without affecting the feasible region. Shaded area demonstrates the impact of not satisfying one constraint on the
feasible region.

because they have a minor impact on the feasible region. Therefore, one might speculate that
the feasible region specified by all constraints can be closely approximated by a sampled
subset of these constraints. In the sequel, we show that this is indeed the case, at least
with respect to a certain criterion for a good approximation. We also show that the number
of constraints necessary to guarantee a good approximation does not depend on the total
number of constraints, but rather on the number of variables.
Our constraint sampling scheme relies on a probability measure � over �. The distri-

bution � will have a dual role in our approximation scheme: On the one hand, constraints
will be sampled according to �; on the other hand, the same distribution will be involved
in the criterion for assessing the quality of a particular set of sampled constraints.
In general, we cannot guarantee that all constraints will be satisfied over the feasible

region of any subset of constraints. Figure 1, for instance, illustrates a worst-case scenario
in which it is necessary to include all constraints to ensure that all of them are satisfied.
Note, however, that the impact of any one of them on the feasible region is minor and might
be considered negligible. In this spirit, we consider a subset of constraints to be good if
we can guarantee that, by satisfying this subset, the set of constraints that are not satisfied
has small measure. In other words, given a tolerance parameter � ∈ �0�1�, we want to have
� ⊆� satisfying

(4) sup
�r �"Tz r+$z≥0� ∀ z∈� �

���y� "Ty r +$y < 0��≤ ��

Whenever (4) holds for a subset � , we say that � leads to near-feasibility.
The next theorem establishes a bound on the number m of (possibly repeated) sampled

constraints necessary to ensure that the set � leads to near-feasibility with probability at
least 1− �.
Theorem 2.1. For any � ∈ �0�1� and � ∈ �0�1�, and

(5) m≥ 4
�

(
K ln

12
�

+ ln 2
�

)
�
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a set � of m i.i.d. random variables drawn from � according to distribution �, satisfies

(6) sup
�r:"Tz r+$z≥0� ∀ z∈� �

���y� "Ty r +$y < 0��≤ �

with probability at least 1− �.
This theorem implies that even without any special knowledge about the constraints,

we can ensure near-feasibility, with high probability, through imposing a tractable sub-
set of constraints. The result follows immediately from Corollary 8.4.2 in Anthony and
Biggs (1992) and the fact that the collection of sets ���"�$��"T r + $ ≥ 0��r ∈ �K� has
VC-dimension K, as established in Dudley (1978).
Theorem 2.1 may be perceived as a puzzling result: The number of sampled constraints

necessary for a good approximation of a set of constraints indexed by z ∈� depends only on
the number of variables involved in these constraints and not on the set �. Some geometric
intuition can be derived as follows. The constraints are fully characterized by vectors +"Tz $z,
of dimension equal to the number of variables plus one. Because near-feasibility involves
only consideration of whether constraints are violated, and not the magnitude of violations,
we may assume without loss of generality that �+"Tz $z,� = 1, for an arbitrary norm. Hence,
constraints can be thought of as vectors in a low-dimensional unit sphere. After a large
number of constraints are sampled, they are likely to form a cover for the original set of
constraints—i.e., any other constraint is close to one of the already-sampled ones, so that
the sampled constraints cover the set of constraints. The number of sampled constraints
necessary in order to have a cover for the original set of constraints is bounded above by
the number of sampled vectors necessary to form a cover to the unit sphere, which naturally
depends only on the dimension of the sphere or, alternatively, on the number of variables
involved in the constraints.

3. Sample complexity of a good approximation. In this section, we investigate the
impact of using the RLP instead of the ALP on the error in the approximation of the cost-
to-go function. We show in Theorem 3.1 that by sampling a tractable number of constraints,
the approximation error yielded by the RLP is comparable to the error yielded by the ALP.
The proof of Theorem 3.1 relies on special structure of the ALP. Indeed, it is easy to see

that such a result cannot hold for general linear programs. For instance, consider a linear
program with two variables, which are to be selected from the feasible region illustrated in
Figure 2. If we remove all but a small random sample of the constraints, the new solution
to the linear program is likely to be far from the solution to the original linear program.
In fact, one can construct examples where the solution to a linear program is changed by
an arbitrary amount by relaxing just one constraint.
Let us introduce certain constants and functions involved in our error bound. We first

