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Given two sequences of real numbers, {an}o and {bn}f, where the bn's are all
positive, then by a result of Favard [12], there exists a bounded increasing function
</i(x) defined on (—00, +00) and having the following property:

f + °° Mx)<pm(x) d>P(x) = 8n¡m-kn,       kn # 0, n = 0, 1, 2,...
J — 00

where the polynomials <f>n(x) are recursively defined by: <j>-x(x) = 0, <}>0(x)=l, and

(I-A) <f>n + i(x) = (x-an)<pn(x)-bn<pn-x(x)       (n > 0).

This study begins by showing how to obtain such a function i/>(x) for certain classes
of sequences {an}o and {bn}x. Then we apply our results to obtain a distribution
function for the modified Lommel polynomials (thus answering a question of
Dickinson, [10, p. 121]) and to obtain some information about Bessel functions as
a function of their order.

2. Notation, preliminaries, and summary. The following notational conventions
will be maintained throughout this paper :

(1) {an}o is a sequence of real numbers.
(2) {bn}f is a sequence of positive real numbers.

For each nonnegative integer s,
(3) {c(ns)}o is the sequence {cn + s}™=0.
(4) {i>n\x)}-x is the sequence of monic polynomials defined recursively by

4><l\(x) = 0, #•>(*) = 1, and 4ÜIx(x) = (x-a<f>)^s)(x)-¿«>#« x(x) (« £ 0).
(5) 0(s)(x) is a bounded increasing function defined on (-00, +00) and having

the property that

f+" WXxWXx) WXx) = 8n<m-kn       (*. # 0, » .- 0,1, 2,...).

(i/i(s)(x) is known to exist, by the above-mentioned theorem of Favard.)
(6) F(s)(x) is the continued fraction given by

K^(x) = ,—?—I - ,    bl+s    I - ,    b2+s    I-.
I x-as        I x-a1+s        I x-a2+s
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(7) Sr°(tp(s\x)) is the spectrum of the distribution function >/j(s)(x), i.e., ^(i//(s>(x))
={x:-co<x<4-co and i//s)(x+e)-i/i' s)(x - e) > 0 for all e > 0}. In terms of measures,
¿r"(>jj{s)(x)) is the support of the positive real measure induced by i//(s)(x).

(8) We shall say that the polynomials $,s)(x), the bounded increasing function
<A(s)(x), and the continued fraction K's)(x) are associated with the sequences {an}o
and {bn}x if they are related to these sequences by (4), (5), and (6) above.

(9) C will represent the field of complex numbers.
In terms of the techniques which are used, this study is a continuation of the work

of Dickinson, Pollak and Wannier [11], and that of Goldberg [14]. It differs
from these papers in considering unbounded sequences and hence requires some
additional tools. Chihara has also considered this problem and by using the theory
of chain sequences has obtained a number of theorems dealing with properties of
¿fWXx)). We will use one particular result of his and quote it now for reference.

Theorem 2.1 (Chihara [6, p. 4]). A necessary and sufficient condition for the
polynomials <pnXx) to be orthogonal over an interval which is a subset of [0, oo) is that
an > Ofor each n and {bj(an ■ an _ i)} be a chain sequence.

We will also need some well-known results from the general theory of orthogonal
polynomials. These can all be found in Szegö's book [17]. We collect them into
the following lemma.

Lemma 2.2. The convergents of the continued fraction K(s\x) are the rational
functions ^<ns*11)(x)/<^if)(x), and the zeros of the monk polynomials <pnKx) are real,
simple, and interlaced with the zeros of^ilx\x).

We now enumerate those conditions which we will impose upon the sequences
{an}o and {bn}x. These are as follows:

(1) a¡->ooasíH- oo.
(2) limsupn_œ èi/(ai-ai_i)=L<l/4.
Under these conditions we shall show that K(s)(x) is meromorphic and </i(5>(x)

can always be chosen to be a jump function with jumps at the poles of K(s)(x).

3. K(s)(x) is meromorphic. In this section we show that K{s)(x) is a meromorphic
function, and we give a Mittag-Leffler expansion for it. To do this we use the fol-
lowing continued fraction theorem :

Theorem 3.1 (Worpitsky [19, p. 42]). Let a2, a3,... be complex functions of any
variables over a domain D in which |ap + 1|^l/4, p=l,2,.... Then the following
statements hold:

(i) The continued fraction

converges uniformly over D.
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(ii) The values of the continued fraction and of its approximates are in the circular
domain

| w - 4/31 ̂  2/3.
Using this we now prove our first result.

