
https://doi.org/10.1007/s00145-017-9268-6
J Cryptol (2018) 31:698–736

On Constructing One-Way Permutations from
Indistinguishability Obfuscation∗

Gilad Asharov†

Cornell Tech, New York, NY, USA
asharov@cornell.edu

Gil Segev‡

School of Computer Science and Engineering, Hebrew University of Jerusalem, 91904 Jerusalem, Israel
segev@cs.huji.ac.il

Communicated by Kenneth G. Paterson.

Received 18 December 2015 / Revised 16 August 2017
Online publication 15 September 2017

Abstract. We prove that there is no black-box construction of a one-way permu-
tation family from a one-way function and an indistinguishability obfuscator for the
class of all oracle-aided circuits, where the construction is “domain invariant” (i.e.,
where each permutation may have its own domain, but these domains are independent
of the underlying building blocks). Following the framework of Asharov and Segev
(FOCS ’15), by considering indistinguishability obfuscation for oracle-aided circuits
we capture the common techniques that have been used so far in constructions based on
indistinguishability obfuscation. These include, in particular, non-black-box techniques
such as the punctured programming approach of Sahai and Waters (STOC ’14) and its
variants, as well as sub-exponential security assumptions. For example, we fully cap-
ture the construction of a trapdoor permutation family from a one-way function and an
indistinguishability obfuscator due to Bitansky, Paneth, and Wichs (TCC ’16). Their
construction is not domain invariant, and our result shows that this, somewhat unde-
sirable property, is unavoidable using the common techniques. In fact, we observe that
constructions which are not domain invariant circumvent all known negative results for
constructing one-way permutations based on one-way functions, starting with Rudich’s
seminal work (PhD thesis ’88). We revisit this classic and fundamental problem and

∗A preliminary version of this work appeared in Proceedings of the 13th Theory of Cryptography Confer-
ence (TCC), pages 512–541, 2016.

† Currently supported by a Junior Fellow award from the Simons Foundation. This work was completed
while the author was a post-doctoral researcher at the Hebrew University’s School of Computer Science and
Engineering, and supported by the Israeli Centers of Research Excellence (I-CORE) Program (Center No.
4/11).

‡ Supported by the European Union’s 7th Framework Program (FP7) via a Marie Curie Career Integration
Grant (Grant No. 618094), by the European Union’s Horizon 2020 Framework Program (H2020) via an ERC
Grant (Grant No. 714253), by the Israel Science Foundation (Grant No. 483/13), by the Israeli Centers of
Research Excellence (I-CORE) Program (Center No. 4/11), by the US-Israel Binational Science Foundation
(Grant No. 2014632), and by a Google Faculty Research Award.

© International Association for Cryptologic Research 2017

http://crossmark.crossref.org/dialog/?doi=10.1007/s00145-017-9268-6&domain=pdf

On Constructing One-Way Permutations from Indistinguishability Obfuscation 699

resolve this somewhat surprising gap by ruling out all such black-box constructions—
even those that are not domain invariant.

Keywords. Indistinguishability obfuscation, Black-box separations, One-way
permutations, Lower bounds.

1. Introduction

One-way permutations are among the most fundamental primitives in cryptography,
enabling elegant constructions of a wide variety of central cryptographic primitives.
Although various primitives, such as universal one-way hash functions and pseudo-
random generators, can be constructed based on any one-way function [39,54], their
constructions based on one-way permutations are much simpler and significantly more
efficient [11,51].
Despite the key role of one-way permutations in the foundations of cryptography, only

very few candidates have been suggested over the years.Whereas one-way functions can
be based on an extremely wide variety of assumptions, candidate one-way permutation
families are significantly more scarce. Up until recently, one-way permutation families
were known to exist only based on the hardness of problems related to discrete logarithms
and factoring [53,55].Moreover, the seminal work byRudich [57], within the framework
of Impagliazzo and Rudich [42], initiated a line of research showing that a one-way
permutation cannot be constructed in a black-box manner from a one-way function or
from various other cryptographic primitives [21,45,47,48].
Very recently, a one-way (trapdoor!) permutation family was constructed by Bitansky

et al. [15] based on indistinguishability obfuscation [9,30] and one-way functions. Their
breakthrough result provides the first trapdoor permutation family that is not based on
the hardness of factoring, and motivates the task of studying the extent to which indis-
tinguishability obfuscation can be used for constructing one-way permutations. Specif-
ically, their work leaves completely unresolved the following question, representing to
a large extent the “holy grail” of constructing one-way permutations:

Is there a construction of a one-way permutation over {0, 1}n based on indis-
tinguishability obfuscation and one-way functions?

While exploring this intriguing question, one immediately identifies two somewhat
undesirable properties in the construction of Bitansky, Paneth, and Wichs:

• Even when not aiming for trapdoor invertibility, their approach seems limited to
providing a family of permutations instead of a single permutation1.

• Their construction provides permutations that are defined over domains which both
depend on the underlying building blocks and are extremely sparse2.

1Moreover, Bitansky et al. note that their permutations do not seem certifiable. That is, they were not able
to provide an efficient method for certifying that a key is well formed and describes a valid permutation. In
contrast, a single permutation is certifiable by its nature.

2Each permutation in their construction is defined over a domain of elements of the form (x,PRFK (x)),
where PRF is a pseudorandom function, and each permutation is associated with a different key K . This
domain depends on the underlying building block, i.e., the pseudorandom function (equivalently, one-way
function).

700 G. Asharov, G. Segev

From the theoretical perspective, one-way permutation familieswith these twoproperties
are typically still useful for most constructions that are based on one-way permutations.
However, such families lack the elegant structure that makes constructions based on
one-way permutations more simple and significantly more efficient when compared to
constructions based on one-way functions.

1.1. Our Contributions

Motivated by the recent construction of Bitansky et al. [15], we study the limitations of
using indistinguishability obfuscation for constructing one-way permutations. Following
the framework of Asharov and Segev [3], we consider indistinguishability obfuscation
for oracle-aided circuits and thus capture the common techniques that have been used so
far in constructions based on indistinguishability obfuscation. These include, in particu-
lar, non-black-box techniques such as the punctured programming approach of Sahai and
Waters [59] and its variants, as well as sub-exponential security assumptions. For exam-
ple, we fully capture the construction of a trapdoor permutation family from a one-way
function and an indistinguishability obfuscator due to Bitansky et al. [15]. We refer the
reader to Sect. 1.3.1 for an overview of our framework and of the type of constructions
that it captures.
Our work considers three progressively weaker one-way permutation primitives: (1)

a domain-invariant one-way permutation, (2) a domain-invariant one-way permutation
family, and (3) a one-way permutation family (which may or may not be domain invari-
ant). Roughly speaking, we say that a construction of a one-way permutation (or a
one-way permutation family) is domain invariant if the domain of the permutation is
independent of the underlying building blocks. (In the case of a permutation family, we
allow each permutation to have its own domain, but these domains have to be indepen-
dent of the underlying building blocks, or, in an oracle setting, should be the same for
any valid instantiation of the oracle—see Definition 3.2.)

Within our framework, we prove the following two impossibility results, providing a
tight characterization of the feasibility of constructing these three progressively weaker
one-way permutation primitives based on one-way functions and indistinguishabil-
ity obfuscation using the common techniques. (We summarize this characterization
in Fig. 1.)

iO+OWF �⇒ domain-invariant OWP family. Bitansky et al. [15] showed that any
sub-exponentially secure indistinguishability obfuscator and one-way function imply
a one-way permutation family which is not domain invariant. We show that using the
common techniques (as discussed above) one cannot construct the stronger primitive of
a domain-invariant one-way permutation family (even when assuming sub-exponential
security). In particular, we show that the above-described undesirable properties of their
construction are unavoidable unless new non-black-box techniques are introduced.3

3In addition to the above-described undesirable properties, our impossibility result holds even for construc-
tions of one-way permutation families that have a “pseudo” input sampling procedure instead of an “exact”
input sampling procedure (as in [15]), as well as to constructions that are not necessarily certifiable (again, as
in [15]).

On Constructing One-Way Permutations from Indistinguishability Obfuscation 701

OWF iO + OWF

Domain-invariant
OWP

Domain-invariant
OWP family OWP family

[BPW15][Rud88,…] Thm. 1.1Thm. 1.2

Fig. 1. Adashed arrow from a primitive A to a primitive B indicates that A implies B by definition. Bitansky et
al. [15] showed that any sub-exponentially secure indistinguishability obfuscator and one-way function imply
a one-way permutation family (which is not domain invariant), and we show that one cannot construct the
stronger primitive of a domain-invariant one-way permutation family unless new non-black-box techniques
are introduced (even when assuming sub-exponential security). The line of research starting with Rudich
[57] showed that one cannot construct a domain-invariant one-way permutation from a one-way function in
a black-box manner. We improve this result, showing that one cannot construct the weaker primitive of a
one-way permutation family (even one that is not domain invariant) from a one-way function in a black-box
manner (again, even when assuming sub-exponential security) .