define a family of probability distributions on the state space � , given by

(7) -Tu = �1−��cT �I −�Pu�−1�
for each policy u. Note that if c is a probability distribution, -u�x�/�1−�� is the expected
discounted number of visits to state x under policy u if the initial state is distributed accord-
ing to c. Furthermore, lim�↑1-u�x� is a stationary distribution associated with policy u.
We interpret -u as a measure of the relative importance of states under policy u.
We will make use of a Lyapunov function V � � 
→ �+. Given a function V , we define a

scalar

0V =max
x∈�

��Pu∗V ��x�

V �x�
�

If 0V < 1, the Lyapunov function V would satisfy a “downward drift” condition. However,
we will make no such requirement—0V could potentially be larger than 1.
The following lemma captures a useful property of Tu∗ .
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Figure 2. A feasible region defined by a large number of redundant constraints. Removing all but a random
sample of constraints is likely to bring about a significant change in the solution of the associated linear program.

Lemma 3.1. Let V be a Lyapunov function for an optimal policy u∗. Then

�Tu∗J − Tu∗ �J���1/V ≤ 0V �J −�J���1/V �
Proof. Let J and �J be two arbitrary vectors in ��� �. Then

Tu∗J − Tu∗ �J = �Pu∗�J −�J �≤ �J −�J���1/V �Pu∗V ≤ �J −�J���1/V 0V V � �

For each Lyapunov function V , we define a probability distribution on the state space � ,
given by

(8) -u�V �x�=
-u�x�V �x�

-Tu V
�

We also define a distribution over state-action pairs

�u�V �x�a�=
-u�V �x�

��x�
� ∀a ∈�x�

Finally, we define constants
A=max

x
��x�

and

(9) )= 1+0V
2

-Tu∗V

cT J ∗
sup
r∈�

�J ∗ −�r���1/V �

We now present the main result of the paper—a bound on the approximation error intro-
duced by constraint sampling.

Theorem 3.1. Let � and � be scalars in �0�1�. Let u∗ be an optimal policy and � be
a (random) set of m state-action pairs sampled independently according to the distribution
�u∗�V �x�a�, for some Lyapunov function V , where

(10) m≥ 16A)
�1−���

(
K ln

48A)
�1−��� + ln

2
�

)
�
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Let r̃ be an optimal solution of the ALP that is in � , and let r̂ be an optimal solution of
the corresponding RLP. If r̃ ∈� , then, with probability at least 1− �, we have

(11) �J ∗ −�r̂�1� c ≤ �J ∗ −�r̃�1� c + ��J ∗�1� c�
Proof. From Theorem 2.1, given a sample size m, we have, with probability no less

than 1− �,
�1−���
4A)

≥ �u∗� V ���x�a�� �Ta�r̂��x� < ��r̂��x���(12)

= ∑
x∈S

-u∗� V �x�

��x�
∑
a∈�x

1�Ta�r̂��x�<��r̂��x�

≥ 1
A

∑
x∈S
-u∗� V �x�1�Tu∗�r̂��x�<��r̂��x��

For any vector J , we denote the positive and negative parts by

J+ =max�J �0�� J− =max�−J �0��
where the maximization is carried out componentwise. Note that

�J ∗ −�r̂�1� c = cT ��I −�Pu∗�−1�gu∗ − �I −�Pu∗��r̂��(13)

≤ cT �I −�Pu∗�−1�gu∗ − �I −�Pu∗��r̂ �
= cT �I −�Pu∗�−1+�gu∗ − �I −�Pu∗��r̂�+ + �gu∗ − �I −�Pu∗��r̂�−,
= cT �I −�Pu∗�−1+�gu∗ − �I −�Pu∗��r̂�+ − �gu∗ − �I −�Pu∗��r̂�−

+ 2�gu∗ − �I −�Pu∗��r̂�−,
= cT �I −�Pu∗�−1+gu∗ − �I −�Pu∗��r̂ + 2�Tu∗�r̂ −�r̂�−,
= cT �J ∗ −�r̂�+ 2cT �I −�Pu∗�−1�Tu∗�r̂ −�r̂�−�

The inequality comes from the fact that c > 0 and

�I −�Pu∗�−1 =
�∑
n=0
�nPnu∗ ≥ 0�

where the inequality is componentwise, so that

��I −�Pu∗�−1�gu∗ − �I −�Pu∗��r̂�� ≤ ��I −�Pu∗�−1� ��gu∗ − �I −�Pu∗��r̂��
= �I −�Pu∗�−1��gu∗ − �I −�Pu∗��r̂���

