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Abstract: A parallel continuum manipulator (PCM) is a mechanism of closed-loop morphology
with flexible elements such that their deformation contributes to its mobility. Flexible hexapods
are six-degrees-of-freedom (DoF) fully parallel continuum mechanisms already presented in the
literature. Devices of reduced mobility, i.e., lower mobility than six DoF, have not been studied
so far. An essential characteristic of lower mobility mechanisms is that reduced mobility is due
to kinematic constraints generated by mechanical arrangements and passive joints. In rigid-link
parallel manipulators, those constraints are expressed as a set of equations relating to the parameters
representing the end effector’s pose. As a consequence, independent output pose variables are
controllable with the position equations, while dependent output variables undergo parasitic motions.
In this paper, the performance of a tripod-type parallel continuum manipulator, 3PFS, is compared
with the operation of its rigid counterpart 3PRS. We will show that in PCMs there are no such
geometric constraints expressible with algebraic equations, but it is difficult to perform some types
of motion in the end effector with the input torques. Another goal of this paper is to evaluate such
limitation of motion in a tripod-like PCM and compare it with the constraints of the rigid 3PRS.
Finally, the paper shows that there are strong similarities in the reduced mobility of both mechanisms.

Keywords: parallel continuum manipulators; reduced mobility; tripod; parasitic motions; kinematic
constraints

1. Introduction

Parallel kinematic mechanisms (PKMs) are closed-loop mechanisms with rigid links
and kinematic joints that connect an end effector to a fixed frame via several kinematic
chains with actuators distributed on them to achieve better stiffness and accuracy [1].
The hexapod is a typical mechanism of this type with full mobility (six DoFs). Lower
mobility PKMs are those that have less than six DoFs. Such mechanisms are subjected to
a set of permanent geometrical constraints that condition some output motions. In some
cases, those geometric constraints impose a certain constant value on several of the output
parameters, as in a Delta robot with translational three-DoF motion. In other cases, the
geometric constraints generate a set of equations that relate some output parameters to
others, as in tripod parallel kinematic machines of the type 3PRS chosen in this paper
to illustrate the subject, where two translational output coordinates and one orientation
angle are dependent on the other two orientation angles and the other one translational
coordinate. The type of motion resultant is a 2R1T mixed-freedom motion [2].

The constraint analysis is a key task of the kinematic analysis of a mechanism because it
determines the type of motion allowed at the end effector, and then, it shows the suitability
of the morphology chosen to accomplish the objective motions of the machine. However, it
is also fundamental in order to define the inverse kinematic (IK) position problem. This
is because we need to know which are the independent output pose variables to be used
to control the IK problem and which are the functions that generate the values of the
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dependent output variables. With that information, the output pose is completely defined
and the IK problem can be solved using the loop-closure equations of each limb. In the case
of the tripod chosen for this paper, 3PRS, these are two angles and one coordinate, while
the dependent output parameters acquire values along motions that are called parasitic
motions [3,4]. The permanent geometrical constraints imposed are due to passive kinematic
pairs and rigid links not controlled by the actuator system.

Compliant mechanisms are a group of mechanisms that acquire mobility thanks to the
relative flexibility of some of their parts [5–7]. A subset of them is the so-called continuum
mechanisms, these are slender systems with a flexible backbone actuated using parallel
assemblies of tendons. They are motivated by the problem of manipulation in confined,
hard-to-reach workspaces [8], and suitable for minimally invasive procedures due to their
dexterity and ease of miniaturization [9,10]. An evolution of the aforementioned systems
is parallel continuum mechanisms (PCMs). These are flexible mechanical devices with
a rigid end effector that is connected to a fixed frame using flexible slender links whose
nonlinear deformation is the cause of its mobility [11]. An appropriate model for the
nonlinear deformation of the rods used as elements is the Cosserat rod model [12,13]. This
model is used extensively, and it can be mathematically expressed in different ways, a
nonlinear system of differential equations (ODEs) being the most accurate one. The closed-
loop system of flexible rods and rigid elements generates a coupling of large deformation
modeling equations and force equilibrium ones to accommodate the deformation’s internal
forces and moments to the load. A sustained line of research on hexapod-like flexible
devices has been performed, solving a variety of problems such as real-time position
control and elastic analysis [14–19].

In the case of parallel continuum mechanisms, permanent constraints to reduce the
full mobility as in the above-mentioned tripod are not feasible because the flexible links
can deform under actuation and load reaching any configuration in the space. However,
some mechanical arrangements can introduce a much higher limitation of deformation in
some directions, producing a similar constraining effect. Nevertheless, the resultant type
of motion can no longer be obtained with an algebraic manipulation of some geometric
constraints, and the expected relationships between output parameters cannot be obtained
in closed form.

In this paper, we are aiming to show that PCMs of lower mobility exist, they have
strong similarities to their rigid-links counterparts, their basic kinematic principles apply
equally, and whether numerical procedures have to be devised to perform their kinematic
constraint analysis. In rigid lower-mobility parallel manipulators, the kinematic constraints
that reduce their mobility are defined by a set of equations. In the case of parallel continuum
mechanisms, these geometric constraints expressible with algebraic equations do not exist.
In this paper, we will try to propose an analytical expression that related the output
independent parameters to the parasitic motion. To better understand this and other aspects
of the kinematics of this type of mechanism, we propose the analysis of a flexible 3PFS
parallel continuum tripod model, and introduce some changes to the above-mentioned
flexible hexapod already studied in the literature. Then, a numerical analysis will be used
to solve the forward kinematics (FK) position problem following the procedure in [14] with
some modifications. By introducing any set of inputs in that FK problem, it is possible
to obtain the possible output motion, to compare it to the rigid-link tripod 3PRS, and to
deduce from those numerical results the type of motion and the parasitic motions.