Theorem 1.1. There is no fully black-box construction of a domain-invariant one-way
permutation family from a one-way function f and an indistinguishability obfuscator
for the class of all oracle-aided circuits C f .

OWF �⇒ OWP family. In fact, we observe that constructions which are not domain
invariant circumvent the known negative results for constructing one-way permutations
based on one-way functions, starting with Rudich’s seminal work [45,48,52,57]. We
revisit this classic and fundamental problem and resolve this surprising gap by ruling out
all black-box constructions of one-way permutation families from one-way functions—
even those that are not domain invariant.

Theorem 1.2. There is no fully black-box constructionof aone-waypermutation family
(even a non-domain-invariant one) from a one-way function.

For conclusion, while the work of Rudich rules out constructions of a single domain-
invariant one-way permutation based on one-way functions, our work extends this result
in two orthogonal directions. First, we rule out constructions that are based on indistin-
guishability obfuscation, in addition to one-way functions (Theorem 1.1). Second, while
the result of Rudich applies only to domain-invariant constructions, Theorem 1.2 rules
out even non-domain-invariant constructions.

1.2. Related Work

The recent line of research focusing on new constructions based on indistinguishability
obfuscation has been extremely fruitful so far. (See, for example, [1,2,6,7,13–20,23–
26,29–31,37,41,43,59,60] and the references therein.) However, the extent to which
indistinguishability obfuscation can be used as a building block has been insufficiently
explored. Our approach for proving meaningful impossibility results for constructions
based on indistinguishability obfuscation is based on that of Asharov and Segev [3]
(which, in turn, was inspired by that of Brakerski et al. [10]). They showed that the com-

702 G. Asharov, G. Segev

mon techniques (including non-black-box ones) that are used in constructions based on
indistinguishability obfuscation can be captured by considering the stronger notion of
indistinguishability obfuscation for oracle-aided circuits. (See Sect. 1.3.1 for an elab-
orate discussion) Generalizing the work of Simon [58] and Haitner et al. [38], they
showed that using these common techniques one cannot construct a collision-resistant
hash function family from a general-purpose indistinguishability obfuscator (even when
assuming sub-exponential security). In addition, generalizing the work of Impagliazzo
and Rudich [42] and Brakerski et al. [10], they showed a similar result from constructing
a perfectly complete key agreement protocol from a private-key functional encryption
scheme (again, even when assuming sub-exponential security).
It is far beyond the scope of this paper to provide an overview of the lines of research

on black-box impossibility results in cryptography. (See, for example, [4,5,8,12,22,27,
28,32–34,40,42,49,50,56,58,61] and the references therein.) Impossibility results for
constructing one-way permutations start with the seminal work of Rudich [57]. This
line of research has successfully shown that one-way permutations cannot be based on
a variety of fundamental cryptographic primitives (e.g., [21,45,47,48]). However, these
impossibility results capture only constructions of a single permutation that is domain
invariant, anddonot seem to capturemoregeneral constructions (such as the construction
of Bitansky et al. [15] producing a permutation family which is not domain invariant).
The notion of “domain invariance” that we consider in this work for black-box con-

structions is somewhat related to that of “function obliviousness” that was introduced
by Dachman-Soled et al. [28] for coin-flipping protocols. They proved an impossibility
result for constructing an optimally fair coin-flipping protocol based on any one-way
function, as long as the outcome of the protocol is completely independent of the specific
one-way function that is used.

1.3. Overview of Our Results

In this section we provide a high-level overview of our two results. First, in Sect. 1.3.1
we describe the framework that enables us to prove a meaningful impossibility result
for constructions that are based on indistinguishability obfuscation. Next, in Sect. 1.3.2
we describe Rudich’s attack for inverting any domain-invariant permutation relative to a
random oracle. Extending Rudich’s approach, we then discuss the main technical ideas
underlying our results: In Sect. 1.3.3 we present an attack on any domain-invariant per-
mutation family relative to our, significantlymore structured, oracle, and in Sect. 1.3.4we
generalize Rudich’s attack to non-domain-invariant permutation families in the random-
oracle model.

1.3.1. Capturing Non-Black-Box Constructions via iO for Oracle-Aided Circuits

The fact that constructions that are based on indistinguishability obfuscation are almost
always non-black-boxmakes it extremely challenging to prove any impossibility results.
For example, a typical such construction would apply the obfuscator to a function that
uses the evaluation circuit of a pseudorandom generator or a pseudorandom function,
and this requires specific implementations of its underlying building blocks.

On Constructing One-Way Permutations from Indistinguishability Obfuscation 703

However, as observedbyAsharov andSegev [3],most of the non-black-box techniques
that are used on such constructions have essentially the same flavor: The obfuscator is
applied to functions that can be constructed in a fully black-boxmanner from a low-level
primitive, such as a one-way function. In particular, the vast majority of constructions
rely on the obfuscator itself in a black-box manner. By considering the stronger primi-
tive of an indistinguishability obfuscator for oracle-aided circuits (see Definition 2.4),
Asharov and Segev showed that such non-black-box techniques in fact directly translate
into black-box ones. These include, in particular, non-black-box techniques such as the
punctured programming approach of Sahai and Waters [59] and its variants (as well as
sub-exponential security assumptions—which are already captured bymost frameworks
for black-box impossibility results).

Example: The Sahai–Waters Approach. Consider, for example, the construction of
a public-key encryption scheme from a one-way function and a general-purpose indis-
tinguishability obfuscator by Sahai and Waters [59]. Their construction relies on the
underlying one-way function in a non-black-box manner. However, relative to an oracle
that allows the existence of a one-way function f and indistinguishability obfuscation iO
for oracle-aided circuits, it is in fact a fully black-box construction. Specifically, Sahai
and Waters use the underlying indistinguishability obfuscator for obfuscating a circuit
that invokes a puncturable pseudorandom function and a pseudorandomgenerator as sub-
routines. Given that puncturable pseudorandom functions and pseudorandom generators
can be based on any one-way function in a fully black-box manner, from our perspective
such a circuit is a polynomial-size oracle-aided circuit C f—which can be obfuscated
using iO. (We refer to reader to [3, Sec. 4.6] for an in-depth technical treatment.)

This reasoning extends to various variants of the punctured programming approach
by Sahai and Waters [59] and, in particular, fully captures the construction of a trapdoor
permutation family from a one-way function and an indistinguishability obfuscator due
to Bitansky et al. [15]. As noted in [3], this approach does not capture constructions that
rely on the obfuscator itself in a non-black-box manner (e.g., [13])4, or constructions
that rely on zero-knowledge techniques and require using NP reductions5.

The Oracle. Our first result is obtained by presenting an oracle � relative to which the
following two properties hold: (1) There is no domain-invariant one-way permutation
family, and (2) there exist an exponentially secure one-way function f and an expo-
nentially secure indistinguishability obfuscator iO for the class of all polynomial-size
oracle-aided circuits C f . Our oracle is quite intuitive and consists of three functions:
(1) a random function f that will serve as the one-way function, (2) a random injective
length-increasing function O that will serve as the obfuscator (an obfuscation of an
oracle-aided circuit C is a “handle” O(C, r) for a uniformly chosen string r), and (3)
a function Eval that enables evaluations of obfuscated circuits (Eval has access to both
f and O): Given a handle O(C, r) and an input x , it “finds” C and returns C f (x). We
refer the reader to Sect. 3.2 for more details.

4With the exception of obfuscating a function that may invoke an indistinguishability obfuscator in a
black-box manner. This is captured by our approach—see [3, Sec. 3.1].

5Such techniques are captured by the work of Brakerski et al. [10], and we leave it as an intriguing open
problem to see whether the two approaches for capturing non-black-box techniques can be unified.