Now let r̃ be any optimal solution of the ALP. (Note that all optimal solutions of the ALP
yield the same approximation error �J ∗−�r�1� c; hence, the error bound (11) is independent
of the choice of r̃ .) Clearly, r̃ is feasible for the RLP. Since r̂ is the optimal solution of the
same problem, we have cT�r̂ ≥ cT�r̃ and

cT �J ∗ −�r̂� ≤ cT �J ∗ −�r̃�(14)

= �J ∗ −�r̃�1� c3
therefore we just need to show that the second term in (13) is small to guarantee that the
performance of the RLP is not much worse than that of the ALP.
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Now

2cT �I −�Pu∗�−1�Tu∗�r̂ −�r̂�−
= 2
1−�-

T
u∗�Tu∗�r̂ −�r̂�−

= 2
1−�

∑
x∈S
-u∗�x����r̂��x�− �Tu∗�r̂��x��1�Tu∗�r̂��x�<��r̂��x�

= 2
1−�

∑
x∈S

��r̂��x�− �Tu∗�r̂��x�
V �x�

-u∗�x�V �x�1�Tu∗�r̂��x�<��r̂��x�

≤ 2-Tu∗V
1−� �Tu∗�r̂ −�r̂���1/V

∑
x∈S
-u∗� V �x�1�Tu∗�r̂��x�<��r̂��x�

≤ �

2)
-Tu∗V �Tu∗�r̂ −�r̂���1/V

≤ �

2)
-Tu∗V ��Tu∗�r̂ − J ∗���1/V +�J ∗ −�r̂���1/V �

≤ �

2)
-Tu∗V �1+0V ��J ∗ −�r̂���1/V

≤ ��J ∗�1� c�

with probability greater than or equal to 1− �, where the second inequality follows from
(12) and the fourth inequality follows from Lemma 3.1. The error bound (11) then follows
from (13) and (14). �

Three aspects of Theorem 3.1 deserve further consideration. The first of them is the
dependence of the number of sampled constraints (10) on ). Two parameters of the RLP
influence the behavior of ): the Lyapunov function V and the bounding set � . Graceful
scaling of the sample complexity bound depends on the ability to make appropriate choices
for these parameters. In §4, we demonstrate how, for a broad class of queueing network
problems, V and � can be chosen so as to ensure that the number of sampled constraints
grows quadratically in the system dimension.
The number of sampled constraints also grows polynomially with the maximum number

of actions available per state A, which makes the proposed approach inapplicable to prob-
lems with a large number of actions per state. In §5, we show how complexity in the action
space can be exchanged for complexity in the state space, so that such problems can be
recast in a format that is amenable to our approach.
Finally, a major weakness of Theorem 3.1 is that it relies on sampling constraints accord-

ing to the distribution �u∗� V . In general, �u∗� V is not known, and constraints must be sampled
according to an alternative distribution �̄. Suppose that �̄�x�a�= -̄�x�/��x� for some state
distribution -̄. If -̄ is “similar” to -u∗� V , one might hope that the error bound (11) holds
with a number of samples m close to the number suggested in the theorem. We discuss two
possible motivations for this:
(i) It is conceivable that sampling constraints according to �̄ leads to a small value of

-u∗� V ��x� ��r̂��x�≥ �Tu∗�r̂��x���≤ �1−���/2�

with high probability, even though -u∗� V is not identical to -̄. This would lead to a grace-
ful sample complexity bound, along the lines of (10). Establishing such a guarantee is
related to the problem of computational learning when the training and testing distributions
differ.
(ii) If

-Tu∗�Tu∗�r −�r�− ≤C-̃T �Tu∗�r −�r�−�
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for some scalar C and all r , where

-̃�x�= -̄�x�/V �x�∑
y∈S -̄�y�/V �y�

�

then the error bound (11) holds with probability 1− � given

m≥ 16A)C
�1−���

(
K ln

48A)C
�1−��� + ln

2
�

)

samples. It is conceivable that this will be true for a reasonably small value of C in relevant
contexts.
How to choose -̄ is an open question, and most likely to be addressed adequately having

in mind the particular application at hand. As a simple heuristic, noting that -u∗�x�→ c�x�
as �→ 0, one might choose -̄�x�= c�x�V �x�/cT V .