2. Method

The goal of this research is to verify if tripod PCMs have a type of motion, constraint
equations, and parasitic motions that match the results in their rigid-links PKM counter-
parts, and if the constraint analysis on the latter applies to the former. In order to achieve
the goal of this research we will follow the following procedure.
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First, we choose a classical lower mobility PKM with mixed freedoms, the rigid-link
3PRS tripod (see Figure 1), as a way of example to demonstrate the relevance of the problem
of constraint analysis in closed-loop spatial mechanisms.

Figure 1. Rigid tripod: 3PRS parallel kinematics manipulator.

The family of tripod-like parallel mechanisms is a paradigmatic example because it
fulfills several conditions: it has a high number of constraints, the constraints are coupled
so that output motions are related between them, it has symmetry, it has many different
variants, and it has been extensively studied in the literature using many different kinematic
methods. This type of spatial mechanism has reduced mobility to 3 degrees of freedom,
involving three geometrical constraints; and very often the resultant type of motion on
the end effector is a 2R1T (2 rotational and 1 translational). This means that the constraint
equations impose a set of equations among the output parameters of the end effector
such that the other 2 translations and the 1 rotation parameters are dependent on the
independent ones, and hence, as motion is produced, we acquire values that are called
parasitic motions. For our purpose, we have chosen the symmetric geometric arrangement
shown in Figure 1. The three limbs are placed in vertical planes πi 120◦ apart. The linear
actuators are vertical and fixed to the base at points Ai. The end effector is an equilateral
triangle with barycenter at P and circumradius r and spherical joints at its vertices Bi join
with rigid links of length L attached to revolute pairs at Ci. These are oriented with vectors
ui normal to πi.

The constraint analysis of this PKM is done using Euler–Rodrigues parameters to
express the orientation of the end effector. This redundant parametrization is an alternative
to the use of any set of three angles (Euler angles for example). Redundant parametrizations
avoid the use of trigonometric functions in the analysis and generate polynomial equations
for easier analysis. By using the geometric conditions imposed by passive revolute joints
on the feasible output motion of the end effector, it is possible to get a closed-form solution
of the equations that relate output parameters between them. That result shows the type
of output motion of the mechanism, and the constrained motion of the dependent output
parameters, i.e., the parasitic motion. These results serve as reference comparisons for the
kinematic analysis of the corresponding flexible mechanism.
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Second, we devise a lower mobility PCM with 3 DoF looking for an analogy to the
rigid-link tripod. The 6-degrees-of-freedom flexible hexapod shown in Figure 2, where the
end effector is connected to 6 flexible rods whose length is controlled by actuators, has been
studied in [14]. There, the FK and IK problems are solved using the Cosserat rod model
for the nonlinear deformation of flexible rods, and the minimization of a set of geometric
and force equilibrium conditions. It requires a known home position configuration so that
contiguous configurations are solved with a boundary value problem upon slight changes
of either input or output variables.

Figure 2. Flexible hexapod: 6PFR.

The hexapod mechanism in Figure 2 can be modified to get the tripod-like PCM shown
in Figure 3. The end of the rods (2j− 1) and 2j (j = 1, 2, 3) are joined to the end effector at
coincident points B(2j−1) and B2j with a single spherical joint that introduces no restriction
of the rod’s self-rotation. The same rods (2j− 1) and 2j are connected to the base at fixed
points A(2j−1) and A(2j) distributed symmetrically at circumradius rA and with a fixed
vertical orientation, again with no restriction of intrinsic rotation so that torsion effects
on the rods are avoided. At the connection to the fixed base, rods are conducted through
said guiding holes Ai to the 3 linear actuators j below the base that control the length
of the rods (2j− 1) and 2j together (j = 1, 2, 3). Rods are free to undergo deformations
between the base and the end effector, being subjected only to bending, not torsion, shear,
or axial deformations. Due to the arrangements of the flexible rods, the bending of each
pair from A(2j−1) and A(2j) to B(2j−1) = B(2j) is easier about an horizontal axis of direction
A(2j−1)A(2j), being analogous morphology to the PRS kinematic chain used in the above-
mentioned tripod PKM. The resultant PCM is denoted 3PFS, where F indicates the bending
flexibility of the limb.
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Figure 3. Flexible tripod: 3PFS.

The following step is to solve the position problem, i.e., to evaluate the relationship
between the location of the end effector platform under some load and the effective length
Li of each pair of flexible rods. By effective length we mean the longitude of the rod that
can deform, i.e., the one between the attachments to fixed frame Ai and the join to end
effector at Bi. The location of the end effector platform is depicted through the combination
of the position vector of reference point P in the fixed frame, p, and the orientation of the
moving frame with respect to the fixed frame given by the rotation matrix REE. The FK
problem determines the pose of the end effector, i.e., the position vector p and the rotation
matrix REE when each rod i takes a certain value of its effective length Li and a given load
is imposed. Its solution is straightforward using the procedure in [14] because the tripod
PCM works, in this case, as a particular type of hexapod morphology actuated with 6 input
lengths that are equal two by two L(2j−1) = L(2j) (j = 1, 2, 3).

