ON CONSTRUCTING LEAST SQUARES SOLUTIONS TO TWO-POINT BOUNDARY VALUE PROBLEMS

BY
JOHN LOCKER

Abstract

For an nth order linear boundary value problem $L f=\boldsymbol{g}_{\mathbf{0}}$ in the Hilbert space $L^{\mathbf{2}}[a, b]$, a sequence of approximate solutions is constructed which converges to the unique least squares solution of minimal norm. The method is practical from a computational viewpoint, and it does not require knowing the null spaces of the differential operator L or its adjoint L^{*}.

1. Introduction. For a closed interval $[a, b]$ let S be the real Hilbert space $L^{2}[a, b]$ with the standard inner product (f, g) and norm $\|f\|$. We denote convergence in S by $f_{i} \rightarrow f$ and denote the domain, range, and null space of any operator L by $D(L), R(L)$, and $N(L)$, respectively.

Given an nth order formal differential operator

$$
\tau=\sum_{i=0}^{n} a_{i}(t)\left(\frac{d}{d t}\right)^{i}
$$

where the coefficients $a_{i}(t)$ belong to $C^{\infty}[a, b]$ and $a_{n}(t) \neq 0$ on $[a, b]$, and given k linearly independent boundary values

$$
B_{i}(f)=\sum_{j=0}^{n-1} \alpha_{i j} f^{(j)}(a)+\sum_{j=0}^{n-1} \beta_{i j} f^{(j)}(b), \quad i=1, \cdots, k,
$$

we define a differential operator L in S as follows: Let $H^{n}[a, b]$ be the subspace of S consisting of all functions f in $C^{n-1}[a, b]$ with $f^{(n-1)}$ absolutely continuous on $[a, b]$ and $f^{(n)}$ in S, and lei $D(L)=\{f \in$ $\left.H^{n}[a, b] \mid B_{i}(f)=0, i=1, \cdots, k\right\}, L f=\tau f$. For a fixed function g_{0} in S we consider the boundary value problem

$$
\begin{equation*}
L f=g_{0} . \tag{1}
\end{equation*}
$$

In a previous paper [3] we used the method of least squares to construct approximate solutions to equation (1). A careful examination of the approximation

[^0]scheme shows that the null spaces $N(L)$ and $N\left(L^{*}\right)$ must be known in order to apply the method. In most practical problems it is impossible to calculate these null spaces exactly, and hence, this approach appears to be of limited applicability.

The purpose of this paper is to give a new least squares development which is independent of these null spaces and which is computationally feasible. The method yields approximate solutions which converge to the unique least squares solution of (1) of minimal norm, and it can be used whether (1) is solvable or not.

In §2 we introduce the generalized inverse L^{\dagger} of the differential operator L and discuss its properties which are relevant to least squares solutions of equation (1). In §3 the selfadjoint differential operator $L L^{*}$ is studied. This operator plays an important role in our approximation scheme, and in a future paper we will describe its relationship to the generalized Green's function for L. The approximation scheme, including error estimates, is developed in §4. For the special case in which the eigenfunctions of $L L^{*}$ are used, the scheme has a particularly simple form.
2. The generalized inverse of L. The restriction of L to the subspace $D(L) \cap N(L)^{\perp}$ is a 1-1 closed operator, and its inverse

$$
H=\left[L \mid D(L) \cap N(L)^{\perp}\right]^{-1}
$$

is a $1-1$ bounded linear operator with domain $R(L)$ and range $D(L) \cap N(L)^{\perp}$. This operator is examined in [2].

Let P and Q denote the L^{2}-orthogonal projections from S onto $N(L)$ and $N\left(L^{*}\right)$, respectively. We observe that $I-P$ and $I-Q$ are the L^{2}-orthogonal projections from S onto the closed subspaces $R\left(L^{*}\right)$ and $R(L)$, respectively. Also, $L H f=f$ for all $f \in R(L)$ and $H L f=f-P f$ for all $f \in \mathcal{D}(L)$.