704 G. Asharov, G. Segev

The vast majority of our effort is in showing that relative to � there is no domain-
invariant one-way permutation family. Specifically, as for the second part, our oracle
� is somewhat similar to the oracle introduced by [3], relative to which they proved
the existence of an exponentially secure one-way function and an exponentially secure
indistinguishability obfuscator. (See Sect. 3.2 for the differences between the oracles.)
In the remainder of this section, we first provide a high-level overview of Rudich’s

attack on any single domain-invariant permutation in the random-oracle model. Inspired
by this attack, in Sects. 1.3.3 and 1.3.4 we explain the main challenges in extending
Rudich’s attack to domain-invariant constructions relative to our oracle and to non-
domain-invariant constructions in the random-oracle model. We again refer the reader
to Fig. 1 which summarizes our characterization of the feasible constructions.

1.3.2. Warm-up: Rudich’s Attack in the Random-Oracle Model

Following [45,48,57] we show that for any oracle-aided polynomial-time algorithm P ,
if P f implements a permutation over the same domain D for all functions f (i.e., P is
domain invariant), then there exists an oracle-aided algorithmA that for any function f
inverts P f with probability 1 by querying f for only a polynomial number of times. The
algorithm A is given some string y∗ ∈ D and oracle access to f and is required to find
the unique x∗ ∈ D such that P f (x∗) = y∗. It first initializes a set of queries/answers
Q, which will contain the actual queries made by A to the true oracle f . It repeats the
following steps polynomially many times:

1. Simulation: A finds an input x ′ ∈ D and a set of oracle queries/answers f ′ that is
consistent with Q (i.e., f ′(w) = f (w) for every w ∈ Q) such that P f ′

(x ′) = y∗.
2. Evaluation: A evaluates P f (x ′) (i.e., evaluation with respect to the true oracle

f). If the output is y∗, it terminates and outputs x ′.
3. Update: A asks f for all queries in f ′ that are not in Q, and updates the set Q.

The proof relies on the following observation: In each iteration, either (1)A finds the
pre-image x∗ such that P f (x∗) = y∗, or (2) in the update phase, A queries f with at
least one new query that is also made by P during the computation of P f (x∗) = y∗.

Intuitively, if neither of the above holds, thenwe can construct a “hybrid” oracle ˜f that
behaves like f in the evaluation of P f (x∗) = y∗ and behaves like f ′ in the evaluation of
P f ′

(x ′) = y∗. This hybrid oracle can be constructed since the two evaluations P f ′
(x ′)

and P f (x∗) have no further intersection queries rather than the queries which are already
in Q. According to this hybrid oracle ˜f , it holds that P ˜f (x ′) = P ˜f (x∗) = y∗ but yet
x∗�=x ′, and thus, relative to ˜f the value y∗ has two pre-images, in contradiction to the
fact that P always implements a permutation. Using this claim, since there are only
polynomially many f -queries in the evaluation of P f (x∗) = y∗, the algorithm A must
output x∗ after a polynomial number of iterations (more specifically, after at most q + 1
iterations, where q is the number of oracle gates in the circuit P).

1.3.3. Attacking Domain-Invariant Permutation Families Relative to Our Oracle

We extend the attack described above in two different aspects. First, we rule out con-
structions of domain-invariant permutation families and not just a single permutation.
Second, we extend the attack to work relative to our oracle, which is a significantly more

On Constructing One-Way Permutations from Indistinguishability Obfuscation 705

structured oracle than a random oracle and therefore raises new technical challenges.
Indeed, by the discussion in Sect. 1.3.1, relative to our oracle there exists a non-domain-
invariant construction of one-way permutation family [15]. This mere fact represents
the subtleties we have to deal with in our setting. In the following overview, we focus
our attention on the challenges that arise due to the structure of our oracle, as these are
the most important and technically challenging ones.
Recall that our oracle � consists of three different oracles: a length-preserving func-

tion f , an injective length-increasing function O, and an “evaluation” oracle Eval that
depends on both f and O. We now sketch the challenges that these oracles introduce.

1. The first challenge is that the evaluation oracle Eval is not just a “simple” func-
tion. This oracle performs (by definition) exponential time computations (e.g., an
exponential number of queries to f and O) which may give immense power to the
construction P . Specifically, unlike in Rudich’s case, here it is no longer true that
the computation P�(x∗) performs a polynomial number of oracle queries (although
P itself is of polynomial size).

2. The second challenge is that since the oracle Eval depends on both f and O,
each query to Eval determines many other queries to f and O implicitly, which
we need to make sure that they are considered in the attack. Specifically, given
the structured dependencies between f , O and Eval, in some cases it may not be
possible to construct a hybrid oracle even if there are no more intersection queries.
(In Rudich’s case a hybrid oracle always exists.)

3. Finally, the third challenge is the fact thatO is injective, which causes the following
problem (somewhat similar to [48]). In our case, we are forced to assume that P�

is a permutation only when O is an injective length-increasing function and not
just any arbitrary function as in Rudich’s case (as otherwise our obfuscator may not
preserve functionality). Therefore, when constructing the hybrid oracle ˜O, we must
ensure that it is also injective in order to reach a contradiction. However, the hybrid
oracle ˜O might be non-injective when there is some overlap between the images of
the true oracle O and the sampled oracle O′ on elements that are not in Q.

We revise the attack and its analysis to deal with the above obstacles. As in Rudich’s
attack, the algorithm A considers the collection of all oracles that are consistent with
Q. However, for dealing with the third challenge, it then chooses one of these oracles
uniformly at random and does not pick just an arbitrarily one as in Rudich’s attack. We
then show thatwith all but an exponentially small probability, there is no overlap between
the range of the sampled oracleO′ and the true oracleO, and therefore, the hybrid oracle
˜O can almost always be constructed in an injective manner. Then, dealing with the first
challenge,we show thatEval does not give P a significant capability as onemay imagine.
Intuitively, this is due to the fact thatO is length increasing, and therefore, its range is very
sparse. As a result, it is hard to sample a valid image of O without first querying it, and
almost any Eval query can be simulated by the construction P itself. Finally, due to the
dependencies between the oracles, for dealing with the second challenge, the algorithm
A will have to sample additional, carefully chosen, polynomially many queries that do
not necessarily appear in the evaluations P�(x∗) = y∗ or P�′

(x ′) = y∗, but are related
to the set of queries that appears in these evaluations. This results in a rather involved
proof, where we carefully define this set of queries and extend the analysis accordingly.

706 G. Asharov, G. Segev

As expected, our proof does not extend to constructions that are not domain invariant.
For example, in such constructions for two distinct (injective) functions � and �′, the
domain of the permutations P� and P�′

may be completely distinct, and this forces
additional restrictions on the number of oracles �′ that are “valid” (i.e., can be used
to construct the hybrid oracle ˜� as above). As a result, while in the original proof of
Rudich all of the oracles �′ that the adversary may pick are valid, and while in our case
all but some exponentially small amount of oracles �′ are valid, here the number of valid
oracles may be significantly smaller and therefore the attack may succeed with only a
negligibly small probability.

1.3.4. Attacking Non-domain-Invariant Permutation Families in the Random-Oracle
Model

At a first sight, it seems that a natural approach toward ruling out non-domain-invariant
families relative to a random oracle is to reduce them to the case of a single permutation.
That is, the adversary receives some index α of some permutation in the family, together
with the challenge element y∗ ∈ D f

α which it needs to invert. (Note that now the
respective domain D f

α may depend on both f and α.) A natural approach is to apply
Rudich’s attack to the single permutation P f (α, ·).
However, this approach seems somewhat insufficient due to the following reasons.

First, since the construction is not domain invariant, the set of valid indices depends
on the underlying primitive, and the set of valid indices for the true oracle f may be
completely different than the set of valid indices for the oracle f ′ that will be sampled by
A in each iteration (e.g.,αmight even not be a valid indexwith respect to the sampled f ′).

Second, whenA inverts y∗ relative to f ′, it may be that the pre-image x ′ that it finds is
not even in the domainD f

α of the permutation P f (α, ·) that it needs to invert. That is, it
may be that even when the index α is valid relatively to both f and f ′, the domain of the
permutation indexed by α relative to f is completely different than the domain relative
to f ′. One can try restricting A to sampling x ′ from the domain D f

α , but conditioning
on P f ′

(α, x ′) = y∗ it is not clear that such an x ′ even exists (and, even if it exists, A
would typically need an exponential number of queries to f for finding it—sinceA has

no “simple” representation of the sets D f
α and D f ′

α).
Finally, even when x ′ is the pre-image of y∗ relative to f ′ and x∗ is the pre-image of

y∗ relative to f , we have no guarantee that neither x ′ or x∗ are even in the domain of
the permutation indexed by α when considering the hybrid oracle ˜f . Therefore, the fact
that P f (α, x∗) = P f ′

(α, x ′) and x∗ �= x ′ may not indicate any contradiction.
In Sect. 4 we show how to overcome these obstacles. Intuitively, when sampling some

function f ′ and the element x ′, the algorithm A samples in addition two “certificates”
that ensure that α is a valid index relative to f ′, and that x ′ is in the respective domain.
These certificates include the randomness used by the index sampling and input sampling
procedures of the permutation family, as well as all oracle queries and answers that are
involved in the execution of these two procedures. We later use these certificates when
defining the hybrid function ˜f and thus ensure that α is a valid index relative to ˜f and
that x ′ is in the respective domain. Similarly, relative to the true oracle f , there exist
some other certificates (which are unknown to A) that ensure that α and x∗ are valid

On Constructing One-Way Permutations from Indistinguishability Obfuscation 707

and are considered as well when defining the hybrid ˜f . Only then we can conclude the
existence of a hybrid oracle ˜f relative to which there exist an index α and two distinct
inputs x∗ and x ′ in the domain of α such that P ˜f (α, x∗) = P ˜f (α, x ′).