However, the IK problem cannot be solved straightforwardly because to start the
process we need to introduce a desired output pose of the end effector. For that, we need to
know which are the independent parameters that can be used and which is the constrained
value of the dependent ones. Again, as in classical PKMs we need to solve a constraint
analysis first. In this paper, we will check if the constraint analysis performed for the
rigid-link PKM is valid for the PCM, and if we can use the same independent output
variables and the same constraint equations.

For that purpose, the final step in this study is to introduce a variety of input values in
the FK solver of the tripod PCM, obtain the output pose parameters, and verify the degree
of accomplishment of the constraint equations obtained for the tripod PKM.

3. Results

In this section we will elaborate on the above-mentioned methodology: first, to deduce
the constraint equations applicable and the parasitic motions produced in the rigid-link
parallel mechanism 3PRS; second, to perform the kinematic analysis of the analogous
flexible parallel continuum mechanism; third, to compare and discuss the fulfillment of
3PRS constraint equations with the simulated output motions of the 3PFS.
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3.1. Constraint Analysis of a 3PRS Tripod using Euler–Rodrigues Parameters

The rigid-link parallel kinematic mechanism chosen for the discussion is a tripod-
like mechanism with the 3PRS morphology, as shown in Figure 1. The mechanism is
formed by a rigid end effector joined by spherical joints to rigid links of constant length
L, that are joined to vertical linear actuators through revolute joints of horizontal axes.
A moving frame is attached to the end effector at reference point P, whose position in a
fixed frame is p = [x, y, z]T . The orientation of the moving frame with respect to the fixed
frame, i.e., orientation of the end effector, is defined either using a rotation matrix REE or
Euler–Rodrigues parameters (a unit quaternion ẽ). The position vector of spherical joints’
attachment points Bi expressed in the end effector’s frame is ri. The position vector of the
actuators’ attachment point Ai expressed in the fixed frame attached to the base at origin O
is ai. Revolute joints at points Ci have horizontal axis ui.

Three loop-closure equations at Bi can be stated through the three limbs of the parallel
kinematic mechanism as:

p + REEri = ai + (ci − ai) + (bi − ci) i = 1...3 (1)

As the passive revolute joint of each limb constrains its corresponding point Bi to be
on a vertical plane πi perpendicular to ui through Ci, which also contains points O and
Ai, we get the set of three constraint equations by dot-multiplying Equation (1) by vectors
ui, namely:

(p + REEri) · ui = 0 i = 1...3 (2)

Using Euler–Rodrigues parameters (e0, e1, e2, e3) to express the rotation matrix allows
a polynomial representation of output orientation, namely:

REE =

e2
0 + e2

1 − e2
2 − e2

3 2(e1e2 − e0e3) 2(e1e3 + e0e2)
2(e1e2 + e0e3) e2

0 − e2
1 + e2

2 − e2
3 2(e2e3 − e0e1)

2(e1e3 − e0e2) 2(e2e3 + e0e1) e2
0 − e2

1 − e2
2 + e2

3

 (3)

subject to:

e2
0 + e2

1 + e2
2 + e2

3 = 1 (4)

where the Euler–Rodrigues parameters are related to the Euler pole a and the angle rotated
φ in the following way:

e0 = cos(φ/2) (5)
e1
e2
e3

 = sin(φ/2) · a (6)

If the symmetrical arrangement of the system shown in Figure 1 is considered, we
have an equilateral triangular end effector with a circumradius r so that in the moving
frame we get:

r1 =


0
r
0

 r2 =


−
√

3r/2
−r/2

0

 r3 =


√

3r/2
−r/2

0

 (7)

and revolute axes oriented in the fixed frame as:

u1 =


1
0
0

 u2 =


−1/2√

3/2
0

 u3 =


1/2√
3/2
0

 (8)



Machines 2023, 11, 71 7 of 23

Upon substitution of Equations (3), (7), and (8) into Equation (2), and considering
Equation (4), we get the following constraint equations:

e0e3 = 0

x + 2 · r · e1e2 = 0

y + r · (e2
1 − e2

2) = 0

e2
0 + e2

1 + e2
2 + e2

3 = 1 (9)

As a consequence, for the kinematic analysis of this tripod mechanism we can choose
z, e1, e2 as the three independent output pose parameters, with dependent parameters
x, y, e0, e3 determined from the constraint equations Equation (9). Moreover, as e0 = cos(φ/2)
is only null when there is no output rotation the constraint equations can be expressed as:

e3 = 0

x + 2 · r · e1e2 = 0

y + r · (e2
1 − e2

2) = 0

e2
0 + e2

1 + e2
2 = 1 (10)

Dependent parameters x, y, e0 acquire non-null values as the end effector moves; these
are called parasitic motions. We can plot the workspace of the mechanism in the space z, e1, e2.
Moreover, as dependent parameters are expressed solely in terms of e1, e2 in constraint
equations Equation (10), parasitic motions for any possible motion of the mechanism can
be plotted in the space [e1, e2] where e2

1 + e2
2 ≤ 1 as shown in Figure 4 for r = 1. This

result of the constraint analysis is proof of its reduced mobility of three degrees of freedom.
Moreover, the analysis of the effect of the three geometrical constraints justifies that the
type of motion on the end effector is a 2R1T (two rotational and one translational).