Let $L^{\dagger}: S \rightarrow S$ be the bounded linear operator defined by $L^{\dagger} f=$ $H(I-Q) f$ for all $f \in S$. Clearly $L^{\dagger} \mid R(L)=H$, and it can be verified that L^{\dagger} has the following properties:
(i) $L L^{\dagger} L f=L f$ for all $f \in D(L)$,
(ii) $L^{\dagger} L L^{\dagger} f=L^{\dagger} f$ for all $f \in S$,
(iii) $L L^{\dagger} f=f-Q f$ for all $f \in S$,
(iv) $L^{\dagger} L f=f-P f$ for all $f \in D(L)$.

Therefore, L^{\dagger} is the Moore-Penrose generalized inverse of L. Our description of L^{\dagger} is similar to the one given by Loud [4, pp. 196-198].

For the boundary value problem (1) we let $g_{0}=h_{0}+k_{0}$, where $h_{0}=$ $g_{0}-Q g_{0}$ belongs to $R(L)$ and $k_{0}=Q g_{0}$ belongs to $N\left(L^{*}\right)$, and then we set $f_{0}=L^{\dagger} g_{0}=H h_{0}$. The function f_{0} belongs to $\mathcal{D}(L) \cap N(L)^{\perp}$ and has the following properties:
(i) f_{0} is a least squares solution to equation (1), i.e., $\left\|L f_{0}-g_{0}\right\|$ is equal to the infimum of the set of numbers $\left\|L f-g_{0}\right\|$ where f ranges over $D(L)$.
(ii) The set of all least squares solutions to equation (1) is the set $f_{0}+N(L)$.
(iii) f_{0} is the unique least squares solution of equation (1) of minimal norm.
(iv) f_{0} is a solution to equation (1) when (1) is solvable.
(v) f_{0} is the unique solution in $D(L) \cap N(L)^{\perp}$ of the boundary value problem

$$
\begin{equation*}
L f=h_{\mathbf{0}} . \tag{2}
\end{equation*}
$$

(vi) $\left\|L f_{0}-g_{0}\right\|=\left\|h_{0}-g_{0}\right\|=\left\|k_{0}\right\|$.

The paper by Nashed [5] has a thorough treatment of generalized inverses and least squares solutions, as well as an extensive list of references. In the next two sections we are going to construct a sequence of functions $f_{i}(i=1,2, \cdots)$ in $D(L) \cap N(L)^{\perp}$ which converges to $f_{0}=L^{\dagger} g_{0}$.
3. The differential operator $L L^{*}$. Let

$$
\tau^{*}=\sum_{i=0}^{n} b_{i}(t)\left(\frac{d}{d t}\right)^{i}
$$

be the formal adjoint of τ, and let

$$
B_{i}^{*}(f)=\sum_{j=0}^{n-1} \alpha_{i j}^{*} f^{(j)}(a)+\sum_{j=0}^{n-1} \beta_{i j}^{*} f^{(j)}(b), \quad i=1, \cdots, 2 n-k,
$$

be a set of $2 n-k$ linearly independent adjoint boundary values. The adjoint operator L^{*} is given by

$$
D\left(L^{*}\right)=\left\{f \in H^{n}[a, b] \mid B_{i}^{*}(f)=0, i=1, \cdots, 2 n-k\right\}, \quad L^{*} f=\tau^{*} f .
$$