Theorem 3.2. Let the sequences {an}ô and {bn}x satisfy the conditions:
(1) an -> oo as n —> oo.
(2) limsupn-,,,, bj(an-an.X)=L< 1/4.

Then the continued fraction K(s)(x) defined by (6) of §2 is a meromorphic function.

Proof. By definition
F<s»(x) = r-i—1 - .    bl+s    ! - |    ¿2+s    ' - ■ • • ;

\ x—as        \ x—ax+s        \ x   a2+s

so by an equivalence transformation of this continued fraction we have

l/(x-as) |        bx+J(x-ax+s)(x-as) \F<s)(x)
1 1

b2+sl(x-ax + s)(x-a2+s)
1

Now let D he any bounded domain. Then, since a(^-oo and F<l/4, we know
there exists an integer N, which depends on D, such that for n > N and x e D we
have

1
(x-an)(x-an-x) (l-x/an)(l-x¡an.x)\an-an-x

á 1/4.
Thus by Worpitsky's theorem the continued fraction

1 |        bN/(x-aN)(x-aN-x) \        bN + xj(x-aN+x)(x-aN)KN(x) = 1. 1 I 1 I
converges uniformly in the domain D. Also, by (ii) of Worpitsky's theorem, the
convergents of KN(x), which are rational functions, do not have any poles in D
and hence are actually analytic in D. Thus because of the uniform convergence
KN(x) is also analytic in D. But Fw(x) is just the tail end of F<s)(x) and thus F(s)(x)
must be meromorphic in D with uniform convergence on compact sets which
exclude poles. Moreover D was any bounded domain, so F<s)(x) is meromorphic
in C.    Q.E.D.

We next give a Mittag-Leffler expansion for F(s)(x). For this we need a theorem
of Montel, which we now quote.

Theorem 3.3 (Montel [15, p. 42]). A necessary and sufficient condition for a
meromorphic function G(z) to be the uniform limit of rational functions whose zeros
and poles are interlaced on the positive real axis is that G(z) have the form

G(z)= -^+2^/(z-af),

where A and all A/s are real and of the same sign and 2? Ai/a{ converges.
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Using Theorem 3.3 we now prove

Theorem 3.4. The meromorphic function Kis\x) has the following Mittag-Leffier
expansion :

00

K<"\x) = -Ais)+ ^AfKx-af),
i

where A(s) and Af are real, A™ and A\s) are of the same sign, i=l, 2,..., and
2? A\s)/a.¡s) converges.

Proof. By Lemma 2.2 we have

K^(x) = lim të±lXxm\x),
m-» oo

where the zeros and poles of the rational functions <f>m-\!(x)l<pmXx) are interlaced
on the real axis. Now, from the general theory of chain sequences, (see [6, pp.
1-4]), we know that conditions (1) and (2) above imply the existence of a constant
c^O such that the sequences {a* = an + c}o and {bn}x satisfy

(a) a* > 0 for each n,
(b) a* -> oo as n -»> oo,
(c) {bn/(at ■ a*-1)} is a chain sequence.

Thus by Theorem 2.1 we know that any distribution i//g>(x) associated with the
sequences {a*+s} and {bn+s} has its spectrum in [0, oo). But if </4s)(x) is a distribution
associated with {an + s + c}n = 0 and {b^}?, then <p(sXx) = <//¿'(x — c) is a distribution
associated with {a£°}™=0 and {6S°}"=i, and conversely. Thus we can assume
<?(<[i(sXx)) <= ( — c, oo) for some finite c ̂  0. Next, the zeros of the polynomials

<£i,s)(x) are always contained in the same interval as the spectrum of their distri-
bution function and hence the rational functions <pm-\Xx)l'l>mXx) must have their
zeros and poles interlaced on the interval ( — c, oo). Thus by a direct application of
Theorem 3.3 to the function KisXx-c) the result follows.   Q.E.D.

We next prove a result about the behavior of xK{%x) for large imaginary x.

lim (iy)K<sXiy) = 1.
y-» oo

Lemma 3.5. For y real

Proof. By definition

xa:<s,(x) =  */(*~fls) 1 _  èi+*KX - a»X* ~ ai+»)
1

b2+sl(x-ax+s)(x-a2 + s)~ I 1

1
x—aj._ bx+s b2+sl(x-as+2)(x-as + x)\

(x-as)(x-as + x){\l 1
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Now for x=iy, x/(x—as) -> 1 as y -*■ oo. Also bx+s/(x—as)(x — as+x) -*■ 0, and by
Worpitsky's theorem (Theorem 3.1 above) the continued fraction

1|        b2+sl(x-ax+s)(x-a2+s) \        b3 + s/(x-a2 + s)(x-a3 + s) \

I 1 I 1 I 1
will remain bounded for x = iy and y large. Therefore, for x = iy, xF(s)(x) -> 1 as
y-+oo.    Q.E.D.