The kinematic analysis of the relationship between the actuators’ input lengths ρi and
the independent output parameters z, e1, e2, using the loop-closure equations (Equation (1)),
provides the solution to either the forward (FK) or the inverse (IK) position problem. First, we
get rid of passive variables by finding the Euclidean norm of (bi − ci) in Equation (1), namely:

(bi − ci) = p + REEri − ai − (ci − ai) i = 1...3

L = ‖p + REEri − ai − (ci − ai)‖ i = 1...3 (11)

where a symmetrical arrangement of actuators with Ai points at a circumradius rA defines:

a1 =


0

rA
0

 a2 =


−
√

3rA/2
−rA/2

0

 a3 =


√

3rA/2
−rA/2

0

 (12)

and actuators’ inputs are given by:

c1 − a1 =


0
0
ρ1

 c2 − a2 =


0
0
ρ2

 c3 − a3 =


0
0
ρ3

 (13)

Finally, we introduce constraint equations from Equation (10) into Equation (11).
The resultant system has three equations in three unknowns: z, e1, e2 for the FK and ρ1, ρ2, ρ3
for the IK.

Velocity analysis is performed on the derivative of the loop-closure equations
Equation (1), namely

ṗ + ω× ri = ρ̇ik + ωi × (bi − ci) i = 1 . . . 3 (14)
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where ω is the angular velocity of the end effector, and ωi is the angular velocity of the
rigid connecting link (CiBi).

(a) (b)

(c)

Figure 4. 3PRS parasitic motions: (a) xP, (b) yP, (c) e0.

Dot-multiplying Equation (14) by (bi − ci), we get rid of ωi, obtaining a relationship
between velocity inputs and velocity outputs:

(bi − ci) · ṗ + (ri × (bi − ci)) ·ω = ρ̇i[(bi − ci) · k] i = 1 . . . 3 (15)

and dot-multiplying Equation (14) by ui, we get the relationship between derivatives of
output independent and dependent variables, i.e., the derivative of the constraint equations:

ui · ṗ + (ri × ui) ·ω = 0 i = 1 . . . 3 (16)

Upon assembly of Equations (15) and (16), we get the Jacobian equation:

[
(bi − ci) ri × (bi − ci)

ui ri × ui

]{
ṗ
ω

}
=



(b1 − c1) · k 0 0
0 (b2 − c2) · k 0
0 0 (b3 − c3) · k
0 0 0
0 0 0
0 0 0




ρ̇1
ρ̇2
ρ̇3

 (17)



Machines 2023, 11, 71 9 of 23

With those Jacobians, we can perform the singularity analysis to determine the limits of
the position analysis. IK singularity is determined by the conditions for rank deficiency in:

JIK =

(b1 − c1) · k 0 0
0 (b2 − c2) · k 0
0 0 (b3 − c3) · k

 (18)

which developed in terms of output variables result:

1− 3e2
1 + e2

2 =
rA ± L

r

1 + 2
√

3e1e2 − 2e2
2 =

rA ± L
r

1− 2
√

3e1e2 − 2e2
2 =

rA ± L
r

(19)

As a result, the space of parasitic motions shown in Figure 4 will be limited by IK
singularity loci (see Figure 5 with rA = 0.25, L = 0.35, and r = 0.125).

Figure 5. IK singularity locus for 3PRS.

The aforementioned Jacobians can be analyzed on this workspace to obtain dexterity
indices, as shown in Figures 6 and 7.
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Figure 6. IK Jacobians’ norm.

Figure 7. FK Jacobians’ norm.

Nevertheless, the parasitic motion functions do not change, and the mobility analysis
can be fully defined with the constraint equation (Equation (10)) and the plots in Figure 4.
These will be used in the comparison with the motion of the flexible tripod mechanism.
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3.2. Forward Kinematic Analysis of a 3PFS Parallel Continuum Tripod

The second step in the method is to analyze the flexible 3PFS parallel continuum tripod
shown in Figure 3 and to check the type of motion performed as inputs are introduced.
As before, a moving frame is attached to the end effector at reference point P, whose
position in a fixed frame is p. The orientation of the moving frame with respect to the fixed
frame, i.e., the orientation of the end effector, is defined using a rotation matrix REE in
terms of Euler–Rodrigues parameters (i.e., a unit quaternion ẽ). The position vector of rod
attachment point Bi expressed in the end effector frame is ri. The position vector of rod
attachment point Ai expressed in the fixed frame attached to the base at origin O is ai.

The forward kinematics problem consists of determining the pose of the end effector,
i.e., the position vector of reference point P, p, and the orientation given by the rotation
matrix REE, when each rod i takes a certain value of its effective length Li and a given load
Fext; Mext is imposed.

