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ON CONSTRUCTING LEAST SQUARES SOLUTIONS

TO TWO-POINT BOUNDARY VALUE PROBLEMS

BY

JOHN LOCKER

ABSTRACT.   For an nth order linear boundary value problem Lf = g0

in the Hilbert space L2[a, b], a sequence of approximate solutions is constructed

which converges to the unique least squares solution of minimal norm.   The

method is practical from a computational viewpoint, and it does not require

knowing the null spaces of the differential operator L or its adjoint £*.

1. Introduction.  For a closed interval   [a, b] let S be the real Hilbert

space L2[a, b] with the standard inner product (f, g) and norm   11/11. We de-

note convergence in S by /( —*■ f and denote the domain, range, and null space

of any operator L  by  V(L), R(L), and  N(L), respectively.

Given an nth order formal differential operator

= ,?/<<)'

where the coefficients a¡(t) belong to  C°° [a, b]  and a (0^0 on   [a, b],

and given k linearly independent boundary values

Bff) = "Z %fü)(fl) + "Z PijfU)<P),     i=h--,k,
j=o j=o

we define a differential operator L  in 5 as follows:  Let H" [a, b] be the

subspace of S consisting of all functions / in C"_1[a, ¿>] with /("_1^

absolutely continuous on   [a, b]  and f^ in S, and lei  V(L) = {fG

H"[a, b]\Bi(f) = 0, i = 1, • • • ,k},Lf=Tf.   For a fixed function g0  in S we

consider the boundary value problem

(1) Lf = go-

In a previous paper [3] we used the method of least squares to construct

approximate solutions to equation (1). A careful examination of the approximation
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scheme shows that the null spaces  N(L) and  N(L*) must be known in order to

apply the method. In most practical problems it is impossible to calculate these

null spaces exactly, and hence, this approach appears to be of limited applica-

bility.

The purpose of this paper is to give a new least squares development which

is independent of these null spaces and which is computationally feasible. The

method yields approximate solutions which converge to the unique least squares

solution of (1) of minimal norm, and it can be used whether (1) is solvable or not.

In §2 we introduce the generalized inverse /,*  of the differential operator

L  and discuss its properties which are relevant to least squares solutions of equa-

tion (1). In §3 the selfadjoint differential operator LL* is studied.  This opera-

tor plays an important role in our approximation scheme, and in a future paper

we will describe its relationship to the generalized Green's function for L.  The

approximation scheme, including error estimates, is developed in §4.  For the

special case in which the eigenfunctions of LL* are used, the scheme has a

particularly simple form.

2. The generalized inverse of L. The restriction of L  to the subspace

V(L) n WiZ,)1  is a 1-1 closed operator, and its inverse

H=[L\V(L)nM(L)i]-1

is a 1-1 bounded linear operator with domain  R(L) and range  V(L) n [^(Ly1.

This operator is examined in [2].

Let P and Q denote the L2-orthogonal projections from S onto M(L)

and W(/.*), respectively. We observe that I-P and I-Q are the L2 -orthog-

onal projections from S onto the closed subspaces R(L*) and R(L), respec-

tively. Also, LHf = f for all fGR(L) and HLf = f-Pf for all fGV(L).
Let L* : S —> S be the bounded linear operator defined by L*/ =

H(I ~Q)f for all /G S. Clearly L*\R(L) = H, and it can be verified that L1"

has the following properties:

(i) LtfLf=Lf for all fGtXL),

(ii) ¿+/./,1"/=7.+/ for all fGS,

(iii) LLif = f-Qf for all fGS,

(iv) ÛLf = f-Pf for all fGV(L).
Therefore, L^  is the Moore-Penrose generalized inverse of L.  Our description

of ¿*  is similar to the one given by Loud [4, pp. 196-198].