Corollary 3.6. Fw(x) = 2f Af/(x - «Ss>).

Proof. From Theorem 3.4 we have

F(s)(x) = -Aw + ^A^Kx-af).
i

Now from Lemma 3.5 it follows that lim^^ F(s)(/y) = 0, so if we can show that
lim^oo Kis)(iy)= —Ais\ the corollary will follow. Let e>0 be given. Then

\Kis\iy) + A(s)\ 2 Ak»/(iy-aV)

K
V A*' Y      Ak 1

fc=l  \ty      ak   I lc = F+l   ttfc     1//°=*:        »i

K

Now by the interlacing of the zeros of </4s)(x) with those of ffîîîXx) and by Theorem
3.4 each ^^s) is positive and 2? -¿k>/0is> converges. Hence we first choose K large
enough so that 2™= k +1 Aks)la(ks) < e/2 and then choose y large enough so that
(Hk=i Aks))(l¡\y\)<e¡2. This gives |F<s,(/»-M(s)| <e and proves the corollary,
since e was arbitrary.    Q.E.D.

Corollary 3.7. ForO^p^n we have

lim (iy)p + 1K(s)(iy)- • ■F(s + n>(i» = 3n-p.
y-+ oo

Proof. This follows directly from Lemma 3.5.

4. Constructing >/i(s)(x). At this point it would be possible to construct </<(s>(x)
by using a number of theorems which deal with the Hamburger Moment Problem.
We choose to use another, somewhat longer approach because it gives us new
information about all sets of orthogonal polynomials whose associated sequences
satisfy (1) and (2) above. We begin by quoting a special case of a Dickinson result.

Lemma 4.1 [10, p. 199]. For s^O, n=l, andm^n + l we have

(IV-A) WSfi-itotëÎïtîPi*) = &s>(*)^n,(x)-#«(x).
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Next, before proceeding with other lemmas, we make the following convention
regarding the zeros of the polynomials </>$ : for each s è 0 and m ̂  1 we let
{a\%}?= i be the zeros of </>mXx) ordered so that a^ < a{£]m <•■• < a££m. Also since
A^(5)(x) is meromorphic with all its poles in ( — c, oo), c^O, it has only finitely many
poles in the interval ( — c, o4s,n) for each fixed «3:1 and s^O. Let this number be
N(n, s). We now continue with our results.

Lemma 4.2. For each nâl and s^O, there exists an integer M(n, s) with the
property that m > M(n,s) implies (f>mXx) nas exactly N(n, s) zeros in the interval
(-c,«&).

Proof. From Theorem 3.4 we know that the poles of K(sXx) are simple. Hence
from Lemma 2.2 and Hurwitz's theorem we deduce that in small neighborhoods of
each pole of A^(s)(x), <pm-iXx)l<f>m(.x) eventually has one pole and no zeros. Like-
wise in compact sets free of poles (p%±xXx)l<Pm(x) is eventually free of poles.
Therefore, since there are N(n, s) poles of Kw(x) in ( — c, o4s,n)> f°r sufficiently large
m, <pm(x) has one zero near each of these poles and no other zeros in this compact
set.   Q.E.D.

Our next result deals with the interlacing of the zeros of cp^-n-iXx) with those
of (pm(x). These zeros do not interlace on the whole real axis, however for fixed
s ï: 0 and n^Owe can show that for all large m those zeros in the interval (a$n, oo)
are interlaced.

Lemma 4.3. For each fixed n^O and s^O, there exists an integer M*(n, s) with
the property that if m> M*(n, s), then for m>i>N(n, s) <pm-n-ÏXx) has exactly one
zero in the interval (a¡%,, a.\slx¡m).