The nonlinear large deformation of the flexible rods is analyzed with the Kirchhoff
model [12]. Each cross-section of the rod i along the arc length s is located with a vector
pointing its centroid pi(s) and a local frame oriented with a unit quaternion q̃i(s) (see
Figure 8). The rods’ internal moments m(s) are related to the rods’ curvature u(s) along
length s, or vice-versa, with the material constitutive law given by u = K−1

BTRTm, where
KBT is a stiffness matrix for bending and torsion; no extension–compression or shear effects
are considered in this model to affect internal forces n(s).

Figure 8. Flexible rod deformed in space.

The change of shape of the flexible rod and the equilibrium of internal forces and
moments with the load along s are related through a system of differential equations dy

ds = f
that can be stated with the vector y of variables

y =


p
q̃
n
u

 (20)
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and the vector of functions f:

f =


Re3
1
2 q̃ũ

0
−K−1

BT
(
(ûKBT)u + ê3RTn

)
 (21)

Considering the expression of the rotation matrix that defines the orientation of each
cross section along the arc length s in terms of a unit quaternion:

R(s) =

q2
0 + q2

1 − q2
2 − q2

3 2(q1q2 − q0q3) 2(q1q3 + q0q2)
2(q1q2 + q0q3) q2

0 − q2
1 + q2

2 − q2
3 2(q2q3 − q0q1)

2(q1q3 − q0q2) 2(q2q3 + q0q1) q2
0 − q2

1 − q2
2 + q2

3

 (22)

and the change of the quaternion along s with u

dq̃
ds

=
1
2

q̃ũ =
1
2


0 −ux −uy −uz

ux 0 uz −uy
uy −uz 0 ux
uz uy −ux 0




q0
q1
q2
q3

 (23)

where uz = 0 everywhere because the flexible rods used in the mechanism are free of
torsional effects.

We get the following system of differential equations:

d
ds



x
y
z
q0
q1
q2
q3
nx
ny
nz
ux
uy



=



2(q1q3 + q0q2)
2(q2q3 − q0q1)

q2
0 − q2

1 − q2
2 + q2

3
1
2 (−uxq1 − uyq2)

1
2 (uxq0 − uyq3)
1
2 (uyq0 + uxq3)
1
2 (uyq1 − uxq2)

0
0
0

1
EI (2nx(q1q2 − q0q3) + ny(q2

0 − q2
1 + q2

2 − q2
3) + 2nz(q2q3 + q0q1))

1
EI (−nx(q2

0 + q2
1 − q2

2 − q2
3)− 2ny(q1q2 + q0q3)− 2nz(q1q3 − q0q2))



(24)

As it can be observed, with no load applied along the arc length of the rod, the internal
force n is constant along the rod, while the evolution of pi(s), q̃i(s), and uxi(s), uyi(s) can be
obtained upon integration of the system of equations using, for example, the Runge–Kutta
method, from s = 0 to s = Li.

Hence, solving the position problem of the mechanism is started with the integration
of each rod numerically by Runge–Kutta from known data values at s = 0 (the position of
the base tip of the rod pi(s = 0) and orientation of the base tip q̃i(s = 0), and given inputs
Li), and guess values of uxi(s = 0), uyi(s = 0), ni(0). To reach convergence with certain
security, starting from a known home pose helps to initialize the solving of the problem
because those values serve as guess values to find the next solution with the new input
values of actuators chosen close enough to secure convergence. The step-by-step solution
will lead from that home pose to the required one.

As a result of this iteration, we get for each rod its end tip location pi(s = Li) and
curvature components uxi(s = Li), uyi(s = Li), to verify the conditions imposed by the
mechanism assembly and load. This is done by expressing those conditions in terms of
residuals that have to be minimized following an iterative procedure ruled by a New-
ton scheme.
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There are two main conditions that must be satisfied so that a pose of the flexible mech-
anism is achieved with the data introduced: first, that it can be assembled geometrically;
and second, that the configuration is in static equilibrium.

Regarding the first condition, we have the coordinates of the distal end Bi as a function
of the output pose of the end effector, namely

bi = p + REEri (25)

to be related to the coordinates of the end tip of the flexible rod pi(s = Li) obtained from
the deformation model (as explained before) and the known and fixed position ai of the
proximal end Ai of each rod:

bi = ai + pi(s = Li) (26)

so the following set of conditions (i = 1 . . . 6) must be fulfilled:

0 = ai + pi(s = Li)− p− REEri (27)

Additionally, as distal ends are joined to the end effector through spherical joints, no
moment must appear there. Moreover, no torsional effects are present anywhere on the
rods due to the type of joint to the base. Bearing in mind that we can easily change from the
rods’ internal moments m to the rods’ curvature u along length s, or vice-versa, with the
material constitutive law given by u = K−1

BTRTm, the null moment conditions at distal ends
(i = 1...6) to be verified are simply expressed in terms of the components of curvature in
the cross-section of the distal ends as:{

uxi(s = Li)
uyi(s = Li)

}
=

{
0
0

}
(28)

Static equilibrium conditions, unlike geometric ones, are stated for the whole device at
the same time. This means that the end effector and all rods’ values are highly coupled in
the set of equations. The end effector may be subjected to external load Fext at P and Mext,
and to reaction forces and moments at the attachment to rods due to their deformation,
namely internal forces ni and moments mi at (s = Li). So, the following static equilibrium
can be stated, taking moments about O:

6

∑
i=1

[ni(Li)]− Fext = 0

6

∑
i=1

[(ai + pi(Li))× ni(Li) + mi(Li)]− p× Fext −Mext = 0

(29)

The problem to be solved is made up of the geometric conditions on the position
of distal ends (Equation (27)), i.e., 3 scalar equations at each rod for a total of 18; the
geometric conditions on the attachment of distal ends to end effector (Equation (28)),
i.e., 2 equations for each rod, 12 in total; and the static equilibrium conditions on the end
effector (Equation (29)), i.e., 6 more, to make a total of 36 conditions.