1.4. Paper Organization

The remainder of this paper is organized as follows. In Sect. 2 we introduce the crypto-
graphic primitives under consideration in this paper, oracle-aided one-way permutation
families and indistinguishability obfuscation for oracle-aided circuits, as well as some
standard notation. In Sect. 3 we present our negative result for constructing domain-
invariant one-way permutation families from indistinguishability obfuscation and one-
way functions. Then, in Sect. 4 we present our negative result for constructing one-way
permutation families from one-way functions.

2. Preliminaries

In this section we present the notation and basic definitions that are used in this work.
For a distribution X we denote by x ← X the process of sampling a value x from the
distribution X . Similarly, for a set X we denote by x ← X the process of sampling a
value x from the uniform distribution overX . For an integer n ∈ N, we denote by [n] the
set {1, . . . , n}. A function negl : N → R

+ is negligible if for every constant c > 0 there
exists an integer Nc such that negl(n) < n−c for all n > Nc. Throughout the paper, we
denote by n the security parameter. For a function f : {0, 1}∗ → {0, 1}∗, we let Im(f)
to denote the image of f , that is Im(f) = {y ∈ {0, 1}∗ | ∃x ∈ {0, 1}∗ s.t. f (x) = y}.

2.1. Oracle-Aided One-Way Permutation Families

We consider the standard notion of a one-way permutation family (see, for example,
[36]) when naturally generalized to the setting of oracle-aided algorithms (as required
within the context of black-box reductions [42,56]). We start by formalizing the notion
of an oracle-aided permutation family and then introduce the standard one-wayness
requirement.

Definition 2.1. Let (Gen,Samp,P) be a triplet of oracle-aided polynomial-time algo-
rithms. We say that (Gen,Samp,P) is an oracle-aided permutation family relative
to an oracle � if the following properties are satisfied:

• Index Sampling: Gen�(·) is a probabilistic algorithm that takes as input the secu-
rity parameter 1n and produces a distribution over indices α. For every n ∈ N we

denote by I�
n the support of the distributionGen�(1n), and we let I� def= ⋃

n∈N I�
n .

• Input Sampling:Samp�(·) is a probabilistic algorithm that takes as input an index
α ∈ I� , and produces a uniform distribution over a set denoted D�

α .
• Permutation Evaluation: For any index α ∈ I� , P�(α, ·) is a deterministic algo-
rithm that computes a permutation over the set D�

α .

708 G. Asharov, G. Segev

Definition 2.2. An oracle-aided permutation family (Gen,Samp,P) is one way rel-
ative to an oracle � if for any probabilistic polynomial-time algorithm A there exists
a negligible function negl(·) such that

Pr
[

A�(α,P�(α, x)) = x
] ≤ negl(n)

for all sufficiently large n ∈ N, where the probability is taken over the choice of α ←
Gen�(1n), x ← Samp�(α), and over the internal randomness of A.

2.2. Indistinguishability Obfuscation for Oracle-Aided Circuits

Weconsider the standardnotionof indistinguishability obfuscation [9,30]whennaturally
generalized to oracle-aided circuits (i.e., circuits thatmay contain oracle gates in addition
to standardgates).Wefirst define thenotionof functional equivalence relative to a specific
function (provided as an oracle), and then we define the notion of an indistinguishability
obfuscation for a class of oracle-aided circuits. In what follows, when considering a
class C = {Cn}n∈N of oracle-aided circuits, we assume that each Cn consists of circuits
of size at most n.

Definition 2.3. Let C0 and C1 be two oracle-aided circuits, and let f be a function.
We say that C0 and C1 are functionally equivalent relative to f , denoted C f

0 ≡ C f
1 ,

if for any input x it holds that C f
0 (x) = C f

1 (x).

Definition 2.4. A probabilistic polynomial-time algorithm iO is an indistinguisha-
bility obfuscator relative to an oracle � for a class C = {Cn}n∈N of oracle-aided circuits
if the following conditions are satisfied:

• Functionality. For all n ∈ N and for all C ∈ Cn , it holds that

Pr
[

C� ≡ ̂C� : ̂C ← iO�(1n,C)
] = 1.

• Indistinguishability. For any probabilistic polynomial-time distinguisher D =
(D1, D2), there exists a negligible function negl(·) such that

AdviO�,iO,D,C(n)
def=

∣

∣

∣

∣

Pr
[

ExpiO�,iO,D,C(n) = 1
]

− 1

2

∣

∣

∣

∣

≤ negl(n)

for all sufficiently large n ∈ N, where the random variable ExpiO�,iO,D,C(n) is
defined via the following experiment:

1. b ← {0, 1}.
2. (C0,C1, state) ← D�

1 (1n) where C0,C1 ∈ Cn and C�
0 ≡ C�

1 .
3. ̂C ← iO�(1n,Cb).
4. b′ ← D�

2 (state, ̂C).
5. If b′ = b then output 1, and otherwise, output 0.

On Constructing One-Way Permutations from Indistinguishability Obfuscation 709

3. Impossibility for Constructions Based on iO and One-Way Functions

In this sectionwe present our negative result for domain-invariant constructions of a one-
way permutation family from a one-way function and an indistinguishability obfuscator.
In Sect. 3.1 we formally define the class of constructions to which our negative result
applies. Then, in Sect. 3.2 we present the structure of our proof, which is provided in
Sects. 3.3, 3.4 and 3.5.

3.1. The Class of Constructions

We consider fully black-box constructions of a one-way permutation family from a
one-way function f and an indistinguishability obfuscator for all oracle-aided circuits
C f . Following [3], we model these primitives as two independent building blocks due
to the following reasons. First, although indistinguishability obfuscation is known to
imply one-way functions under reasonable assumptions [43], this enables us to prove
an unconditional result. Second, and more importantly, this enables us to capture the
common techniques that have been used so far in constructions based on indistinguisha-
bility obfuscation. As discussed in Sect. 1.3.1, these include, in particular, non-black-box
techniques such as the punctured programming approach of Sahai and Waters [59] and
its variants.
We now formally define the class of constructions considered in this section, tailoring

our definitions to the specific primitives under consideration. We remind the reader that
two oracle-aided circuits,C0 andC1, are functionally equivalent relative to a function f ,
denoted C f

0 ≡ C f
1 , if for any input x it holds that C f

0 (x) = C f
1 (x). (see Definition 2.3.)

The following definition is based on those of [3] (which, in turn, are motivated by
[35,46,56]).

Definition 3.1. A fully black-box construction of a one-way permutation family from a
one-way function and an indistinguishability obfuscator for the class C = {Cn}n∈N of all
polynomial-size oracle-aided circuits, consists of a triplet of oracle-aided probabilistic
polynomial-time algorithms (Gen,Samp,P), an oracle-aided algorithm M that runs in
time TM (·), and functions εM,1(·) and εM,2(·), such that the following conditions hold:

• Correctness: For any function f and for any function iO such that iO(C; r) f ≡
C f for all C ∈ C and r ∈ {0, 1}∗, the triplet (Gen,Samp,P) is a permutation
family relative to the oracle (f, iO) (as in Definition 2.1).