Proof. We use induction on n. For « = 0 and sâOwe know by Lemma 2.2 that
</>Síí'(x) and <pmXx) have interlacing zeros on the whole real axis whenever m^2.
Thus we can choose M*(0, s) = 2. Next consider the general case and assume that
the lemma holds for n=k— I, and s^O. Then consider n—k. From Lemma 4.1
we have

(IV-A)    bs + k<pk°lx(x)<p%+4+-lXx) = <r(x)^iÊ>(x)-#i>(x)     (m ^ k+l),

and from Lemma 4.2 we know that there exists an integer M(k, s) such that
m > M(k, s) implies <f>mXx) has exactly N(k, s) zeros in ( — c, ak%). Also we know
from Lemma 2.2 that all the zeros of <pksXx) and <f>k-XXx) are contained in the
interval (—c, «4?k). Thus for m>max {M(k, s), M*(k—l,s), N(k,s)} and
m> i>N(k, s) we know that the monic polynomials </4s)(x) and (pk-XXx) are positive
in (a¡%, a[slx¡m). Since bs + k>0 and a\% aj^1>m are zeros of $Ü}(x) we deduce from
(IV-A) that

sign^ti+-ÏX<4%) = sign #*+!>(«&),
(IV-B)

signcp<i+JkliX^li.m) = sign^iPW«!.,,).
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Now m>M*(k—l,s) and m>i>N(k,s) so by the induction hypothesis <l>m-k\x)
has exactly one zero in (a\%, ctf|lm). Combining this with (IV-B) we see that
(pnti-Wx) must have an odd number of zeros in (aft, aßlm). However if this
number is three or more, then by the known interlacing of the zeros of <f>m-kKx)
with those of <f>lñ-k-V(x), (p(itk)(x) will have at least two zeros in (aft, a\slXm) and
this will contradict the induction hypothesis. Hence (pmtk-ïKx) has exactly one
zero in (aft, a\slx¡m) and the lemma follows by induction taking M*(0, s) = 2 and
M*(k, j) = max{M(k, s), M*(k-l, s), N(k, s)}, fc£ 1.

Using the above lemmas we now obtain a partial fraction expansion for the
rational function x"<p%?:î±?(x)l<p%>(x).

Corollary 4.4. For s^O, O^pSn andm>M*(n, s) we have

x^tr-lKx)      fB^(i,m;p,n)
tëXx) t4{      x-«&

where F<s)(/, m;p,n)>0 for N(n, s)<i^m.

Proof. Since <f>m\x) = Ylî=x(x — a^Lt) where ax'?m < a%m < ■ ■ ■ <a%]m, an expansion
of the desired type exists; and we need only establish the condition on the residues
F(s)(/, m ; p, n). By standard techniques these residues are given by

m-n —1n («a-««iïiso
B^(i, m;p,m) = («ft)' -*=4-

Now by Lemma 4.3, we know that for m> M*(n, s) those zeros of 4>m-n-V(x)
and <pm\x) which are greater than aft are interlaced. Thus for i>N(n,s) the
constants B(s)(i, m;p, n) are all of the same sign because m>M*(n, s)^M(n, s)
implies <pm\x) has exactly N(n, s) zeros in (0, aft). But by inspection B(s)(m, m;p,n)
is positive, so Bis\i, m;p,n) is positive for N(n,s)<i^m; and the corollary
follows.   Q.E.D.

Our next objective is a Mittag-Lefner expansion for the meromorphic function
xpF(s)(x)- • F(s + n)(x). Since we will be working with fixed p, n, and s satisfying
O^p^n, s^O, we adopt the convention of dropping these from much of our
notation: i.e., B(s)(i, m;p, n) = B(i, m).

Theorem 4.5. For 0^p = n and s^O the meromorphic function xpK<s)(x)-■ ■
F(s + n)(x) has a series expansion of the form

x"F«(x)---F<-B>(x)=2^S>'

where B(i) > 0 for i> N(n, s) and 2,"= i 5(i)/a, < oo.
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Proof. By definition, for y 3:0,

K<s+fí(x) = lim
tä+-?(x)

where the convergence is uniform on compact sets bounded away from poles.
Hence by using Corollary 4.4 we have

rP^<sYrV- • K'<s + nYr) -   lim   yy'l'm-lXx) <Pm-2Xx)       <pm-n-l(x.
{) {x) ~ » "      #?(*) W+-lKx)     #£?(*)

-  hm «g^>

f      "*= lim    2 B(i, m)
m-* oo   I * = i X     0!j j

Now, by Hurwitz's theorem, aj?L_ -> a{s) as m->oo because a,(s) is the ith pole of
KisXx) and Kw(x)=hmm^a,<f^tlXx)l4ffix). Thus if we let B(i)=B(sXi;p, n) be
the residue of xpKlaXx) ■ ■ ■ K(s+nXx) at the pole x = a,(s) then, because of the uniform
convergence, B(i, m) ->■ 5(/) as m -> oo. Therefore