The unknowns are due to the state variables of each rod necessary to integrate the
six subsystems of differential equations for each rod, i.e., the unknowns in n and m
(alternatively u) being five because there is no torsion; plus the six unknowns that define
the end effector pose p and REE, a total of thirty-six unknowns.

As the orientation of the end effector with respect to the fixed frame is more effectively
expressed with a unit quaternion ẽ = [e0 e1 e2 e3], the corresponding rotation matrix REE
has four components to be used as unknowns instead of three, making a total of thirty-
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seven unknowns and another condition has to be added, namely the unity condition of
the quaternion:

e2
0 + e2

1 + e2
2 + e2

3 = 1 (30)

Hence resulting in a problem of 37 unknowns in 37 conditions.
Due to the integration involved in each rod, the solution must be approached as a

boundary value problem: guess values of unknowns at the lower end s = 0 for each rod
(namely ui|xy(0), ni(0)) and the output pose (p and ẽ) are introduced, and a shooting
method iterates until residuals of the boundary conditions are below a tolerance.

The chosen order of those residuals will provide an adequate distribution of terms
to lower the computational cost. First, the geometric constraints for the rod i = 1, i.e.,
Equations (27) and (28), then the same geometric constraints but for the rod i = 2, and so
on until i = 6. The last elements of the residue vector are formed by the equations of
equilibrium (Equation (29)), and the normalization condition of the end effector quaternion
(Equation (30)), namely

gres =



p1(L1)− p− REEr1 + a1
ux1(L1)
uy1(L1)

ine
...

inep6(L6)− p− REEr6 + a6
ux6(L6)
uy6(L6)

ine ∑6
i=1[ni(Li)]− Fext

∑6
i=1[(ai + pi(Li))× ni(Li) + mi(Li)]− p× Fext −Mext

inee2
0 + e2

1 + e2
2 + e2

3 − 1



(31)

The Newton method used in the shooting method requires the evaluation of a Jacobian
of the residue vector function with respect to the variables of the problem, i.e., the guess
values ui|xy(0), ni(0) and output pose p and ẽ = [e0 e1 e2 e3], in order to update the guess
values accordingly. A special order for the guess values is also considered to generate a
Jacobian sparse matrix. They are grouped so that the guess values associated with a rod
are together:

vguess =



uguess
x1

uguess
y1

nguess
1

ine
...

ineuguess
x6

uguess
y6

nguess
6

inepguess

ẽguess



(32)

The Jacobian is then obtained as:

J(vguess) =
∂gres(vguess)

∂vguess
(33)
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The Jacobian related to the forward kinematic problem is a sparse matrix J ∈ R37x37 of
the form

J =



A1 0 0 0 0 0 C1 D1
0 A2 0 0 0 0 C2 D2
0 0 A3 0 0 0 C3 D3
0 0 0 A4 0 0 C4 D4
0 0 0 0 A5 0 C5 D5
0 0 0 0 0 A6 C6 D6

B1 B2 B3 B4 B5 B6 C7 0
0 0 0 0 0 0 0 D7


(34)

Each sub-matrix Ai ∈ R5x5 is calculated considering the residue associated with the
geometric conditions for the rod i and the kinematic variables used as guess values for the
rod i. Similarly, matrix Bi ∈ R6x5 is defined considering the residue associated with the
static conditions that affect the whole mechanism and the kinematic variables used as guess
values for rod i. Matrix Ci ∈ R5x3 is calculated considering the residue associated with the
geometric conditions for the rod i and the coordinates of P are used as guess values. Matrix
Di ∈ R5x4 is calculated considering the residue associated with the geometric conditions
for the rod i and the kinematic variables used as guess values for the orientation of the end
effector. Finally, matrix C7 ∈ R6x3 is defined considering the residue associated with the
static conditions and the output position of P of the end effector; while matrix D7 ∈ R1x4 is
defined considering the residue associated to the quaternion normalization condition and
the orientation of the end effector.

After each iteration j, guess values are updated with:

vj+1
guess = vj

guess − J−1gj
res (35)

and the process starts again until gres is below a given tolerance.
Starting from a home pose where the end effector is placed horizontally at a certain

height, introducing a variation in inputs following the distribution on the jointspace, as
shown in Figure 9, and solving the FK position problem using the procedure above, we get
the set of output poses represented in the workspace e1, e2, zP.

As the geometrical arrangement of flexible rods and actuators produces a workspace
that is independent of zP as in the 3PRS, it is convenient to get the jointspace subset that
produces the output poses on a horizontal plane, as shown in Figure 10.

From the solutions found in the above-mentioned analysis, it is possible to do a
comparison with those obtained for the rigid link parallel mechanism analyzed in the first
part of this work. In the next section some of these preliminary results will be discussed.
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Figure 9. 3PFS Jointspace transformation to workspace.