4. Example: Controlled queueing networks. In order for the error bound (11) to be
useful, the parameter

)= 1+0V
2

-Tu∗V

cT J ∗
sup
r∈�

�J ∗ −�r���1/V

should scale gracefully with problem size. We anticipate that for many relevant classes of
MDPs, natural choices of V and � will ensure this. In this section, we illustrate this point
through an example involving controlled queueing networks. The key result is Theorem 4.1,
which establishes that—given certain reasonable choices of �, � , and V—) grows at most
linearly with the number of queues.

4.1. Problem formulation. Webegin by describing the class of problemswewill address.
Consider a queueing network with d queues, each with a finite buffer of size B ≥ 2d7/�1− 7�,
for some parameter 7 ∈ �0�1�. The state space is given by S = �0� � � � �B�d, with each
component xi of each state x ∈ S representing the number of jobs in queue i. The cost per
stage is the average queue length: g�x�= �1/d�∑d

i=1 xi. Rewards are discounted by a factor
of � per time step. At each time step, an action a ∈�x is selected. Transition probabilities
Pa�x� y� govern how jobs arrive, move from queue to queue, or leave the network. We
assume that the number of exogenous arrivals at each time step is less than or equal to 8d,
for some scalar 8 ∈ �0���.
Each class of problems we consider—denoted by ��7���8�—is constrained by parame-

ters 7 ∈ �0�1�, � ∈ �0�1�, and 8 ∈ �0���. Each problem instance Q ∈ ��7���8� is identified
by a quadruple:
• number of queues dQ ≥ 1;
• buffer size BQ ≥ dQ7/�1− 7�;
• action sets �Q· ;
• transition probabilities PQ· �·� ·�.

Let u∗Q and J
∗
Q denote an optimal policy and the optimal cost-to-go function for a problem

instance Q. We have the following upper bound on J ∗Q.

Lemma 4.1. For any 7 ∈ �0�1�, � ∈ �0�1�, 8 ∈ �0���, and Q ∈ ��7���8�, we have

1
dQ

d∑
i=1
xi ≤ J ∗Q�x�≤

1
dQ�1−��

d∑
i=1
xi+

�8

�1−��2 �

Proof. The first inequality follows from the fact that g�x� ≤ J ∗Q�x�. Recall that the
expected number of exogenous arrivals in any time step is less than or equal to 8dQ.
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Therefore, �PQu∗Q�
tg ≤ g+8t. It follows that

J ∗Q�x� =
�∑
t=0
�t��PQu∗Q

�tg��x�

≤
�∑
t=0
�t�g�x�+8t�= 1

dQ�1−��
dQ∑
i=1
xi+

�8

�1−��2 � �

4.2. The ALP and the RLP. We consider approximating J ∗Q via fitting a linear combi-
nation of basis functions �Qk �x�= xk� k= 1� � � � � dQ and �QdQ+1�x�= 1 using an ALP:

(15) maximize
∑
x∈S
cQ�x�

( dQ+1∑
k=1
rkxk+ rd+1

)

subject to
1
dQ

dQ∑
i=1
xi+�

∑
y∈�
PQa �x� y�

( dQ∑
k=1
rkyk+ rdQ+1

)

≥
dQ∑
k=1
rkxk+ rdQ+1� ∀x ∈�Q� a ∈�Qx �

where �Q = �0� � � � �BQ�dQ and the state-relevance weights are given by

cQ�x�=
7−

∑dQ
i=1 xi

∑
y∈�Q 7

−∑dQ
i=1 yi

�

The number of constraints imposed by the ALP (15) grows exponentially with the number
of queues dQ. For even a moderate number of queues (e.g., 10), the number of constraints
becomes unmanageable. Constraint sampling offers an approach to alleviating this computa-
tional burden. To formulate an RLP, given a problem instance Q, we must define a constraint
set �Q and a sampling distribution �Q. We begin by defining and studying a constraint set.
Let �Q to be the set of vectors r ∈�d+1 that satisfies the following linear constraints:

rdQ+1 ≤
8

�1−��2 3(16)

BQrk+ rdQ+1 ≤
BQ

�1−��dQ
+ 8

�1−��2 ∀k= 1� � � � � dQ3(17)

(
7

1− 7 − 7
BQ+1�BQ+ 1�
1− 7BQ+1

) dQ∑
k=1
rk+ rdQ+1 ≥ 0�(18)

Note that the resulting RLP is a linear program with m+ dQ + 2 constraints, where m is
the number of sampled ALP constraints.
A desirable quality of �Q is that it contains optimal solutions of the ALP (15), as asserted

by the following lemma.