For the boundary value problem (1) we let g0 = n0 + k0, where n0 =

g0 ~ QSq  belongs to  R(L) and kQ = QgQ  belongs to  W(¿*), and then we set

/„ = Lfg0 = Hh0. The function f0  belongs to V(L) n Mil)1  and has the

following properties:
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CONSTRUCTING LEAST SQUARES SOLUTIONS 177

(i) f0  is a least squares solution to equation (1), i.e.,  \\Lf0 - g0 II  is

equal to the infimum of the set of numbers  $Lf-g0i where / ranges over

V(L).
(ii) The set of all least squares solutions to equation (1) is the set f0 + N(L).

(iii) f0  is the unique least squares solution of equation (1) of minimal norm.

(iv) f0  is a solution to equation (1) when (1) is solvable.

(v) /o  is the unique solution in V(L) n N(L)1 of the boundary value

problem

(2) Lf=h0.

(vi)   \\Lf0-g0W=\\ho-g0\\=\\kol

The paper by Nashed [5] has a thorough treatment of generalized inverses

and least squares solutions, as well as an extensive list of references.  In the next

two sections we are going to construct a sequence of functions f¡(i = 1, 2, • • • )

in  V(L) n N(L)1 which converges to fQ = L*g0.

3. The differential operator LL*. Let

be the formal adjoint of r, and let

Bf(f) = "Z ^jfU)(fl) + "Z   ßfjfUKb),      i = 1, • • • , 2n - k,
j=o j=o

be a set of 2n - k linearly independent adjoint boundary values. The adjoint

operator L* is given by

V(L*) = {/E H" [a, b]\B*(f) = 0, i = 1, • • • , 2n - k},      L*f= r*f

We are going to work with the space Hn [a, b] under the norm

l/U = "Z    ™x   l/(0(0l + H/(") II,     /e H" [a, b],
,=0   o*»'*"0

which makes it into a Banach space. In addition, we introduce an inner product

(f, g\ = (f. g) + (rf, rg),     f,gGH"[a,b],

and associated norm  |/|T = (/, fj£, under which H"[a, b] becomes a Hilbert

space. The norms  I/Ï*  and  |/|T  are equivalent norms for H" [a, b], and the

topology induced by them is caHed the strong topology for H"[a, b]. Conver-

gence in the strong topology is uniform convergence of the first n - 1  derivatives

on   [a, b]  together with ¿2-convergence of the nth derivatives, and it is denoted
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s„

by f¡ —► /  The strong topology has been discussed in [3].

We also want to consider the space H2"[a, b] under its strong topology

induced by the inner product

V. g] = (f.g) + (f(2n), S?**),      /.IGH2"[a, b],

and associated norm  |/| = [/,/]. In this case strong convergence is denoted

by f{-► /  This particular inner product is convenient for representing bound-

ary values on H2n [a, b].

Lemma 1.   The operator t* maps the space H2"[a,b] onto the space

H"[a,b].

Proof.  It is easy to show that /G H2n [a, b] implies r*fG H"[a, b].

The onto property follows from [1, Corollary 4, p. 1283].

Lemma 2.   77ie operator t* is a continuous linear operator between the

strong topologies on H2"[a,b] and H"[a, b].

Proof.  Take a sequence of functions f¡ (i = 1, 2, • • • ) in H2n [a, b]

and a function fGH2"[a, b] with ff-^*f.  We know that fP — fW  as

i —► °° for / = 0, 1, • • • , 2n, which certainly implies that T*f¡ —► r*f and

TT*f¡ —► TT*f.  Thus,  It*/) - T*f\T —► 0, and the proof is complete.

Consider the linear functionals Bf, i = 1, ■ • • , k, defined on H2n[a, b]

by

(3) Bf(f) = Bl{r*f),     fGH2n[a,b].

By Lemma 2 each Bf  is continuous on H2n [a, b]  under the strong topology.

If fit) is any function in H2" [a, b] which is identically zero on neighborhoods

of a and b, then r*f(f) has the same property, and hence, Bf(f) = 0.