• Black-Box Proof of Security: For any function f , for any function iO such that
iO(C; r) f ≡ C f for all C ∈ C and r ∈ {0, 1}∗, for any oracle-aided algorithm A
that runs in time TA = TA(n), and for any function εA = εA(n), if

Pr
[

A f,iO(α,P f,iO(α, x)) = x
]

≥ εA(n)

for infinitely many values of n ∈ N, where the probability is taken over the choice
of α ← Gen f,iO(1n), x ← Samp f,iO(α), and over the internal randomness of
A, then either

710 G. Asharov, G. Segev

Pr
[

MA, f,iO (f (x)) ∈ f −1(f (x))
]

≥ εM,1

(

TA(n) · ε−1
A (n)

)

· εM,2(n)

for infinitely many values of n ∈ N, where the probability is taken over the choice
of x ← {0, 1}n and over the internal randomness of M , or

∣

∣

∣

∣

Pr
[

ExpiO
(f,iO),iO,MA,C(n) = 1

]

− 1

2

∣

∣

∣

∣

≥ εM,1

(

TA(n) · ε−1
A (n)

)

· εM,2(n)

for infinitely many values of n ∈ N. (See Definition 2.4 for the description of the
experiment ExpiO

(f,iO),iO,MA,C(n).)

The “Security Loss” Functions.Black-box constructions are typically formulated with
a reduction algorithm M that runs in polynomial time and offers a polynomial security
loss. In our setting, as we are interested in capturing constructions that may be based on
super-polynomial security assumptions, we allow the algorithm M to run in arbitrary
time TM (n) and to have an arbitrary security loss.
In general, the security loss of a reduction is a function of the adversary’s running

time TA(n), of its success probability εA(n), and of the security parameter n ∈ N.
Following Luby [46] and Goldreich [35], we simplify the presentation by considering
Levin’s unified security measure TA(n) · ε−1

A (n). Specifically, our definition captures
the security loss of a reduction by considering an “adversary-dependent” security loss
εM,1(TA(n) · ε−1

A (n)) and an “adversary-independent” security loss εM,2(n). By con-
sidering arbitrary security loss functions, we are indeed able to capture constructions
that rely on super-polynomial security assumptions. For example, in the recent con-
struction of Bitansky et al. [15] (and in various other recent constructions based on
indistinguishability obfuscation), the adversary-dependent loss is polynomial whereas
the adversary-independent loss is sub-exponential6.

Domain-Invariant Constructions. We now define the notion of domain invariance
which allows us to refine the above class of constructions. Recall that for an oracle-
aided permutation family (Gen,Samp,P) and for any oracle �, we denote by I�

n the

support of the distribution Gen�(1n) for every n ∈ N, and we let I� def= ⋃

n∈N I�
n (i.e.,

I� is the set of all permutation indices). In addition, for any permutation index α ∈ I�

we denote by D�
α the domain of the permutation P�(α, ·).

Definition 3.2. An oracle-aided one-way permutation family (Gen,Samp,P) is
domain invariant relative to a set S of oracles if the following conditions hold:

1. For every two oracles �,�′ ∈ S and for every n ∈ N, the distributions Gen�(1n)
and Gen�′

(1n) are identical. In particular, there exists a sequence {In}n∈N such
that I�

n = In for every � ∈ S and for every n ∈ N.

6This is also the situation, for example,when using “complexity leveraging” for arguing that any selectively
secure identity-based encryption scheme is in fact adaptively secure.

On Constructing One-Way Permutations from Indistinguishability Obfuscation 711

2. For every two oracles �,�′ ∈ S and for every α ∈ ⋃

n∈N In , the domains D�
α

and D�′
α are identical. In particular, there exists a sequence {Dα}α∈I such that

D�
α = Dα for every � ∈ S and for every α ∈ ⋃

n∈N In .

Perfect Correctness. We consider constructions where the triplet (Gen,Samp,P)

defines a permutation family relative to any (correct) oracles f and iO. A stronger
result would be to rule out constructions where the triplet (Gen,Samp,P) defines a
permutation family with high probability over the choice of f and iO. We leave this as
an interesting open problem.
We note that the combination of the works of Rudich [57] and Kahn et al. [44] does

allow a similar freedom and rules out constructions of a single permutation P from one-
way function even when the algorithm P f defines a permutation with high probability
over f . In contrast, perfect correctness was also assumed in the work of [48], and a first
step toward generalizing our results would be to generalize imperfect correctness in this
simplified setting. That is, to rule out domain-invariant constructions without perfect
correctness of one-way permutations from injective one-way function.

3.2. Proof Overview and the Oracle �

Our result in this section is obtained by presenting a distribution over oracles � relative
to which the following two properties hold: (1) There is no domain-invariant one-way
permutation family (Gen,Samp,P), and (2) there exist an exponentially secure one-
way function f and an exponentially secure indistinguishability obfuscator iO for the
class of all polynomial-size oracle-aided circuits C f . Equipped with the notation and
terminology introduced in Sect. 3.1, we prove the following theorem:

Theorem 3.3. Let (Gen,Samp,P, M, TM , εM,1, εM,2) be a fully black-box domain-
invariant construction of a one-way permutation family from a one-way function f
and an indistinguishability obfuscator for the class of all polynomial-size oracle-aided
circuits C f . Then, at least one of the following propertied holds:

1. TM (n) ≥ 2ζn for some constant ζ > 0 (i.e., the reduction runs in exponential
time).

2. εM,1(nc) · εM,2(n) ≤ 2−n/4 for some constant c > 1 (i.e., the security loss is
exponential).

In particular, the theorem implies that if the running time TM (·) of the reduction is
sub-exponential and the adversary-dependent security loss εM,1(·) is polynomial as in
the vast majority of constructions (and, in particular, as in the construction of Bitansky et
al. [15]), then the adversary-independent security loss εM,2(·) must be exponential (thus
ruling out even constructions that rely on sub-exponential security assumptions—as
discussed in Sect. 3.1).

In what follows, we describe the oracle � (more accurately, the distribution over such
oracles) and then explain the structure of our proof.

The Oracle �. The oracle � is a triplet
(

f,O,Eval f,O
)

that is sampled from a distri-

bution S defined as follows:

712 G. Asharov, G. Segev

• The Function f = { fn}n∈N. For every n ∈ N, the function fn is a uniformly
chosen function fn : {0, 1}n → {0, 1}n .
Looking ahead, we will prove that f is a one-way function relative to �.

• The Functions O = {On}n∈N and Eval f,O = {Eval f,On }n∈N. For every n ∈ N

the functionOn is an injective functionOn : {0, 1}2n → {0, 1}10n chosen uniformly
at random. The function Eval f,On on input (̂C, x) ∈ {0, 1}10n × {0, 1}n finds the
unique pair (C, r) ∈ {0, 1}n×{0, 1}n such thatOn(C, r) = ̂C , whereC is an oracle-
aided circuit and r is a string. (Uniqueness is guaranteed since On is injective.) If
such a pair exists, it evaluates and outputs C f (x), and otherwise it outputs ⊥.
Looking ahead, we will useO and Eval for realizing an indistinguishability obfus-
cator iO relative to � for the class of all polynomial-size oracle-aided circuits C f .

The Structure of Our Proof. Our proof consists of two parts: (1) showing that relative
to � there is no domain-invariant one-way permutation family, and (2) showing that
relative to � the function f is an exponentially secure one-way function and that the pair
(O,Eval) can be used for implementing an exponentially secure indistinguishability
obfuscator for oracle-aided circuits C f .
The vast majority of our effort in this proof is in showing that relative to � there is

no domain-invariant one-way permutation family. Specifically, as for the second part,
our oracle � is somewhat similar to the oracle introduced by [3], relative to which they
proved the existence of an exponentially secure one-way function and an exponentially
secure indistinguishability obfuscator. The main difference between the oracles is that
the functionO in their case is a permutation, whereas in our case it is an injective length-
increasing function. Since our aim here is to rule out constructions of one-way permu-
tations, then clearly we cannot allow O to be a permutation. This requires us to revisit
the proof of [3] and generalize it to the case where O is injective and length increasing.
In what follows, we say that an algorithm A that has oracle access to � is a q-query

algorithm if it makes at most q queries to �, and each of its queries to Eval consists of
a circuit of size at most q. (See Definition 3.12.)

Part 1: Inverting Any Domain-Invariant Construction. Building upon and gener-
alizing the work of Rudich [57], we show that relative to the oracle � there are no
domain-invariant one-way permutations families. As discussed in Sect. 1.3.2, Rudich
presented an attacker that inverts any single domain-invariant permutation that has oracle
access to a random function. Here we need to deal with constructions that have oracle
access to a significantly more structured functionality7 and that are permutation fami-
lies. Nevertheless, inspired by the main ideas underlying Rudich’s attacker we prove the
following theorem in Sect. 3.3:

Theorem 3.4. (simplified) Let (Gen,Samp,P) be an oracle-aided domain-invariant
permutation family. Then, there exist a polynomial q(·) and a q-query algorithmA such
that

Pr
[

A�(α,P�(α, x)) = x
] ≥ 1 − 2−10

7For example, there are dependencies between O, Eval and f which allow Eval to query O for a expo-
nential number of times.