Lemma 4.2. For each 7 ∈ �0�1�, � ∈ �0�1�, 8 ∈ �0���, and each Q ∈ ��7���8�, �Q
contains every optimal solution of the ALP (15).

Proof. Any feasible solution of the ALP is bounded above by J ∗Q; therefore by
Lemma 4.1, we have

(19) ��r̃Q��x�≤
1

dQ�1−��
dQ∑
i=1
xi+

�8

�1−��2
for all optimal solutions r̃Q and all x ∈�Q. By considering the case of x = 0, we see that
(19) implies (16). Further, by considering the case where xk = B and xi = 0 for all i �= k, we
see that (19) implies (17). Because one-stage costs g�x� are nonnegative, r = 0 is a feasible
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solution to the ALP. It follows that cTQ�
Qr̃Q ≥ 0. With our particular choice of cQ and �Q,

this implies (18). �

Another desirable quality of �Q is that it is uniformly bounded over ��7���8�.

Lemma 4.3. For each 7 ∈ �0�1�, � ∈ �0�1�, 8 ∈ �0���, there exists a scalar C7���8 such
that

sup
r∈�Q

�r�� ≤C7���8
for all Q ∈ ��7���8�.

Proof. Take an arbitrary r ∈�Q. Constraint (16) provides an upper bound on rd+1. We
now derive a lower bound on rdQ+1. For shorthand, let

$= cTQ�Q1 = 7

1− 7 − 7
BQ+1�BQ+ 1�
1− 7BQ+1 �

We then have

rd+1 ≥ −$
dQ∑
k=1
rk

≥ −$
dQ∑
k=1

(
− rdQ+1
BQ

+ 1
�1−��dQ

+ 8

BQ�1−��2
)

= $dQrdQ+1
BQ

− $

1−� − dQ$8

BQ�1−��2

≥ $dQrdQ+1
BQ

− $

1−� − 8

�1−��2 �

where the first inequality follows from (18), the second one follows from (17), and the final
inequality follows from the fact that BQ > 2dQ$. Gathering the terms involving rdQ+1, we
obtain

rd+1 ≥−$/�1−��+8/�1−��
2

1−$dQ/BQ
≥−2

(
$

1−� + 8

�1−��2
)
�

where the final inequality follows from the fact that BQ > 2dQ$.
We now derive upper and lower bounds on rk� k= 1� � � � � d. For the upper bounds, we

have

rk ≤
1

�1−��dQ
+ 8

BQ�1−��2
− rd+1
BQ

(20)

≤ 1
�1−��dQ

+ 8

BQ�1−��2
+ 27/�1− 7�
BQ�1−��

+ 8

B�1−��2

≤ 2
�1−��dQ

+ 28
BQ�1−��2

�

The first inequality follows from BQ ≥ 2$d and (17), and the second inequality follows
from (16). Finally, for the lower bounds, we have

rk ≥ −
dQ∑

k′=1� k′ �=k
rk′ −

rd+1
1−$dQ/BQ

≥ − 2
1−� − 28dQ

BQ�1−��2
− 28
�1−��2

≥ − 2
1−� − 8�1− 7�

7�1−��2 −
28

�1−��2 �
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where the first inequality follows from (18) and the second inequality follows from (16)
and (20). The result follows. �

We now turn to select and study our sampling distribution. We will use the distribution
�Q = �u∗Q�VQ , where

(21) VQ�x�=
1

dQ�1−��
dQ∑
i=1
xi+

28
�1−��2 �

The following lemma establishes that 0VQ < 1.

Lemma 4.4. For each 7 ∈ �0�1�, � ∈ �0�1�, 8 ∈ �0���, and each Q ∈ ��7���8�, we
have 0VQ < 1.