Therefore, each Bf  is a boundary value on H2"[a,b]. A direct calculation

shows that the classical representation of Bf   is

Bt(f)= zTz r <*JqMq--Dp) )l/°

(4)

ï,+(0 - "¿TZ   Z  ^iq(i)bjq-pP)(a)\fO\a.
j=0\_p=0q=p \lJ/ J

2zT "Z  H±\(fy}q-?*')\fmto
j=n Lp=j-n Q=P N   ' J

ZT Z   "Z    ßiq(l)Hq-pP)(b)]f^(b)
j=0 [_p=0 q=p Wf

2n— lT  n—1     n— 1 ,   « "1

z   z  z UqMq;p)(b) /W(6)
/=" LP=/-n   1-P        *   '

2n-l

+
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CONSTRUCTING LEAST SQUARES SOLUTIONS 179

for fe H2n [a, b]  and for i = 1, • • • , k.

Let T be the 2nth order differential operator defined by V(T) = {/G

H2n[a, b]\Bf(f) = Bf(f) = 0, í = 1, • • • , 2n - k and / = 1, • • • , k}, Tf =
TT*f. We are going to study the operator T, establishing its relationship with

the operators L  and L*.

Take any function fG V(T) and set g = r*f  Clearly g belongs to

H" [a, b] with B¡(g) = Bf(f) = 0 for i = 1, • • • , k, so g G V(L). Also,

fG V(L*), which implies that g G R(L*) = M^)1.  Therefore, the operator r*

maps V(T) into  V(L) n M(L)1. This property is essential for our approximation

scheme.

Next, take functions / and g in  V(T). Then / and g belong to  V(L*),

T*f and T*g belong to  V(L), and it follows that (Tf, g) = (f, Tg). Thus,

7C T*.

Let N = dim<5*, • • -, 5|„_k, B+,- ■ ■ , Bp. We know that  T* is a

2nth order differential operator determined by (tt*)* = tt* and a set of m =

An- N linearly independent adjoint boundary conditions  C¡(f) = 0, í = 1, • ■ ■ ,

m.  Choose functions g*, • ■ ■ , g2n_k, gf, ' ■ • , gf, and hx, ■ ■ ■ , hm  in

H2n[a,b]  suchthat

(5) B*(f) = \f,gf],      i=l,---,2n-k,

(6) yf(f) = lf,gf],     i=h---,k,

and C¡(f) = [/, h¡],. = 1, - • •, m, for all fG H2" [a, b]. In terms of the inner

product   [/, g]  on H2n [a, b] we have

m = m,--, g*2„-k> st>---, gp' cv(T*)=<hx,---, hm)L,

and hence, taking orthogonal complements we get

0) <«,,••', hm) C {g*, ■■■ , g*n_k, gt,-', gp-

But N<2n <m, and the inclusion in (7) implies these two subspaces are equal.

Therefore, N = m = 2n, XXJ) = í^*),  T = T*, and the boundary values

Bx, • • • , B2n_k, Bx, • • • , Bf   are linearly independent. We summarize these

results as a theorem, together with some other elementary properties of T.

Theorem 1.  77ie 2nth order differential operator T is selfadjoint with

hKT) = W(I*) and R(T) = R(L). Moreover, the operator t* maps V(T) onto

XXL) n N(L)L.

Remark 1.   Since L and L* aie closed densely defined linear operators
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in S, it is well known fro'm functional analysis that LL* is a positive selfadjoint

linear operator in S  [1, p. 1245]. The operator LL* is precisely our differ-

ential operator  T.  We have elected to give a detailed discussion of T for two

reasons:  (a)  the discussion is simple and natural, and (b) it emphasizes the

structure of T as a differential operator. Henceforth, the differential operator

T is denoted by LL*.

Remark 2.   The functions g*, • • • , g2n_k and gf, • • •, gf  which

represent the boundary values B*, • • • , B*n_k  and Bf,---,Bk   in equations

(5) and (6) can be explicitly calculated using equation (4) and Theorem 3 [3, p.

62]. This is very important for computational considerations.