On Constructing One-Way Permutations from Indistinguishability Obfuscation 713

for any n ∈ N, where the probability is taken over the choice of� ← S,α ← Gen�(1n),
x ← Samp�(α), and over the internal randomness of A. Moreover, the algorithm A
can be implemented in polynomial time given access to a PSPACE-complete oracle.

Part 2: The Existence of a One-Way Function and an Indistinguishability Obfusca-
tor. As discussed above, by refining the proof of [3] we prove that f is an exponentially
secure one-way function relative to �, and we construct an exponentially secure indis-
tinguishability obfuscator iO. Our obfuscator is defined as follows: For obfuscating an
oracle-aided circuit C ∈ {0, 1}n (i.e., we denote by n = n(C) the bit length of C’s
representation), the obfuscator iO samples r ← {0, 1}n uniformly at random, computes
̂C = On(C, r), and outputs the circuit Eval(̂C, ·). That is, the obfuscated circuit con-
sists of a single Eval gate with hardwired input ̂C . We prove the following theorem in
Sects. 3.4 and 3.5:

Theorem 3.5. (simplified) For any oracle-aided 2n/4-query algorithmA, it holds that

Pr
[

A�(f (x)) ∈ f −1(f (x))
]

≤ 2−n/2 and
∣

∣

∣Pr
[

ExpiO�,iO,A,C(n) = 1
]

= 1 − 1

2

∣

∣

∣

∣

≤ 2−n/4

for all sufficiently large n ∈ N, where the probability is taken over the choice of � ← S
and internal randomness of A for both cases, in addition to the choice of x ← {0, 1}n
in the former case and to the internal randomness of the challenger in the latter case.

We note that Theorem 3.5 holds even if the adversaryA has an access to a PSPACE-
complete oracle, since our analysis holds for computationally unbounded adversaries
where the only limitation is on their number of queries to the oracle �.

3.3. Attacking Domain-Invariant Permutation Families Relative to �

Weshow that relative to the oracle� there are no domain-invariant one-way permutations
families. As discussed in Sect. 1.3.2, Rudich presented an attacker that inverts any single
domain-invariant permutation that has oracle access to a random function. Here we need
to deal with constructions that have oracle access to a significantly more structured
functionality. We prove the following theorem:

Theorem 3.6. Let (Gen,Samp,P) be an oracle-aided permutation family that is
domain invariant relative to the support of the distribution S. Then, there exist a poly-
nomial q(·) and a q-query algorithm A such that

Pr
[

A�(α,P�(α, x∗)) = x∗] ≥ 1 − 2−10

for any n ∈ N, where the probability is taken over the choice of� ← S,α ← Gen�(1n),
x∗ ← Samp�(α), and over the internal randomness of A. Moreover, the algorithm A
can be implemented in polynomial time given access to a PSPACE-complete oracle.

714 G. Asharov, G. Segev

We first provide additional notation definitions that we require for the proof of the
above theorem, and then we provide its formal proof.

The Event spoof. The event spoof will help up show that the oracle Eval does not
provide the construction with any significant capabilities. We formally define this event
and then state an important claim that will help us to prove both Theorem 3.6 and
Theorem 3.5.

Definition 3.7. For any oracle-aided algorithmM , consider the following event spoofn
thatmayoccur during an executionofM�(1n): The algorithmmakes aqueryEvaln(̂C, a)

with |̂C | = 10n whose output is not ⊥, yet ̂C was not an output of a previousOn-query.

In Sect. 3.5 we prove the following claim:

Claim 3.8. For any n ∈ N, for any f andO−n = {Om}m∈N,m �=nm and for any q-query
algorithm M, the probability that spoofn occurs in an execution of M�(1n) satisfies

Pr
On

[

spoofn
] ≤ q · 2−8n .

Notation. Denote by T the support of the distribution S from which our oracle � =
(f,O,Eval f,O) is sampled. Note that the oracle Eval is fully determined given f and
O, and therefore, it is enough to consider the choice of the latter only. For every n ∈ N

we let In denote the support ofGen�(1n), which is the same for every � ∈ T due to the
domain-invariant assumption, andwe letI = ⋃

n∈N In . In addition,we letD = {Dα}α∈I
be the set of domains (which is again the same for any � ∈ T).

We let Partial(�′) denote the set of oracle queries that our adversary A will sample
in each iteration. We let Q denote the set of actual queries that made by A to the true
oracle �. We write, e.g., [On(C, r) = ̂C] ∈ Q to denote that Q contains an On-query
with input (C, r) and output ̂C . Likewise, [fn(x) = y] ∈ Partial(�′) denotes that there
is some fn query in Partial(�′) with input x and output y. We also use the symbol � to
indicate an arbitrary value, for instance [Eval(̂C, a) = �] ∈ Q denotes that A made an
Eval call to � on the pair (̂C, a), but we are not interested in the value that was returned
by the oracle.

The Set of Queries/Answers that the Adversary Samples. Our adversary A will
sample in each iteration some oracle queries/answers Partial(�′) = (f ′,O′,Eval′)
that are consistent with the actual queries Q it made so far. However, since the oracles
(f,O,Eval) have some dependencies, we want that these dependencies will appear
explicitly in the set of queries/answers that the adversary samples. (Looking ahead, by
doing so, we will be able to construct a hybrid oracle ˜�.) Formally, we define:

Definition 3.9. (Consistent oracle queries/answers) LetPartial(�′) = (f ′,O′,Eval′)
be a set of queries/answers. We say it is consistent if for every m ∈ N it holds that:

1. For every query
[

Evalm(̂C, �) = β
] ∈ Eval′ with β �= ⊥, there exists a query

[

Om(�) = ̂C
] ∈ O′.

2. For every query
[

Evalm(̂C, a) = β
] ∈ Eval′ withβ �= ⊥, |̂C | = 10m and |a| = m,

let
[

Om(C, r) = ̂C
] ∈ O′ that is guaranteed to exist by the previous requirement.

On Constructing One-Way Permutations from Indistinguishability Obfuscation 715

Then, the oracle f ′ contains also queries/answers sufficient for the evaluation of
C f ′

(a), and the value of this evaluation is indeed β.

Augmented Oracle Queries.For the analysis,we consider the queries that are associated
with the execution of P�(α, x∗) = y∗, for some α ∈ I. In fact, the set that we consider
may contain some additional queries that do not necessarily appear in the execution of
P�(α, x∗), but are still associated with this execution. Let RealQ(�,�, α, x∗) denote
the set of actual queries to � in the evaluation of P�(α, x∗).
We define:

Definition 3.10. (Augmented oracle queries) The set of extended queries, denoted
AugQ(�,�, α, x∗), consists of the following queries:

1. All the queries in RealQ(�,�, α, x∗).
2. For every query [Evalm(̂C, a) = β] ∈ RealQ(�,�, α, x∗) with |̂C | = 10m,

|a| = m and β �= ⊥, letC, r ∈ {0, 1}m be the unique pair such thatOm(C, r) = ̂C .
Then, the set AugQ(�,�, α, x∗) contains also the query [Om(C, r) = ̂C] and all
the f -queries/answers sufficient to for the evaluation of C f (a).

Note that these additional queries correspond to the consistent oracle queries/answers
that the adversary samples in the attack, as in Definition 3.9. We do not explicitly require
the first requirement of Definition 3.9 here. This is because our analysis focuses on the
case where there is no Eval query on an obfuscated circuit ̂C that is not an output of a
previous O-query.

Looking ahead, all the circuits that will be evaluated by the oracle Eval are of some
polynomial size in the security parameter, and therefore, each evaluation adds some poly-
nomial number of oracle queries to f . Therefore, the overall size of AugQ(�,�, α, x∗)
is some polynomial. Let 	 = 	(n) > n be an upper bound of |AugQ(P,˜�, x)| for all
possible ˜� ∈ T and all x ∈ Dα .

Equipped with the above notation and definitions, we are now ready to prove Theo-
rem 3.6.

Proof of Theorem 3.6. Let� = (Gen,Samp,P) be an oracle-aided permutation fam-
ily that is domain invariant relative to the support of the distribution S. Consider the
following oracle-aided algorithm A:

The Algorithm A.

• Input: An index α ∈ I and a value y∗ ∈ Dα .
• Oracle Access: The oracle �.
• The Algorithm:

1. Initialize an empty list Q of oracle queries/answers to �. (Looking ahead, the
list Q will always be consistent with the true oracle �.)