We are going to work with the space $H^{n}[a, b]$ under the norm

$$
|f|_{*}=\sum_{i=0}^{n-1} \max _{a \leq t \leq b}\left|f^{(i)}(t)\right|+\left\|f^{(n)}\right\|, \quad f \in H^{n}[a, b],
$$

which makes it into a Banach space. In addition, we introduce an inner product

$$
(f, g)_{\tau}=(f, g)+(\tau f, \tau g), \quad f, g \in H^{n}[a, b],
$$

and associated norm $|f|_{\tau}=(f, f)_{\tau}^{1 / 2}$, under which $H^{n}[a, b]$ becomes a Hilbert space. The norms $|f|_{*}$ and $|f|_{\tau}$ are equivalent norms for $H^{n}[a, b]$, and the topology induced by them is called the strong topology for $H^{n}[a, b]$. Convergence in the strong topology is uniform convergence of the first $n-1$ derivatives on $[a, b]$ together with L^{2}-convergence of the nth derivatives, and it is denoted
by $f_{i} \xrightarrow{s_{n}} f$. The strong topology has been discussed in [3].
We also want to consider the space $H^{2 n}[a, b]$ under its strong topology induced by the inner product

$$
[f, g]=(f, g)+\left(f^{(2 n)}, g^{(2 n)}\right), \quad f, g \in H^{2 n}[a, b]
$$

and associated norm $|f|=[f, f]^{1 / 2}$. In this case strong convergence is denoted by $f_{i} \xrightarrow{s_{2 n}} f$. This particular inner product is convenient for representing boundary values on $H^{2 n}[a, b]$.

Lemma 1. The operator τ^{*} maps the space $H^{2 n}[a, b]$ onto the space $H^{n}[a, b]$.

Proof. It is easy to show that $f \in H^{2 n}[a, b]$ implies $\tau^{*} f \in H^{n}[a, b]$. The onto property follows from [1, Corollary 4, p. 1283].

Lemma 2. The operator τ^{*} is a continuous linear operator between the strong topologies on $H^{2 n}[a, b]$ and $H^{n}[a, b]$.

Proof. Take a sequence of functions $f_{i}(i=1,2, \cdots)$ in $H^{2 n}[a, b]$ and a function $f \in H^{2 n}[a, b]$ with $f_{i} \xrightarrow{s_{2 n}} f$. We know that $f_{i}^{(j)} \rightarrow f^{(j)}$ as $i \rightarrow \infty$ for $j=0,1, \cdots, 2 n$, which certainly implies that $\tau^{*} f_{i} \rightarrow \tau^{*} f$ and $\tau \tau^{*} f_{i} \rightarrow \tau \tau^{*} f$. Thus, $\left|\tau^{*} f_{i}-\tau^{*} f\right|_{\tau} \rightarrow 0$, and the proof is complete.

Consider the linear functionals $B_{i}^{+}, i=1, \cdots, k$, defined on $H^{2 n}[a, b]$ by

$$
\begin{equation*}
B_{i}^{+}(f)=B_{i}\left(\tau^{*} f\right), \quad f \in H^{2 n}[a, b] \tag{3}
\end{equation*}
$$

By Lemma 2 each B_{i}^{+}is continuous on $H^{2 n}[a, b]$ under the strong topology. If $f(t)$ is any function in $H^{2 n}[a, b]$ which is identically zero on neighborhoods of a and b, then $\tau^{*} f(t)$ has the same property, and hence, $B_{i}^{+}(f)=0$. Therefore, each B_{i}^{+}is a boundary value on $H^{2 n}[a, b]$. A direct calculation shows that the classical representation of B_{i}^{+}is

$$
\begin{align*}
B_{i}^{+}(f)= & \sum_{j=0}^{n-1}\left[\sum_{p=0}^{j} \sum_{q=p}^{n-1} \alpha_{i q}\binom{q}{p} b_{j-p}^{(q-p)}(a)\right] f^{(j)}(a) \\
& +\sum_{j=n}^{2 n-1}\left[\sum_{p=j-n}^{n-1} \sum_{q=p}^{n-1} \alpha_{i q}\binom{q}{p} b_{j-p}^{(q-p)}(a)\right] f^{(j)}(a) \tag{4}\\
& +\sum_{j=0}^{n-1}\left[\sum_{p=0}^{j} \sum_{q=p}^{n-1} \beta_{i q}\binom{q}{p} b_{j-p}^{(q-p)}(b)\right] f^{(j)}(b) \\
& +\sum_{j=n}^{2 n-1}\left[\sum_{p=j-n}^{n-1} \sum_{q=p}^{n-1} \beta_{i q}\binom{q}{p} b_{j-p}^{(q-p)}(b)\right] f^{(j)}(b)
\end{align*}
$$