Proof. Recall that the expected number of exogenous arrivals in any time period is less
than or equal to 8dQ. We therefore have

��PQu∗Q
VQ��x� ≤ �

[
1

dQ�1−��
( d∑
i=1
xi+8dQ

)
+ 28
�1−��2

]

= � 1
dQ�1−��

dQ∑
i=1
xi+

��3−��
2

28
�1−��2

<
��3−��

2

(
1

dQ�1−��
dQ∑
i=1
xi+

28
�1−��2

)

= ��3−��
2

VQ�x��

where the strict inequality holds because �<��3−��/2 for all �< 1. Since ��3−��/2< 1
for all �< 1, the result follows. �

4.3. A bound on ). Our bound on sample complexity for the RLP, as given by
Equation (10), is affected by a parameter ). In our context of controlled queueing networks,
we have a parameter )Q for each problem instance Q ∈ ��7���8�:

)Q =
1+0VQ
2

-Tu∗Q
VQ

cTQJ
∗
Q

sup
r∈�Q

�J ∗Q−�Qr���1/VQ �

Building on ideas developed in the previous subsections, for Q ∈ ��7���8�, we can bound
)Q by a linear function of the number of queues.

Theorem 4.1. For each 7 ∈ �0�1�, � ∈ �0�1�, 8 ∈ �0���, there exists a scalar C7���8
such that )Q ≤C7���8dQ.
Proof. First, since 0VQ < 1, we have �1 + 0VQ�/2 < 1. Next, we bound the term

-Tu∗Q
VQ/c

T
QJ

∗
Q. We have

-Tu∗Q
VQ

cTQJ
∗
Q

= 1
cTQJ

∗
Q

�1−��cTQ�I −�PQu∗Q�−1
(

1
dQ�1−��

d∑
i=1
xi+

28
�1−��2

)

= 1+ 28
cTQJ

∗
Q�1−��

�

It then follows from Lemma 4.1 and the fact that 7 > 0 that -Tu∗QVQ/c
T
QJ

∗
Q is bounded above

and below by positive scalars that do not depend on the problem instance Q.
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We now turn attention to the term supr∈�Q �J ∗Q −�Qr���1/VQ . From Lemma 4.1 and the
definition of VQ (21), we have

(22) �J ∗Q���1/VQ ≤ 1�
We also have, from Lemma 4.3, that

���r̃��x�� ≤ �C7���8
( dQ∑
i=1
xi+ 1

)

for some �C7���8. Therefore,

��r̃���1/VQ ≤ �C7���8max
x∈�Q

∑dQ
i=1 xi+ 1

1/+�1−��dQ,
∑dQ
i=1 xi+ 28/�1−��2

≤ �C7���8
(
�1−��dQ+

�1−��2
28

)
�

The result then follows from the triangle inequality and the fact that dQ ≥ 1. �

Combining this theorem with the sample complexity bound of Theorem 3.1, we see that
for any Q ∈ ��7���8�, a number of samples

m=O
(
AQdQ

�1−���
(
dQ ln

AQdQ

�1−��� + ln
1
�

))
�

where AQ =maxx∈�Q ��Qx �, suffices to guarantee that
�J ∗Q−�Qr̂�1� cQ ≤ �J ∗Q−�Qr̃�1� cQ + ��J ∗Q�1� cQ

with probability 1− �. Hence, the number of samples grows at most quadratically in the
number of queues.

5. Dealing with large action spaces. Cost-to-go function approximation aims to allevi-
ate problems arising when one deals with large state spaces. Some applications also involve
large action spaces, with a possibly exponential number of available actions per state. Large
action spaces may impose additional difficulties to exact or approximate dynamic program-
ming algorithms; in the specific case of approximate linear programming, the number of
constraints involved in the reduced LP becomes intractable as the cardinality of the action
sets �x increases. In particular, our bound (10) on the number of sampled constraints grows
polynomially in A, the cardinality of the largest action set.
Complexity in the action space can be exchanged for complexity in the state space by

transforming each action under consideration into a sequence of actions taking values in
smaller sets (Bertsekas and Tsitsiklis 1996). For instance, if actions are described by a
collection of action variables, one could assign values to the action variables sequentially,
instead of simultaneously. More generally, given an alphabet with N symbols—assume for
simplicity the symbols are 0�1� � � � �N −1—and a finite set of actions �x of cardinality less
than or equal to A, actions in this set can be mapped to words of length of at most �logN A�.
Hence, we can change the decision on an action a ∈�x into a decision on a sequence â of
size �logN A�.
We define a new MDP as follows. It is not difficult to verify that it solves the same