Km V *('» g = f W1+ lim   y ¿ft "0
m-»oo j = i X     ttj.m        i = i •*■     ai     m-»oo at+i ^     ai,m

where the last limit must also converge uniformly on compact sets bounded away
from poles. Now for m > M*(n, s), each of the residues in the sum

m

2 B(Um)¡(x-au^
N+l

is positive by Corollary 4.4. Hence the sum 2w + i B(i, m)/(x — ai>m) represents a
rational function whose zeros and poles are interlaced on the positive real axis.
This means we can apply the Montel theorem which we have been using. This is
Theorem 3.3 above and applying it gives

B(U m) = _B+ f   B(i)
^t.m N + l '

where B(i)>0, i^N+l, and 2w+i £(/)/«,<oo. Thus

lim    2   ^=-54-2^
m-* =° ¿=7/4-1 %     a\,m N + l -*"      ai

xpK^(x)- ■ -K(s+nXx) = -B+ f ~^"

Next, by Corollary 3.7
lim (iyfK^Xiy)- ■ -K(s+nXiy) = 0.
¡/-too

Thus if we can show that we also have

(*) lim (iy)pKisXiy)- ■ -Kis + nXiy) = -B,
y-* oo
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then F=0 and the theorem will be proven. But (*) follows easily because given any
e>0, since 2? B(i)Iat<oo, we can find a K such that 2™=ir + i B(k)/ak<e/2. We
can then choose y so (1/|)'|) 2í=i B(k)<e¡2. Hence

\(iy)"K(s\iy)- ■ -Kis+n\iy)+B\ = 2 B(k)/(iy-ak)

^    B(k) v    B(k)       l
¿Ti\iy-ak\   kJï+i ak |i-í>KI

s(ii\y\)2B(k)+ 2 mi**
< e/2 + e/2 = e,

and since e was arbitrary, this completes the proof.   Q.E.D.
Before applying the above results in the construction of <//s)(x) we obtain some

additional information about the sums of the residues B(i) and B(i, m), respec-
tively.

Lemma 4.6. For s^O, O^pún, andm^n + l we have
m

2 B(i, m) = 8n,p.
¡ = i

Proof. By the definition of B(i, m)

Now let x=l/w and recall that $^(x) is monic. Thus F£)(w) = wm<p%>(l/w) satisfies
F£\0)=l. Therefore,

W-o-WtltlXl/w)  _   f f 1 1

so

And setting w=0 gives

Sn>p = 2 B(i, m). Q.E.D.
i=i

Theorem 4.7. For s^0,0^p^n, we have

2 B(k) = 8n>p.
fc=i

Proof. Since B(k, m) -* B(k) as m -> oo, we know that B(k) is nonnegative for
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k > N(n, s). Thus {2í= i B(k)}K=mn.» is an increasing sequence, and it will converge
if it is bounded. But by Lemma 4.6, for each natural number A^we have

K

I
k = l

K

00 Jc =

2 B(k) =   lim  2 B(k, m) S 8n

Thus 2?= i B(k) converges, and we need only show its sum is 8np. Now from
Corollary 3.7

lim (iy)p + 1KisXiy)- ■ K(s + nXiy) = «„,„

and since

this gives

xp+1KisXx)---K^s+nXx) =  2 B(k)-I—

lim 2 fiw& = *».p-
y-too fc«j \jy — ak)

Finally, since 2?= i B(k) converges,

lim 2 Wfür¡r} = 2 **>•
V-00   fc = l W       "fcj fc=l

and the theorem is proven.   Q.E.D.
We now begin with the actual construction of i//s)(x). First we need an important

recursion relationship which says that for m 3:2, s 2:0,

(IV-C) W(x) = (x-os)^íi>(x)-6i+s^í¡>(x).

This follows easily by induction and the proof is omitted. Dividing through (IV-C)
by 4>mtlXx) and letting m -> oo, we obtain

(IV-D) l/K^x) = (x-as)-bx+sK<° + 1Xx)-

Combining this with the basic recurrence relationship (I-A) we obtain

#?>(x) • K<%x) -4>^P(x) = bx+s- K<*W4gi? • #(s+"(x) -&s-+f>(x)}.