for $f \in H^{2 n}[a, b]$ and for $i=1, \cdots, k$.
Let T be the $2 n$th order differential operator defined by $D(T)=\{f \in$ $H^{2 n}[a, b] \mid B_{i}^{*}(f)=B_{j}^{+}(f)=0, i=1, \cdots, 2 n-k$ and $\left.j=1, \cdots, k\right\}, T f=$ $\tau \tau^{*} f$. We are going to study the operator T, establishing its relationship with the operators L and L^{*}.

Take any function $f \in D(T)$ and set $g=\tau^{*} f$. Clearly g belongs to $H^{n}[a, b]$ with $B_{i}(g)=B_{i}^{+}(f)=0$ for $i=1, \cdots, k$, so $g \in D(L)$. Also, $f \in D\left(L^{*}\right)$, which implies that $g \in R\left(L^{*}\right)=N(L)^{\perp}$. Therefore, the operator τ^{*} maps $D(T)$ into $D(L) \cap N(L)^{\perp}$. This property is essential for our approximation scheme.

Next, take functions f and g in $D(T)$. Then f and g belong to $D\left(L^{*}\right)$, $\tau^{*} f$ and $\tau^{*} g$ belong to $D(L)$, and it follows that $(T f, g)=(f, T g)$. Thus, $T \subset T^{*}$.

Let $N=\operatorname{dim}\left\langle B_{1}^{*}, \cdots, B_{2 n-k}^{*}, B_{1}^{+}, \cdots, B_{k}^{+}\right\rangle$. We know that T^{*} is a $2 n$th order differential operator determined by $\left(\tau \tau^{*}\right)^{*}=\tau \tau^{*}$ and a set of $m=$ $4 n-N$ linearly independent adjoint boundary conditions $C_{i}(f)=0, i=1, \cdots$, m. Choose functions $g_{1}^{*}, \cdots, g_{2 n-k}^{*}, g_{1}^{+}, \cdots, g_{k}^{+}$, and h_{1}, \cdots, h_{m} in $H^{2 n}[a, b]$ such that

$$
\begin{equation*}
B_{i}^{*}(f)=\left[f, g_{i}^{*}\right], \quad i=1, \cdots, 2 n-k \tag{5}
\end{equation*}
$$

and $C_{i}(f)=\left[f, h_{i}\right], .=1, \cdots, m$, for all $f \in H^{2 n}[a, b]$. In terms of the inner product $[f, g]$ on $H^{2 n}[a, b]$ we have

$$
D(T)=\left\langle g_{1}^{*}, \cdots, g_{2 n-k}^{*}, g_{1}^{+}, \cdots, g_{k}^{+}\right\rangle^{\perp} \subset D\left(T^{*}\right)=\left\langle h_{1}, \cdots, h_{m}\right\rangle^{\perp},
$$

and hence, taking orthogonal complements we get

$$
\begin{equation*}
\left\langle h_{1}, \cdots, h_{m}\right\rangle \subset\left\langle g_{1}^{*}, \cdots, g_{2 n-k}^{*}, g_{1}^{+}, \cdots, g_{k}^{+}\right\rangle \tag{7}
\end{equation*}
$$

But $N \leqslant 2 n \leqslant m$, and the inclusion in (7) implies these two subspaces are equal. Therefore, $N=m=2 n, D(T)=D\left(T^{*}\right), T=T^{*}$, and the boundary values $B_{1}^{*}, \cdots, B_{2 n-k}^{*}, B_{1}^{+}, \cdots, B_{k}^{+}$are linearly independent. We summarize these results as a theorem, together with some other elementary properties of T.