problem as the original MDP.
• States x̄ are given by a tuple �x� â� i�, interpreted as follows: x ∈� represents the state

in the original MDP; â ∈ �0�1� � � � �N − 1��logN A� represents an encoding of an action in �x
being taken; i ∈ �1�2� � � � � �logN A�� represents which entry in vector â we will decide upon
next.
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• There are N actions associated with each state �x� â� i�, corresponding to setting âi to
0�1� � � �N − 1.
• Taking action “set âi to v” causes a deterministic transition from â to â+, where â+j = âj

for j �= i and x̂+i = v. The system transitions from state �x� â� i� to state �x� â+� i+ 1�, and no
cost is incurred if i < �logN A�. It transitions from state �x� â� �logN A�� to state �y� â+�1�
with probability Pa�x� y�, where a is the action in �x corresponding to the encoding â

+.
A cost ga�x� is incurred in this transition.
• The discount factor is given by �1/�logN A�.
The new MDP involves a higher-dimensional state space and smaller action spaces, and

is hopefully amenable to treatment by approximate dynamic programming methods. In par-
ticular, dealing with the new MDP instead of the original one affects the constraint sampling
complexity bounds provided for approximate linear programming. The following quantities
involved in the bound are affected.
• The number of actions per state.
In the new MDP, the number of actions per state is reduced from A to N . In principle,

N is arbitrary and can be made as low as two, but as we show next, it affects other factors
in constraint sampling complexity bound; hence, we have to keep these effects in mind for
a suitable choice.
• The term 1/�1−��.
In the new MDP, the discount factor is increased from � to �1/�logN A�. Note that

1−� = 1− ��1/�logN A���logN A�

= �1−�1/�logN A��
�logN A�−1∑

i=0
�i

≤ �1−�1/�logN A���logN A��

so that 1/�1−�1/�logN A��≤ �logN A�/�1−��.
• The number of basis functions K.
In the new MDP, we have a higher-dimensional state space; hence, we may need a larger

number of basis functions in order to achieve an acceptable approximation to the optimal
cost-to-go function. The actual increase on the number of basis functions will depend on
the structure of the problem at hand.
The bound on the number of constraints being sampled is polynomial in the three terms

above. Hence, implementation of the RLP for the modified version of an MDP will require
a number of constraints polynomial in N and in �logN A�, to be contrasted with the number
of constraints necessary for the original MDP, which is polynomial in A. However, the
original complexity of the action space is transformed into extra complexity in the state
space, which may incur extra difficulties in the selection and/or increase in the number of
basis functions. (Recall that the number of constraints is also polynomial in the number of
basis functions.) Nevertheless, there is a potential advantage of using the new MDP, as it
provides an opportunity for structures associated with the action space to be exploited in
the same way as structures associated with the state space are.

6. Closing remarks. In this paper, we have analyzed a constraint sampling algorithm
as an approximation method for dealing with the large number of constraints involved in the
ALP. We have shown how near-feasibility can be ensured by sampling a tractable number
of constraints. We have established a bound on the number of samples required, under
idealized conditions, to ensure small error in approximating the optimal solution of the
ALP. Through an example involving controlled queueing networks, we demonstrated that
this bound can scale gracefully with problem size.
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There are several important directions in which the present results should be extended:
(i) The sampling scheme we have studied is idealized in that it makes use of the sta-

tionary distribution of an optimal policy, which is generally unknown. We anticipate that
in specific contexts of practical relevance, it will be possible to derive similar sample
complexity bounds based on samples drawn from a known distribution. However, for the
moment this remains an open issue.
(ii) In §4, we offered an example of how the constraint set � might be chosen in a

specific context to guarantee a graceful sample complexity bound. This represents a start,
but further work is required to better understand how the constraints set should be chosen
in broader contexts.
(iii) The error bounds we have developed revolve around the norm �·�1� c. This is moti-

vated by ideas from our companion paper de Farias and Van Roy (2003), which argued that
minimization of this norm is aligned with minimization of average cost associated with a
greedy policy that is based on the resulting approximation. However, the analysis in that
paper required that the approximation is a lower bound to the optimal cost-to-go function.
This is guaranteed for solutions of the ALP but not the RLP. Further work is required to
understand the impact of this issue.
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