Since the expression in braces is just the left side with a change of index, we iterate
and after multiplying by xv we obtain

(IV-E)      x'tfXx)■ K^(x)-x><fëîtXx) = x"\ll bt+, Wn *<s+°W

We now consider this to be a relationship in the complex plane and after dividing
by 2m we integrate both sides about the circle |x| =R>0. Thus

(IV-F)

¿ f        x»<$Xx)K(sXx) dx

-.tfj^}¿J    a^*«W-^«WÄ
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This leads to

Theorem 4.8. 7/"0^p = «, i=0, then

(IV-G) lim J- f       x*<pf(x)K^(x) dx = 8nJf\ bi+:

Proof. In (IV-F) we replace xpF(s)(x)-• F(s+B)(x) by 2™=i B(k)/(x-ak). This
gives

^-. \   x*w(x)k«xx) dx = (n h 4 ¿ f   2 *(*)/<* - «*)«**•
Now if we let F(F) represent the number of poles ak which are in the disc
{x : |x| ^F} and then integrate the integral on the right term-by-term, we obtain

=i-. x*W(x)K^(x) dx = m bi+s\ 2 *(*)•
¿TTl J\X\=R U=l J    fc=l

Finally, F(F) ->- oo as F -> oo, so by Theorem 4.7
i    /• ( « ^ ir<ß>

um ̂ -.      x^«w^<s)w <& = m *<+* Mim 2 *(*)
«-.oo Z7T/ J|X|=B ^j = 1 J   B-.CX)  ^

= in *•+.}*».-■        q-e-d-
We now give our main result.

Theorem 4.9.   Let the sequences {ajf ana" {¿>,}f satisfy the following conditions:
(1) an -»■ oo as n -*■ oo.
(2) on > 0 /or eac/j n ana"

lim sup —^¡— =L< 1/4.
n-»»   anan_i

FZze« z/F(s)(x) ana" i/i(s)(x) are defined by (5) a«d (6) of §1.1, we Aare
(i) F(s)(x) ¿y a meromorphic function and has a representation of the form

K<»(x) =  J Ak»/(x-*k»)

whereAf>Oforeachk, 2? Af =1, andaf <af <■■■.
(ii) <//s)(x) can be chosen to be a jump function with a jump of Af at x = aft

£=1,2,..., while being constant on each of the intervals (—oo, af), (aft a(2s)),
/"„(s)      (s)\

Proof, (i) is just Corollary 3.6 together with Theorem 4.7, so we need only
prove (ii). Thus we let 0<s)(x) be defined by the following :

(1) f«(-oo)=0;
(2) iZ/(s)(x) is constant on each of the intervals (-oo, af), (aft af), (af, 4S)),... ;
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(3) ^'(4S>)--A(SKS)-0) = ^4(S), Zc = l, 2, 3,... ;
then

r°°x^>(*)#<s)(x)= 2 KT&S)(«MS).
J - oo k = X

Next if we substitute 2*=i A^Kx - af) for KisXx) in formula (IV-G), we obtain

lim ¿ f       x^>(x){ 2 ^¡2 dx = {fl bi+\ 8n,p.

Hence, by integrating term-by-term we have

lim 2 kwu'W = \U*«+«rs*-»
so

2 KS>MS)KS)KS) = (fl bi+\ sn,p,

and

J+J x^<f'w #<s,w = {n ¿>i+s} sn,
Therefore, t//s'(x) is a distribution function for the polynomials {</>^}- x and the
theorem is proven.   Q.E.D.

We now modify assumption (1) of Theorem 4.9 by having an ->■ -co as n -> oo.
This gives:

Corollary 4.10. If the real sequences {an}o ond {bn}x satisfy the conditions:
(1*) an -> —oo as « ->- oo.
(2*) bn > 0 for each n and

lim sup (bn/(anan-x)) = L < 1/4;
n-* oo

then
(i*) K^(x) = ^=xAk^l(x-af)   where  Aks)>0 for each k,   2f A$> =1   and

-00<--- <a«<a(2s)<a<is).-

(ii*) <//s)(x) can be chosen to be a jump function which is constant on each of the
intervals (axs), oo), (a\sl x, a\s)), i = 1, 2,..., and has a jump Aks) atx = o4s), k = 1, 2, 3.

Proof. By definition, for each fixed sStO, the polynomials {0i,s)}"=1 satisfy the
triple recurrence formula

4%\ x(x) = (x- d£>)4SXx) - b?W- i(x)       (n ̂  0),

W(x) = l,fii\(x) = 0.
Hence the polynomial set (— l)n$,s)( — x) satisfies the relationship

(-i)<»+iw+x(-*) = (x+a?)(-irwx-x)-wx-iy-l<pi^ixx)
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(n ̂  0) where we again set <¡>o \x) «■ 1, <p(l\=0. Thus the set ( - l)n<pf( - x) is associa-
ted with the sequence {- an}£ and {bn}x. But these sequences satisfy the hypothesis
of Theorem 4.9, so if we let Ki'\x) and </>{i\x) be associated with them, then