2. Avoiding spoofm for small m. Let t = log(16). The adversary A queries
the oracle fm on all inputs |x | = m for all m ≤ t . It queries Om(C, r) for all
|C | = |r | = m ≤ t ; and queries Evalm(̂C, a) on all m ≤ t with |̂C| = 10m
and |a| = m. Denote this set of queries by Q∗.

3. Run the following for 	 + 1 iterations:

716 G. Asharov, G. Segev

(a) Simulation Phase: A finds a value x ′ ∈ Dα and a set Partial(�′)
of consistent oracle queries/answers that is consistent with the list of
queries/answers Q, such that PPartial(�′)(α, x ′) = y∗ as follows:8

i. A samples an oracle �′ = (f ′,O′,Eval′) uniformly at random from
the set of all oracles that are consistent with Q. That is, f ′ and O′
are sampled uniformly at random conditioned on Q, and then Eval′
is defined accordingly.

ii. A inverts y∗ relative to �′. Specifically, A enumerates over Dα and
find the unique input x ′ ∈ Dα for which P�′

(α, x ′) = y∗.
iii. A sets Partial(�′) to be all the queries in Q, and all the queries

included in the evaluation of P�′
(α, x ′).

(b) Evaluation Phase: The adversary evaluatesP�(α, x ′). If the output of the
evaluation is y∗, it halts and outputs x ′.

(c) Update Phase: Otherwise, A makes all the queries in Partial(�′) \ Q to
the true oracle �, and continues to the next iteration.

4. In case the adversary has not halted yet, it outputs ⊥.

Analysis. We show that in each iteration the adversary either finds x∗ or learns some
query associated with the evaluation P�(α, x∗). We now define these two “bad” events
and show that they occur with small probability. These two events play a central role in
our analysis. We then proceed to the analysis, showing that in every iteration in which
these two events do not occur, the algorithm either inverts y∗ or succeeds to learn at least
one new query that appears in AugQ(�,�, α, x∗).

The Event spoof. For any m ∈ N, define spoofm to be the event where

[

Evalm(̂C, a) �= ⊥] ∈ AugQ(�,�, α, x∗),
but

[

Om(�, �) = ̂C
] �∈ AugQ(�,�, α, x∗) ∪ Q∗.

Let spoof� = ∨

m spoofm . By construction, Q
∗ contains all possibleOm-queries for

every m ≤ t , and therefore, spoofm cannot occur for m ≤ t . Moreover, by Claim 3.8,
we have that

Pr
[

spoof�
] ≤ Pr

[∨

mspoofm
] ≤

∞
∑

m=t

Pr
[

spoofm
]

≤
∞
∑

m=log 16	

	 · 2−8m ≤ 2 · 	 · 2−8 log 16	 ≤ 2−31.

Let spoof′m be the event where the adversaryA queries the real oracle � some query
[Evalm(̂C, �)], receives a value differ than ⊥, but ̂C was not an output of � on some

8Note that the set of queries/answers Partial(�′) may be inconsistent with the true oracle � on all queries
Partial(�′) \ Q.

On Constructing One-Way Permutations from Indistinguishability Obfuscation 717

previous query of A to Om . Let spoofA = ∨

m spoof′m . Similarly to the above,9 the
probability of spoofA is bounded by 2−31. Finally, we let spoof = spoof� ∨ spoofA,
and this probability is bounded by 2−30.

The Event fail. The second bad event that we consider is the event fail. This event occurs
whenever A samples an oracle �′ that has some contradiction with the oracle �, and
therefore, the hybrid oracle ˜� cannot be constructed.

Let T (Q) be the set of all oracles �′ that are consistent with Q. (Namely, each query
in Q is answered the same for all �′ ∈ T (Q), with the same answer as �.) In each
iteration, the adversaryA samples the oracle �′ which is consistent with the true oracle
queries Q. Let T -admissible denote the set of “valid” oracles that A may sample; the
set T -admissible contains all oracles �′ = (f ′,O′,Eval′) such that:

• �′ is consistent with Q.
• �′ avoids the outputs of O. For every m ∈ N, the true oracle Om and the sampled
oracle O′

m should have disjoint outputs (except for the queries in Q). Formally,
let QO

m = {x ∈ {0, 1}2m | [Om(x) = �] ∈ Q}. Then, we require that for every
x, y �∈ QO

m it holds that Om(x) �= O′
m(y).

• �′ avoids invalid Eval-queries. That is, for every
[

Evalm(̂C, a) = ⊥] ∈
AugQ(�,�, α, x∗), with |̂C | = 10m, for every C, r ∈ {0, 1}m it holds that
O′

m(C, r) �= ̂C .

Notice that the first two conditions relate to the set of queries Q, whereas the third
condition relates to the setAugQ(�,�, α, x∗). Moreover, note that the second condition
defines 22m − |Q| outputs ofO′

m that are invalid, and the third condition defines at most
q invalid outputs. Therefore, there are overall at most 22m outputs ofO′

m that are invalid.
Note that between iterations, the set Q varies. We define by Invalid-Im(i)

m the set of
all invalid outputs for O′

m , in the i th iteration. In all iterations, the set Invalid-Im(i)
m is

bounded by 22m .

Let fail(i)m denote the event whereA samples an invalid oracleO′
m in some iteration i .

Let fail(i) = ∨

m fail(i)m , and let fail = ∨

i fail
(i). For every m, we have that:

Pr
O′

m

[

fail(i)m

]

= Pr
O′

m

[

∃x ∈ {0, 1}2m s.t. O′
m(x) ∈ Invalid-Im(i)

m

]

≤ 22m ·
∣

∣

∣Invalid-Im(i)
m

∣

∣

∣

210m − 22m
≤ 2−5m .

As a result, we get that the probability that sampling O fails for some length m > t is
bounded by

Pr
O′

[

fail(i)
]

≤
∞
∑

m=t

2−5m ≤ 2 · 2−5t .

9This holds since y∗ and α due to the domain invariance property. In particular, the property enables
sampling y∗ and α independently of �, and therefore, we can apply Claim 3.8.

718 G. Asharov, G. Segev

We therefore conclude that the probability that in some of the 	 + 1 iterations, the
adversary A samples some oracle �′ �∈ T -admissible is bounded by

Pr
[

fail
] ≤

	+1
∑

i=1

Pr
[

fail(i)
]

≤ (+ 1) · 2 · 2−5t = 2(+ 1) ·
(

2−4 · 	−1
)5 ≤ 2−19,

where recall that t = log(16). We are now ready for the main claim of the analysis.

Claim 3.11. Assume that fail and spoof do not occur. Then, in every iteration at least
one of the following occurs:

1. A finds the pre-image x∗ such that P�(α, x∗) = y∗.
2. During the update phase, A queries � with at least one of the queries in

AugQ(�,�, α, x∗).

Proof. Assume that neither one of the above conditions holds. Then, we show that
there exists an oracle ˜� ∈ T that behaves like the true oracle � on P˜�(α, x∗) =
P�(α, x∗) = y∗, and on the other hand, it behaves like �′ in the evaluation of
P˜�(α, x ′) = PPartial(�′)(α, x ′) = y∗. According to this oracle ˜�, the following hold:

1. Since � is a domain-invariant construction, and since ˜� ∈ T , there exists some
randomness r ∈ {0, 1}∗ such that Gen˜�(1n; r) = α.

2. Since � is a domain-invariant construction, it holds that Im(Samp˜�(α)) =
Im(Samp�(α)) = Im(SampPartial(�

′)(α)) = Dα . As a result, there exists some
randomness r ′ ∈ {0, 1}∗ such that Samp˜�(α; r ′) = x ′ and Samp˜�(α; r∗) = x∗.

3. As mentioned above, P˜�(α, x ′) = y∗ and P˜�(α, x∗) = y∗.
Since the first condition in the statement does not hold, we conclude that x ′ �= x∗ but
still P˜�(α, x ′) = P˜�(α, x∗), in contradiction to the assumption that P˜�(α, ·) defines a
permutation.

We now show that the oracle ˜� = (˜f , ˜O, Ẽval) as above can be constructed. Recall
that we assume that the both conditions of the statement of the claim do not hold, and
therefore, in particular it holds that AugQ(�,�, α, x∗) ∩ Partial(�′) ⊆ Q.