Theorem 1. The 2 nth order differential operator T is selfadjoint with $N(T)=N\left(L^{*}\right)$ and $R(T)=R(L)$. Moreover, the operator τ^{*} maps $D(T)$ onto $D(L) \cap N(L)^{\perp}$.

Remark 1. Since L and L^{*} are closed densely defined linear operators
in S, it is well known from functional analysis that $L L^{*}$ is a positive selfadjoint linear operator in S [1, p. 1245]. The operator $L L^{*}$ is precisely our differential operator T. We have elected to give a detailed discussion of T for two reasons: (a) the discussion is simple and natural, and (b) it emphasizes the structure of T as a differential operator. Henceforth, the differential operator T is denoted by $L L^{*}$.

Remark 2. The functions $g_{1}^{*}, \cdots, g_{2 n-k}^{*}$ and $g_{1}^{+}, \cdots, g_{k}^{+}$which represent the boundary values $B_{1}^{*}, \cdots, B_{2 n-k}^{*}$ and $B_{1}^{+}, \cdots, B_{k}^{+}$in equations (5) and (6) can be explicitly calculated using equation (4) and Theorem 3 [3, p. 62]. This is very important for computational considerations.
4. The approximation scheme. To construct a sequence of functions which converges to the least squares solution $f_{0}=L^{\dagger} g_{0}$ of equation (1), we work in the spaces $H^{2 n}[a, b]$ and $H^{n}[a, b]$ under their strong topologies. Note that $D\left(L L^{*}\right)$ and $D(L) \cap N(L)^{\perp}$ are closed subspaces in $H^{2 n}[a, b]$ and $H^{n}[a, b]$ under these topologies, respectively.

Clearly the operator L is continuous from the induced strong topology on $D(L) \cap N(L)^{\perp}$ to the induced L^{2}-topology on $R(L)$, and hence, there exists a constant $\gamma>0$ such that

$$
\begin{equation*}
|H f|_{*} \leqslant \gamma\|f\| \quad \text { for all } f \in R(L) \tag{8}
\end{equation*}
$$

Utilizing the inner product $[f, g]$ on $H^{2 n}[a, b]$, let R be the orthogonal projection from $H^{2 n}[a, b]$ onto the subspace $\left\langle g_{1}^{*}, \cdots, g_{2 n-k}^{*}, g_{1}^{+}, \cdots, g_{k}^{+}\right\rangle$. The various operators are shown below schematically:

$$
H^{2 n}[a, b] \xrightarrow{I-R} \mathcal{D}\left(L L^{*}\right) \xrightarrow{\tau^{*}} D(L) \cap N(L)^{\perp} \xrightarrow{\tau} R(L) .
$$

Choose a linearly independent sequence of functions $\rho_{i}(i=1,2, \cdots)$ in $H^{2 n}[a, b]$ such that the subspace $\left\langle\rho_{1}, \rho_{2}, \cdots\right\rangle$ is dense in $H^{2 n}[a, b]$ under the strong topology. For example, we can use $\rho_{i}(t)=t^{i-1}$ for $i=1,2, \cdots$ (see [3, pp. 60-61]). Let $\varphi_{i}=\rho_{i}-R \rho_{i}, \xi_{i}=\tau^{*} \varphi_{i}$, and $\eta_{i}=\tau \xi_{i}$ for $i=$ $1,2, \cdots$. Clearly $\varphi_{i} \in \mathcal{O}\left(L L^{*}\right)$ with $L L^{*} \varphi_{i}=\eta_{i}$, and $\xi_{i} \in D(L) \cap N(L)^{\perp}$ and $\eta_{i} \in R(L)$ with $L \xi_{i}=\eta_{i}$ and $H \eta_{i}=\xi_{i}$ for $i=1,2, \cdots$.