Figure 10. 3PFS Jointspace transformation to workspace for a constant zP plane.

4. Discussion

In order to compare the motion capabilities of the flexible tripod 3PFS with the rigid
link counterpart 3PRS, we have chosen to plot together the results of parasitic motions
of the dependent output variables e3, xP, yP against the independent output parameters
e1, e2, for different zP = h values of the end effector’s initial position. The same jointspace
represented in Figure 10a has been explored in this analysis. For the study presented in
this section, the data of the flexible rods used in the 3PFS manipulator are rod material,
Nitinol; Young modulus, 83 GPa; rod diameter, 3 mm.

The output-dependent parameter e3 is the one better defining the type of motion of
the tripod. Its null value in the rigid-link mechanism implies that only rotations about
horizontal axes are possible. The comparison plot corresponding to it is shown in Figure 11.
The e3 parameter in the flexible mechanisms has small changes from the null value, so the
motion is fairly similar to the rigid tripod. To quantitatively compare the result obtained
for the 3PFS with the 3PRS rigid counterpart, the root mean square error (RMSE) between
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the two datasets has been computed for each value h. The results corresponding to the
initial heights h = 0.2 m, h = 0.4 m and h = 0.6 m are respectively RMSEe3 = 0.0132,
RMSEe3 = 0.0095, and RMSEe3 = 0.0065. Therefore, due to the low value of the error, the
motion of the 3PFS is similar to the rigid tripod. Moreover, for the flexible mechanism
there seems to be some dependence of results with h contrary to the rigid case. As expected,
the magnitude of the parasitic motions increases as the length of the rods decreases because
of the increase in stiffness.

Figure 11. Parasitic motion e3 comparison.

Output dependent parameters xPandyP acquire non-null values for the rigid and
flexible tripods with some slight differences, as shown in Figures 12 and 13. Such difference
is due to the fact that the mechanical arrangement of flexible rods does not constrain rigidly
the spherical joints on the corresponding vertical planes πi. However, these differences do
not compromise the type of motion of the mechanism.

Figure 12. Parasitic motion xP comparison.
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Figure 13. Parasitic motion yP comparison.

To obtain an analytical expression that relates the output independent parameters
e1 and e2 with the parasitic motions e3, xp, and yp, a fitting method based on polynomial
approximation has been used. The resulting Equation (36) fits with low error to the blue
plots of Figures 11–13.

e3 = −3c0e2
1e2 + c0e3

2

xp = c3e4
1e2 + 2c2e3

1e2 − 4c4e2
1e3

2 + c3e2
1e2 + 2c2e1e2 − c4e1e3

2 + c1e2 + c3e3
2 − c5e5

2

yp = 2c2e5
1 +

c6

5
e4

1 − 2c4e3
1e2

2 + c3e3
1 + c6e2

1e2
2 + c2e2

1 + 2c4e1e4
2 + c3e1e2

2 − c1e1 − c5e4
2 − c2e2

2

e2
0 + e2

1 + e2
2 + e2

3 = 0 (36)

where c0 = 1.6; c1 = 0.077 m; c2 = 0.24 m; c3 = 0.64 m; c4 = 0.60 m; c5 = 0.11 m; c6 = 0.80 m
The expression (36) represents for the 3PFS what Equation (10) does for the 3PRS.

These relations will be fundamental to evaluating feasible poses of the end effector to be
used as inputs of the inverse kinematic problem that will be investigated in future works.

This study has been done for a null applied load. Figures 14–16 show the simulation
results in terms of output parameters e1, e2, and zp, and parasitic motions e3, xp, and yp
under three different load configurations, respectively. Figure 14 is related to a constant
centred vertical load Fext = [0 0 Fext,z]T , Figure 15 to a constant torque around the x axis of
the fixed frame Mext = [Mext,x 0 0]T , and Figure 16 to a constant torque around the y axis of
the fixed frame Mext = [0 Mext,y 0]T .

In the case of a vertical load, a little contraction of the output parameters is shown.
Higher differences from the null load results are observed as the end effector rotates. This
behavior indicates higher stiffness of the robot when its orientation is parallel to the home
configuration. The parasitic motions under vertical loads are characterized by a scaling
effect while their shapes over the e1 and e2 workspace remain the same.

Similar considerations can be made in the cases of non-null external torques applied
to the end effector. Moreover, in these cases an additional shifting effect is observed. Due
to the nonsymmetric arrangement of the robot over the x and y axes of the fixed frame,
the effects of torques around these two axes are not equal, as expected.
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Figure 14. Influence of vertical centred loads on the 3PFS output parameters e1, e2, and zp (a),
and parasitic motions e3 (b), xp (c), and yp (d).

To quantitatively describe the influence of external load on the end effector’s position,
the root mean square error (RMSE) between each load configuration and the unloaded one
has been computed. To make it easier to read, the RMSE has been normalized over the size
of the range of each variable; therefore, the results presented in Table 1 are relative errors
between the loaded and unloaded case.

The same analysis has been performed again with a rod diameter of 4 mm to study
the effect of the stiffness on the 3PFS response to external loads. The results are presented
in Table 2. As expected, an increase of stiffness in the system results in lower differences
between loaded and unloaded configuration.
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Figure 15. Influence of constant torque around the x axis of the fixed frame on the 3PFS output
parameters e1, e2, and zp (a), and parasitic motions e3 (b), xp (c), and yp (d).