4. The approximation scheme. To construct a sequence of functions which

converges to the least squares solution f0 = L^g0  of equation (1), we work in

the spaces H2n [a, b) and H" [a, b] under their strong topologies. Note that

V(LL*) and V(L) n U(Lf are closed subspaces in H2n[a, b]  and //"[a, b]

under these topologies, respectively.

Clearly the operator L is continuous from the induced strong topology on

V(L) O WCX)1 to the induced ¿2-topology on  R(L), and hence, there exists a

constant y > 0 such that

(8) \Hf\* < 7II/B    for all fG R(L).

Utilizing the inner product   \f,g] on H2"[a,b], let R  be the orthogonal

projection from H2n [a, b] onto the subspace (gx, • ■ •, £*„_*, gf, ' • •, gp-

The various operators are shown below schematically:

H2n [a, b] ■*=&+ V(LL*) A fl(I) n NiX)1 -^ R(L).

Choose a linearly independent sequence of functions pt (i = 1, 2, ■ • • ) in

H2"[a, b] such that the subspace <p1,p2»"''> is dense in H2"[a, b] under

the strong topology. For example, we can use p¡(t) = ¿~l   for / = 1, 2, • • ■

(see [3, pp. 60-61]). Let <p¡ = pt - Rp{, %t - t\¡, and 17, = t%¡ for 1 =

1, 2, • • • . Clearly ?, G V(LL*) with LL\t = m, and %¡ G V(L) n H(Lf

and rif G R(L) with L%t = rjt and Hr¡{ = |, for / = 1, 2, • • • .

Remark 3.   With no loss of generality we can assume that the sequence

%t (f » 1, 2, • • • ) is linearly independent, for otherwise we can pass to an appro-

priate linearly independent subsequence having the same linear span. The sequence

r¡¡ (i = 1, 2, • • • ) is also linearly independent since t is 1-1 on V(L) n Nil)1.

The operator I-R maps H2n[a, b] onto V(LL*), and it is continuous

under the strong topology on H2n[a, b]. Consequently, the subspace <i^1, <p2,

• • • > is dense in V(LL*) under the induced strong topology from H2n[a, b].
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CONSTRUCTING LEAST SQUARES SOLUTIONS 181

Similarly, the subspace (%x, %2, • • ■ >  is dense in  V(L) n N(L)    under the in-

duced strong topology from H"[a, b], and the subspace (rjx, t\2, • • • >  is dense

in  R(L) under the induced L2-topology from S.

For i = 1, 2, • • •     let P¡ be the Z,2-orfhogonal projection from S onto

the subspace (vx,- • ■ , r¡¡>- Clearly P¡g0 = P¡h0  and  (gQ, r?,.) = (n0,77,.)  for

1=1,2,*-*, and from the above discussion we have

(9) h0 = limPih0.
i

Now L  and H are isomorphisms between the subspaces <2fj, • • ■ , %¡> and

<i7j, • • • , r>¡), and hence, for 1 = 1, 2, • • •     the equation Lf = P¡h0  has the

unique solution f¡ = //P,n0  belonging to (|j, • • • , £,->. Using the continuity

of H with equation (9), we conclude that f¡ —^-> HhQ = f0, and in fact, from

equation (8) we get the error estimate

(10) \ft -/0|„ < 7llP,«0 - «o II    for 1 = 1, 2, • • • .

Proceeding as in [3], we can show that if we write f¡ in the form

ai) fi=Z4*i>

then the coefficients (ft, • • •, «J form the unique solution of the linear system

(12) Z Ofy £?,>•/ = (g0>L^    .= !,•••,/.
/=i

We summarize these results as a theorem and several corollaries.

Theorem 2. Let h0 and k0 be the L2-orthogonal projections of g0

on R(L) and hl(L*), respectively, and let the sequence of functions %¡ (i =

1, 2, • • • ) be constructed as above.   Then for i = 1, 2, • • •  the linear system

Z (L%¡, L\¿a\ = Gf0, U$,      I = 1, • • • , 1,

has a unique solution a'j, • • •, a), and the sequence of functions f¡ = Vj-^'fe

(1 = 1, 2, • ■ • ) converges in the strong topology on H" [a, b]  to the least

squares solution f0 = L^g0 = Hh0 of the boundary value problem (1) having

minimal norm. Moreover, the rate of convergence is determined by equation (10).