Remark 3. With no loss of generality we can assume that the sequence $\xi_{i}(i=1,2, \cdots)$ is linearly independent, for otherwise we can pass to an appropriate linearly independent subsequence having the same linear span. The sequence $\eta_{i}(i=1,2, \cdots)$ is also linearly independent since τ is $1-1$ on $D(L) \cap N(L)^{\perp}$.

The operator $I-R$ maps $H^{2 n}[a, b]$ onto $D\left(L L^{*}\right)$, and it is continuous under the strong topology on $H^{2 n}[a, b]$. Consequently, the subspace $\left\langle\varphi_{1}, \varphi_{2}\right.$, $\cdots>$ is dense in $\mathcal{O}\left(L L^{*}\right)$ under the induced strong topology from $H^{2 n}[a, b]$.

Similarly, the subspace $\left\langle\xi_{1}, \xi_{2}, \cdots\right\rangle$ is dense in $D(L) \cap N(L)^{\perp}$ under the induced strong topology from $H^{n}[a, b]$, and the subspace $\left\langle\eta_{1}, \eta_{2}, \cdots\right\rangle$ is dense in $R(L)$ under the induced L^{2}-topology from S.

For $i=1,2, \cdots$ let P_{i} be the L^{2}-orthogonal projection from S onto the subspace $\left\langle\eta_{1}, \cdots, \eta_{i}\right\rangle$. Clearly $P_{i} g_{0}=P_{i} h_{0}$ and $\left(g_{0}, \eta_{i}\right)=\left(h_{0}, \eta_{i}\right)$ for $i=1,2, \cdots$, and from the above discussion we have

$$
\begin{equation*}
h_{0}=\lim _{i} P_{i} h_{0} . \tag{9}
\end{equation*}
$$

Now L and H are isomorphisms between the subspaces $\left\langle\xi_{1}, \cdots, \xi_{i}\right\rangle$ and $\left\langle\eta_{1}, \cdots, \eta_{i}\right\rangle$, and hence, for $i=1,2, \cdots$ the equation $L f=P_{i} h_{0}$ has the unique solution $f_{i}=H P_{i} h_{0}$ belonging to $\left\langle\xi_{1}, \cdots, \xi_{i}\right\rangle$. Using the continuity of H with equation (9), we conclude that $f_{i} \xrightarrow{s_{n}} H h_{0}=f_{0}$, and in fact, from equation (8) we get the error estimate

$$
\begin{equation*}
\left|f_{i}-f_{0}\right|_{*} \leqslant \gamma\left\|P_{i} h_{0}-h_{0}\right\| \quad \text { for } i=1,2, \cdots . \tag{10}
\end{equation*}
$$

Proceeding as in [3], we can show that if we write f_{i} in the form

$$
\begin{equation*}
f_{i}=\sum_{j=1}^{i} a_{j}^{i} \xi_{j}, \tag{11}
\end{equation*}
$$

then the coefficients $a_{1}^{i}, \cdots, a_{i}^{i}$ form the unique solution of the linear system

$$
\begin{equation*}
\sum_{j=1}^{i}\left(L \xi_{j}, L \xi_{l}\right) a_{j}^{i}=\left(g_{0}, L \xi_{l}\right), \quad l=1, \cdots, i \tag{12}
\end{equation*}
$$

We summarize these results as a theorem and several corollaries.
Theorem 2. Let h_{0} and k_{0} be the L^{2}-orthogonal projections of g_{0} on $R(L)$ and $N\left(L^{*}\right)$, respectively, and let the sequence of functions $\xi_{i}(i=$ $1,2, \cdots$) be constructed as above. Then for $i=1,2, \cdots$ the linear system

$$
\sum_{j=1}^{i}\left(L \xi_{j}, L \xi_{l}\right) a_{j}^{i}=\left(g_{0}, L \xi_{l}\right), \quad l=1, \cdots, i
$$

has a unique solution $a_{1}^{i}, \cdots, a_{i}^{i}$, and the sequence of functions $f_{i}=\Sigma_{j=1}^{i} a_{j}^{i} \xi_{j}$ $(i=1,2, \cdots)$ converges in the strong topology on $H^{n}[a, b]$ to the least squares solution $f_{0}=L^{\dagger} g_{0}=H h_{0}$ of the boundary value problem (1) having minimal norm. Moreover, the rate of convergence is determined by equation (10).