Table 1. Relative RMS error of variables zp, e3, xp, and yp between loaded and unloaded case under
three loading configurations: Fext = [0 0 Fext,z]

T , Mext = [Mext,x 0 0]T , and Mext = [0 Mext,y 0]T . Rod
diameter 3 mm.

Fext,z, (N) RMSzp , (%) RMSe3 , (%) RMSxp , (%) RMSyp , (%)

−2.50 0.2994 0.3316 0.0587 0.1847
−5.00 0.6567 0.7274 0.1250 0.3962
−7.50 1.0903 1.2076 0.2019 0.6465
−10.00 1.6276 1.8027 0.2950 0.9569

Mext,x, (Nm) RMSzp , (%) RMSe3 , (%) RMSxp , (%) RMSyp , (%)

0.25 1.0801 2.9173 0.0884 2.1147
0.50 2.1333 6.0013 0.1852 4.2585
0.75 3.1661 9.2941 0.3330 6.5019
1.00 4.1868 12.8431 0.5599 8.9256

Mext,y, (Nm) RMSzp , (%) RMSe3 , (%) RMSxp , (%) RMSyp , (%)

0.25 2.5773 1.2163 0.1080 2.1356
0.50 5.1938 2.4509 0.2622 4.3486
0.75 7.8955 3.7245 0.5055 6.7339
1.00 10.7512 5.0638 0.9096 9.4405
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Figure 16. Influence of constant torques around the y axis of the fixed frame on the 3PFS output
parameters e1, e2, and zp (a), and parasitic motions e3 (b), xp (c), and yp (d).

Table 2. Relative RMS error of variables zp, e3, xp, and yp between loaded and unloaded case under
three loading configurations: Fext = [0 0 Fext,z]

T , Mext = [Mext,x 0 0]T , and Mext = [0 Mext,y 0]T . Rod
diameter 4 mm.

Fext,z, (N) RMSzp , (%) RMSe3 , (%) RMSxp , (%) RMSyp , (%)

−2.50 0.0348 0.0385 0.0070 0.0219
−5.00 0.0702 0.0778 0.0141 0.0441
−7.50 0.1065 0.1179 0.0213 0.0667
−10.00 0.1434 0.1589 0.0286 0.0896

Mext,x, (Nm) RMSzp , (%) RMSe3 , (%) RMSxp , (%) RMSyp , (%)

0.25 0.1367 0.3571 0.0122 0.2652
0.50 0.2730 0.7162 0.0239 0.5300
0.75 0.4087 1.0775 0.0352 0.7943
1.00 0.5440 1.4410 0.0461 1.0585

Mext,y, (Nm) RMSzp , (%) RMSe3 , (%) RMSxp , (%) RMSyp , (%)

0.25 0.3215 0.1517 0.0125 0.2655
0.50 0.6431 0.3035 0.0251 0.5312
0.75 0.9649 0.4554 0.0379 0.7972
1.00 1.2868 0.6073 0.0510 1.0636



Machines 2023, 11, 71 22 of 23

5. Conclusions

In this paper, the performance of a tripod-type parallel continuum manipulator, 3PFS,
is compared with the operation of its rigid counterpart 3PRS. On the one hand, in rigid
lower mobility parallel manipulators their reduced mobility is expressed as a set of equa-
tions relating the parameters representing the pose of the end effector. On the other hand,
in continuum architectures, such geometric constraints expressible with algebraic equations
are not feasible because flexible links can deform under actuation and load reaching any
configuration in space. However, some mechanical arrangements can introduce a much
greater limitation of deformation in some directions, producing a similar constraint effect.

The flexible 3PFS parallel continuum tripod is modeled by introducing some changes
to the flexible hexapod already studied in the literature and the forward kinematics position
problem is solved numerically. Introducing a variety of input values in the FK solver of the
tripod PCM, we verify the degree of accomplishment of the constraint equations obtained
for the tripod PKM. Thus, for the flexible mechanism there seems to be some dependence
of the output-dependent parameters on the end effector, contrary to the rigid case. This
difference is due to the fact that the mechanical arrangement of the flexible rods does not
rigidly constrain the spherical joints in the corresponding vertical planes. However, these
differences do not compromise the type of motion of the mechanism. From this analysis, an
analytical expression relating the output independent parameters to the parasitic motions
is obtained by means of a fitting method. This expression represents for the 3PFS what the
constraint equations do for the 3PRS.

In conclusion, in this paper we show that PCMs of lower mobility exist and that they
have strong similarities with their rigid-link counterparts and that their basic kinematic
principles are applicable. The obtained analytical expression referred to above will be
fundamental to evaluate the feasible end effector poses to be used as inputs for the inverse
kinematic problem to be investigated in future work.
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PCM Parallel Continuum Mechanism
DoF Degree of Freedom
PKM Parallel Kinematic Mechanism
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FK Forward Kinematics position problem
3PRS Three limbed mechanism with chain Prismatic + Rotational + Spherical
ODE Ordinary Differential Equation
3PFS Three limbed flexible mechanism with chain Prismatic + Flexible rod + Spherical
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