Corollary 1.  If the boundary value problem (1) is solvable, then f0 =

L*g0 is a solution, and \f¡ -/0U < tUT^o - ¿?0" for • = 1» 2, • • •   with

,ljPi^o " £ol,—'O « 1'—vo°.
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Corollary 2.   If the boundary value problem (1) is not solvable, then

f0 = L^g0  is a solution of the boundary value problem (2), and   ll/>/^0 -g0\\>

llfcoll>0 for i= 1,2, ••• .

Remark 4. Each step needed in determining the functions f¡ can actually

be computed. Also, the question of the solvability of the boundary value problem

(1) can be answered practically by determining whether   tPfg* -g0\\ —► 0.

Special case.   We conclude this paper by looking at the special form of the .

approximation scheme when the eigenfunctions of the selfadjoint differential

operator LL*  ate utilized.  Let q = dim N(LL*), and choose an L2-orthonor-

mal basis co01, • • • , co0    for  bl(LL*) = N(L*).

Consider the operator H0 = [LL*\V(LL*) n MXL*)1]-1.  We know that

H0  is a right inverse for LL* with domain  R(LL*) = R(L) and range  XKLL*)

n N(LL*y-  contained in  R(L), that H0  is selfadjoint and completely continu-

ous on  R(L) under its L2-structure, and that H0  is continuous from the in-

duced L2-topology on  R(L) to the induced strong topology on  d(LL*) O

H(LL*f from H2n[a, b].

Choose an L2-orthonormal basis co,- (i = 1, 2, • ■ ■ ) for  R(L) consisting

of eigenfunctions for H0, and let p¡(i=l,2,--) be the corresponding se-

quence of eigenvalues.  Setting \¡ = llp¡ for i = 1, 2, • • • , we have that  u¡G

V(LL*) n U(LL*f, LL*cj¡ = \fr>{, and \ > 0  for i = 1, 2, • • •  with \ -*

°°. Thus, the sequence of functions <o01, • • • , u0q, cox, co2, • ■ ■  belongs to

1XLL*) and forms an L2-orthonormal basis for .S*.

If /G V(LL*), then in terms of L2-convergence we have

(13) IL*/- Z (LL*f, to^co,. = Z \¡(f, co.Oco,,
i=i í=i

and hence, applying H0 we conclude that

(14) /= Z (/• woí)"oí +¿(/¡ W,-M-
í=i «-i

for all /G V(LL*), where the convergence in equation (14) is strong convergence

in H2n[a, b]. This implies that the subspace (ojx, co2, • • •> is dense in

1XLL*) n M(LL*f under the induced strong topology from H2n[a, b].

If we let %i = t*co¡ and r¡¡ = t%¡ = \-u¡ for i = 1, 2, • • • , then our

earlier discussion can be modified to yield a new approximation scheme. In

particular, equation (12) takes the simplified form

i

Z A/A/ÍW;, uXj = \(g0, OJ,),       / = 1, • • • , i,
/=i

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



CONSTRUCTING LEAST SQUARES SOLUTIONS 183

so alj = (l¡\¡)(g0, Wy) for / = 1, • • • , i.  We obtain the following theorem.

Theorem 3. Let oj,- (i = 1, 2, • • • ) be a sequence of eigenfunctions for

the selfadjoint differential operator LL* which forms an L2-orthonormal basis

for R(LL*) = R(L), and let \ (i = 1, 2, • • • ) be the corresponding sequence

of eigenvalues.   Then the sequence of functions

fi = Z (x~)teo> "/>•*«/.     / = 1, 2, • • • ,

converges in the strong topology on H" [a, b]  to f0 = L^g0 = Hh0  with

\f¡ -f0\* < 7¡Z (Äo. «/)"/ - *o|-    • = 1, 2, • • • .
Il/=i II
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