Corollary 1. If the boundary value problem (1) is solvable, then $f_{0}=$ $L^{\dagger} g_{0}$ is a solution, and $\left|f_{i}-f_{0}\right|_{*} \leqslant \gamma\left\|P_{i} g_{0}-g_{0}\right\|$ for $i=1,2, \cdots$ with $\left\|P_{i} g_{0}-g_{0}\right\| \rightarrow 0$ as $i \rightarrow \infty$.

Corollary 2. If the boundary value problem (1) is not solvable, then $f_{0}=L^{\dagger} g_{0}$ is a solution of the boundary value problem (2), and $\left\|P_{i} g_{0}-g_{0}\right\| \geqslant$ $\left\|k_{0}\right\|>0$ for $i=1,2, \cdots$.

Remark 4. Each step needed in determining the functions f_{i} can actually be computed. Also, the question of the solvability of the boundary value problem (1) can be answered practically by determining whether $\left\|P_{i} g_{0}-g_{0}\right\| \rightarrow 0$.

Special case. We conclude this paper by looking at the special form of the . approximation scheme when the eigenfunctions of the selfadjoint differential operator $L L^{*}$ are utilized. Let $q=\operatorname{dim} N\left(L L^{*}\right)$, and choose an L^{2}-orthonormal basis $\omega_{01}, \cdots, \omega_{0 q}$ for $N\left(L L^{*}\right)=N\left(L^{*}\right)$.

Consider the operator $H_{0}=\left[L L^{*} \mid D\left(L L^{*}\right) \cap N\left(L L^{*}\right)^{\perp}\right]^{-1}$. We know that H_{0} is a right inverse for $L L^{*}$ with domain $R\left(L L^{*}\right)=R(L)$ and range $O\left(L L^{*}\right)$ $\cap N\left(L L^{*}\right)^{\perp}$ contained in $R(L)$, that H_{0} is selfadjoint and completely continuous on $R(L)$ under its L^{2}-structure, and that H_{0} is continuous from the induced L^{2}-topology on $R(L)$ to the induced strong topology on $D\left(L L^{*}\right) \cap$ $N\left(L L^{*}\right)^{\perp}$ from $H^{2 n}[a, b]$.

Choose an L^{2}-orthonormal basis $\omega_{i}(i=1,2, \cdots)$ for $R(L)$ consisting of eigenfunctions for H_{0}, and let $\mu_{i}(i=1,2, \cdots)$ be the corresponding sequence of eigenvalues. Setting $\lambda_{i}=1 / \mu_{i}$ for $i=1,2, \cdots$, we have that $\omega_{i} \in$ $D\left(L L^{*}\right) \cap N\left(L L^{*}\right)^{\perp}, L L^{*} \omega_{i}=\lambda_{i} \omega_{i}$, and $\lambda_{i}>0$ for $i=1,2, \cdots$ with $\lambda_{i} \rightarrow$ ∞. Thus, the sequence of functions $\omega_{01}, \cdots, \omega_{0 q}, \omega_{1}, \omega_{2}, \cdots$ belongs to $D\left(L L^{*}\right)$ and forms an L^{2}-orthonormal basis for S.