(i) Kis\x) = 2^xAfl(x-ßf) where 4«>0 for each k, l?=xAf = l, and

(ii) </>is)(x) can be chosen to be a jump function which is constant on each of the
intervals (-oo, ßf), (¿8ft ft'lx), i=l, 2,..., and has jump Af at x=j8ft Now

(-l)Fft-x) = lim (-D^-^-*) = Urn (-ly-^'C-*) = mx)(    i)K   (   x)      lirn       ^K_x) um     (_1)m^)(_x) Aa W,

so

Fftx) = (-l)Ff'(-x) = 2 Afl(x+ßf).
k = l

Hence, we see that by taking u^= -ßf, Zc = l, 2,..., conclusion (i*) follows.
Next, since ^ftx) is a distribution function for the monic polynomial set

{(-t)n<pf(x)}ñ=-i, we have for Ogp^n, and some kn^0, n=0, 1,....

*„A., = ¡+Ç° x>(-iy<pf(-x)dtf(x).
J — 00

Replacing x by — x gives

*»-8»., = (-1)B+* f+" x»<pf(x)(-l)dm-x).
J — to

Therefore,

f+°° x><pf(x){(-l)dtf(-x)} = (-iy+»-kn 8n,p
J — CO

where k'n^0, n=0, 1, 2,..., so if we let >/'(s)(x) = (-l)i/.<1s)(-x), then i/-(s)(x) is a
distribution function for {</4s)(x)}. Therefore, (ii*) follows since </>is)(x) satisfies (ii).
Q.E.D.

5. Applications. In this section we use the results of §4 to answer some questions
about a known polynomial set. We shall also obtain some information about
quotients of Bessel functions, where these functions are considered to be functions
of their order. The polynomial set which we consider is the set of modified Lommel
polynomials. We follow Dickinson, [10, p. 120], in defining these polynomials as
follows: R-X(v, x)=0, R0(v, x) = l and for «^0

(V-A) Rn + x(v, x) = (2¡x)(v + n)Rn(v, x) - Rn _ x(v, x).

Thus for each real, nonzero value of x, {RJy, x)}-x is a set of real polynomials in
the variable v. Now, in [10, p. 121], Dickinson asked for the construction of a
distribution function in v for these polynomials. Our results allow us to carry out
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this construction. First, since the set {Rn(v, x)} is not monic, we shall work with the
polynomial set {P„(v, x)}"i defined by P_i(v, x)=0, P0(v, x)=l and for «3:1,
Pn(v, x) = (2x)-nRn(v, 1/x). Then from (V-A) we have

(V-B) Pn + X(v, x) = (v + n)Pn(v, x)-(2x)-2-Pn_i(v, x)

where «3:0. This means that the polynomial set {Pn(v, x)}™x is associated with the
sequences {an= —n}™ and {bn = (2x)'2}x. But for x^O these sequences satisfy the
hypothesis of Corollary 4.10 and hence we have the following theorem.

Theorem 5.1. For each real x/0 and nonnegative integer s, we have
(i) the continued fraction

K^x) = JiA.  i2xa_J2xril_...
4-í        | 4-J+l | 4-Í + 2

í¥-VXf, x)
Ü™   P™(V,x)

converges to a meromorphic function which has an expansion of the form

K^(v, x) = J APIi'-ffîK))»t.
where AksXx) > Ofor each k, 2?= i Ak*>(x) = 1, and -oo < • • • < v2s)(x) < vfix) < oo. Also
s 3:1 and \x\ 3j 1 implies v[sXx) S 0.

(ii) The polynomials Pn(v, x), n —0,1,2,... are orthogonal with respect to a distri-
bution function i/j(sX", x) that is constant on each of the intervals (v[sXx), co), (v¡slx(x),
"¡SXX)), /= 1, 2,... and which has a jump of height A^XX) at v = vksXx), k= 1, 2,....
Moreover <plsXv, x) is essentially unique.

Proof. Corollary 4.10 gives all the results except the condition on »4s)(x) and the
uniqueness of </<(s)(v, x). The condition on j4s)(x) follows by considering (— l)i//s)
•( — v, x) and applying Theorem 2.1. This theorem applies because s3:1 and |x| 3:1
implies {(2x)~2/(an+san+s_i)} is a chain sequence. This together with an+s>0,
«=0, 1, 2,... implies -^(x^O or vxsXx)S0.

The essential uniqueness of i/i(sXv, x) is a result of Carleman's criteria, [16,
p. 59]. This says <l>lsXv,x) is essentially unique if 2? (Zv)~1,2 = 00- In our case
Z>„ = (2x)~2 so the result follows.   Q.E.D.