If $f \in D\left(L L^{*}\right)$, then in terms of L^{2}-convergence we have

$$
\begin{equation*}
L L^{*} f=\sum_{i=1}^{\infty}\left(L L^{*} f, \omega_{i}\right) \omega_{i}=\sum_{i=1}^{\infty} \lambda_{i}\left(f, \omega_{i}\right) \omega_{i} \tag{13}
\end{equation*}
$$

and hence, applying H_{0} we conclude that

$$
\begin{equation*}
f=\sum_{i=1}^{q}\left(f, \omega_{0 i}\right) \omega_{0 i}+\sum_{i=1}^{\infty}\left(f, \omega_{i}\right) \omega_{i} \tag{14}
\end{equation*}
$$

for all $f \in D\left(L L^{*}\right)$, where the convergence in equation (14) is strong convergence in $H^{2 n}[a, b]$. This implies that the subspace $\left\langle\omega_{1}, \omega_{2}, \cdots\right\rangle$ is dense in $O\left(L L^{*}\right) \cap N\left(L L^{*}\right)^{\perp}$ under the induced strong topology from $H^{2 n}[a, b]$.

If we let $\xi_{i}=\tau^{*} \omega_{i}$ and $\eta_{i}=\tau \xi_{i}=\lambda_{i} \omega_{i}$ for $i=1,2, \cdots$, then our earlier discussion can be modified to yield a new approximation scheme. In particular, equation (12) takes the simplified form

$$
\sum_{j=1}^{i} \lambda_{j} \lambda_{l}\left(\omega_{j}, \omega_{l}\right) a_{j}^{i}=\lambda_{l}\left(g_{0}, \omega_{l}\right), \quad l=1, \cdots, i
$$

so $a_{j}^{i}=\left(1 / \lambda_{j}\right)\left(g_{0}, \omega_{j}\right)$ for $j=1, \cdots, i$. We obtain the following theorem.
Theorem 3. Let $\omega_{i}(i=1,2, \cdots)$ be a sequence of eigenfunctions for the selfadjoint differential operator $L L^{*}$ which forms an L^{2}-orthonormal basis for $R\left(L L^{*}\right)=R(L)$, and let $\lambda_{i}(i=1,2, \cdots)$ be the corresponding sequence of eigenvalues. Then the sequence of functions

$$
f_{i}=\sum_{j=1}^{i}\left(\frac{1}{\lambda_{j}}\right)\left(g_{0}, \omega_{j}\right) \tau^{*} \omega_{j}, \quad i=1,2, \cdots,
$$

converges in the strong topology on $H^{n}[a, b]$ to $f_{0}=L^{\dagger} g_{0}=H h_{0}$ with

$$
\left|f_{i}-f_{0}\right|_{*} \leqslant \gamma\left\|\sum_{j=1}^{i}\left(h_{0}, \omega_{j}\right) \omega_{j}-h_{0}\right\|, \quad i=1,2, \cdots
$$

REFERENCES

1. N. Dunford and J. T. Schwartz, Linear operators. I, II, Pure and Appl. Math., vol. 7, Interscience, New York, 1958, 1963. MR 22 \#8302; 32 \#6181.
2. J. Locker, An existence analysis for nonlinear boundary value problems, SIAM J. Appl. Math. 19 (1970), 199-207. MR 42 \#578.
3. _- The method of least squares for boundary value problems, Trans. Amer. Math. Soc. 154 (1971), 57-68. MR 43 \#7077.
4. W. S. Loud, Some examples of generalized Green's functions and generalized Green's matrices, SIAM Rev. 12 (1970), 194-210. MR 41 \#3865.
5. M. Z. Nashed, Generalized inverses, normal solvability, and iteration for singular operator equations, Nonlinear Functional Anal. and Appl. (Proc. Advanced Sem., Math. Res. Center, Univ. of Wisconsin, Madison, Wis., 1970), Academic Press, New York, 1971, pp. 311359. MR 43 \#1003.

DEPARTMENT OF MATHEMATICS, COLORADO STATE UNIVERSITY, FORT COLLINS, COLORADO 80521

[^0]: Received by the editors January 2, 1974.
 AMS (MOS) subject classifications (1970). Primary 34B05, 47E05; Secondary 34B25, 65 L 10.

 Key words and phrases. Least squares solution, boundary value problem, approximation scheme, generalized inverse.