Next, since the polynomials Pn(v, x) are just a monic version of Rn(v, 1 ¡x) we see
that the modified Lommel polynomials are orthogonal over a denumerable set
consisting of the poles of the meromorphic function

(l/2x)tf(s>(v,x) = lim {XgiPfy, llx)imXv, 1/x)}.
n-t oo

We now examine this function Kw(v, x) more closely and show that it is just a
quotient of Bessel functions. We first state a lemma due to Watson, [20, p. 302].
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Lemma 5.2. If J(v, z) represents the Bessel function of order v and argument z,
and if F(w) is the gamma function, then

lim(z/2)-Fm(,+ l.z) =
F(v + m+l) K     '

We also need a relationship between Rf(y, z) and R(£~n)(v+n, z). We prove this
as another lemma.

Lemma 5.3. For integers í = m^0 and mäO we have Rf(v, z) = R^~n)(v+n, z).

Proof. We have from (V-A) and our definition of Rf(v, z) that

Rf+i(v,z) = (v + m + s)R%(v,z)-(2xy2Rf_x(v,z).

Thus,

FftB)(v + «,z) = (v+m+s)R^-n\v+n,z)-(2xy2R^zV(v+n,z).

Also for s-n^O, R(Hn)(v+n, z) = 0 and Fft^ + w, z)=l. Hence we see that the
polynomial sequences {Rf(v, z)} and {R!£~n)(v+n, z)} satisfy the  same triple
recurrence formula and have the same initial elements. Therefore Rf(v, z) =
B-m~n)(v+n, z) as was to be shown.   Q.E.D.

We now use these two lemmas to obtain our results about Bessel functions.

Theorem 5.4. For each integer s^O and real x ^ 0 we have

(U2xWKv x) = J(v+s+l>1lx\U/zxjA   [y,x)       j(y+Stiix)

Proof. From part (i) of Theorem 5.1 we have

'(«v.- -a _ «-.  P%-iXv>x)(l/2x)F<s)(v, x) = lim (2x)Pf(v, x)

(2x)-^Rr-\Kv, 1/x)
-  "™   (2x)~m^Rf(v, 1/x) '

Thus using Lemmas 5.2 and 5.3 this gives

Rm.x(v+s+l,ljx)(l/2x)Kls)(v, x) =  lim
m~* oo

= lim
U/zx,T'" r""*A^»»+í, i¡x)¡i\v + m+s)

Q.E.D.

RJy + s, 1/x)

(ll2xym + s'1Rm.x(v+s+l,l/x)IF(v + m + s)
(l/2x) + m + s-1Fm(v+j, l/x)/r(v + m+i)

J(v+s+l, 1/x)
J(v+s, 1/x)

Corollary 5.5. As functions of their order v, and for real z, the Bessel functions
J(v+l,z) and J(v,z) have real, simple zeros which are interlaced on the interval
(—oo, c)for some finite c.
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Proof. Since Km(v, l/z) = (z/2)J(v+l, z)/J(v, z), the zeros and poles of
Km(v, 1/z) are just the zeros of J(v+ 1, z) and the zeros of J(v, z). Thus the result
follows from the known properties of Km(v, 1/z).   Q.E.D.

Corollary 5.6. For real x ̂  0

J(v+l, 1/x) _  ^    Ak(x)-I
J(v, 1/x) ¿tTi v-vk(x)

where Ak(x) > 0 for k = 1, 2,... and 2^= i Ak(x) = 1.

Proof. Combining Theorems 5.1 and 5.4 with s=0 gives the result.    Q.E.D.

Corollary 5.7. For each real z0, there are a denumerable number of Bessel
functions J(v¡, z), ¿=1,2,..., which have a zero at z0. Moreover —oo< • • • <v2
<vx<co.

Proof. This is just a restatement of the fact that (z/2)Km(v, l/z)=J(v+1, z)/J(v, z)
had denumerably many poles on the real axis for each real z. The conditions on
the v,'s follow from Theorem 5.1.   Q.E.D.

Remark. An alternate proof of Corollary 5.7 and the fact that the zeros of
J(v, z) are real was given by Coulomb, [8, p. 297-302]. He also showed that these
zeros Vi(x) are asymptotic to the negative integers.

6. Acknowledgements. Thanks are due to Professor Jack Goldberg of The
University of Michigan. Discussions with him and suggestions of his were a major
source of inspiration for writing the thesis which led to this paper.
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