The Oracle ˜f . Note that for every m ≤ t , the set of queries Q∗ contains all the
functions { fm}m≤t and thus agrees completely with f (i.e., also with f ′). We therefore
set ˜fm = fm .
For everym > t , we define the function ˜fm as follows. For every x such that [fm(x) =

y′] ∈ AugQ(�,�, α, x∗), we set ˜fm(x) = y′. For every [fm(x) = y] ∈ Partial(�′),
we set ˜fm(x) = y. Since AugQ(�,�, α, x∗) ∩ Partial(�′) ⊆ Q, we have that there
is no contradiction, i.e., there are no input x and outputs y, y′ such that y �= y′ and
[fm(x) = y′] ∈ f ′ and [fm(x) = y] ∈ AugQ(�,�, α, x∗). For any other value
x �∈ Partial(�′) ∩ AugQ(�,�, α, x∗), we set ˜fm(x) = 0m .
Before we continue to define the oracle ˜O, we first define some set of output values

that ˜O will have to avoid. For every m > t , we define the set avoid-Om as

avoid-Om = {

̂C ∈ {0, 1}10m | ∃ [Evalm(̂C, �) = �] ∈ AugQ(�,�, α, x∗) ∪ Partial(�′)
}

.

On Constructing One-Way Permutations from Indistinguishability Obfuscation 719

The Oracle ˜O. The oracle is already defined for every m ≤ t . For every m > t , we
define the function ˜Om as follows. For every [Om(x) = y] ∈ AugQ(�,�, α, x∗), we
set ˜Om(x) = y. Likewise, for every [Om(x) = y] ∈ Partial(�′), we set ˜Om(x) = y.
Since AugQ(�,�, α, x∗) ∩ Partial(�′) ⊆ Q, we have that there is no contradiction,
that is, there is no pre-image that has two possible outputs. Moreover, since fail does not
occur, it holds that �′ ∈ T -admissible, the two functionsOm and (the partially defined
function) O′

m do not evaluate to the same output, and so the partially defined function
˜Om is injective. We continue to define ˜Om on the additional values, such that ˜Om is
injective and avoids the set avoid-Om .

The Oracle Ẽval. We define the oracle Ẽval using the oracles ˜f and ˜O exactly
as the true oracle Eval is defined using the true oracles f and O. We now show that

Ẽval is consistent with AugQ(�,�, α, x∗) and Partial(�′). That is, that every query

[Evalm(�, �)] ∈ AugQ(�,�, α, x∗) ∪ Partial(�′) has the same answer with Ẽval, and
therefore, P�(α, x∗) = P˜�(α, x∗) and P�′

(α, x ′) = P˜�(α, x ′). We have:

1. Assume that there exists [Eval(̂C, a) = β] ∈ Eval′ for some β �= ⊥. Since the
oraclePartial(�′) = (f ′,O′,Eval′) is consistent (recall Definition 3.9), then there
exists a query

[

Om(C, r) = ̂C
] ∈ Partial(�′) and f ′ contains all the necessary

queries/answers for the evaluation of C f ′
(a), and it also holds that C f ′

(a) = β.
However, since any (f ′,O′)-queries inPartial(�′) has the exact same answer with
(˜f , ˜O), it holds that C ˜f (a) = β and ˜O(C, r) = ̂C , and so, from the definition of
Ẽval it holds that Ẽval(̂C, a) = β as well.

2. Assume that there exists [Eval(̂C, a) = β] ∈ AugQ(�,�, α, x∗) for some
β �= ⊥. Since spoof does not occur, there exists a query [O(C, r) = ̂C] ∈
AugQ(�,�, α, x∗) as well, and AugQ(�,�, α, x∗) contains also all the f -
queries necessary for the evaluation C f (a). Since these queries appear in
AugQ(�,�, α, x∗), it holds that ˜f and ˜O agree on the same queries, and therefore,

Ẽval(̂C, a) = β, as well.
3. For every query [Eval(̂C, a) = ⊥] ∈ Partial(�′) ∪ AugQ(�,�, α, x∗) we show

that Ẽval(̂C, a) = ⊥ as well. Specifically

(a) If [Eval(̂C, a) = ⊥] ∈ Partial(�′) then ̂C �∈ Im(O′). Then there is a contradic-
tion only if there existC and r such that [O(C, r) = ̂C] ∈ AugQ(�,�, α, x∗).
(If the query does not appear in AugQ(�,�, α, x∗), then there is no contra-
diction as ̂C ∈ avoid-O and therefore ̂C �∈ Im(˜O).) However, if such a query
exists, then at the end of this iteration the event spoof′ occurs:A queries Eval
on a value which is differ than⊥without receiving ̂C as an output of a previous
O-query.

(b) If [Eval′(̂C, a) = ⊥] ∈ AugQ(�,�, α, x∗) then ̂C �∈ Im(O). Then, there
is a contradiction only if there exists C and r such that [O′(C, r) = ˜C] ∈
Partial(�′). However, this implies that the event fail occurs.

This completes the proof of Claim 3.11. �

720 G. Asharov, G. Segev

From Claim 3.11 we conclude that:

Pr
�←S

α←Gen�(1n)
x∗←Samp�(α)

[

A�(α,P�(α, x∗)) = x∗ | fail ∧ spoof
]

= 1.

Since Pr
[

fail
] + Pr

[

spoof
] ≤ 2−10, it holds that:

Pr
�←S

α←Gen�(1n)
x∗←Samp�(α)

[

A�(α,P�(α, x∗)) = x∗] ≥ 1 − 2−10.

Finally, we observe that A makes at most a polynomial number of oracle queries to �,
and all other computations that are done by A can be done using a polynomial number
of queries to a PSPACE-complete oracle (as in the work of Impagliazzo and Rudich
[42]): In each iteration, sampling x ′ and Partial(�′) can be done in polynomial space,
requires access only to Q which is of polynomial size, and does not require access to �.
This results in a polynomial-time adversary. �

3.4. f is a One-Way Function Relative to �

In this sectionwe prove that f is oneway relative to the oracle�. This is a rather standard
proof, relying on the fact that each query to Eval leads to a bounded number of queries
to f . We first define the notion of a q-query algorithm, and then prove that f is one way
relative to � for q(n) = 2
(n).

Definition 3.12. Let A be an oracle-aided algorithm that interacts with the oracle �.
Then A is a (qf,qO,qEval)-query algorithm if for every n ∈ N and for every input
y ∈ {0, 1}n , the algorithmA(y) makes at most q f (n) ,qO(n) and qEval(n) queries to the
oracle f , O and Eval, respectively, and its queries to Eval are with circuits of size at
most qEval(n). In addition, A is a q-query algorithm if it is (q, q, q)-query algorithm.

Claim 3.13. For any q-query algorithm A it holds that:

Pr
[

A�(fn(x)) ∈ f −1
n (fn(x))

]

≤ q(n)2

2n

for any n ∈ N, where the probability is taken over the choice of � ← S, x ← {0, 1}n,
and over the internal randomness of A.

Proof. We show that the claim in fact holds for any fixing of O and f−n =
{ fm}m∈N,m �=n , where the probability is taken over the choice of x ← {0, 1}n , fn :
{0, 1}n → {0, 1}n and over the internal randomness of A. An execution of a q-query
algorithm A can be simulated using an adversary B that makes at most q(n)2 oracle
queries to fn , an unlimited number of queries to f−n and O, and no oracle queries to

On Constructing One-Way Permutations from Indistinguishability Obfuscation 721

Eval. Specifically, B follows the computation of A�(fn(x)) and responds to its oracle
queries as follows:

• WheneverA queries f orO, the algorithmB simply forwards the query and delivers
back the result.

• Whenever A queries Eval with some input (̂C, a) ∈ {0, 1}10m × {0, 1}m , for some
m ∈ N, the algorithm B enumerates over all possible pair (C, r) ∈ {0, 1}2m and
check whetherOm(C, r) = ̂C . If so, it evaluates the circuit C f (a), which may lead
to at most additional q queries to f and returns the result toA. Otherwise, it returns
⊥ to A.

Since A is a q(n)-query algorithm, it makes (by definition) at most q(n) queries to fn
and to Eval, and each Eval query is bounded to circuits of size at most q(n). Therefore,
B makes at most q(n)2 queries to fn . Since fn is a random function, any such B can
outputs an inverse of fn(x) with probability at most q(n)2/2n . �

3.5. iO is an Indistinguishability Obfuscator Relative to �

In this section we show that relative to � there exists an exponentially secure indistin-
guishability obfuscator iO for the class C of all polynomial-time oracle-aided circuits
C f . We first formally describe the construction of the obfuscator, and then prove its
security relative to �.

Construction 3.14. The (randomized) algorithm iO(C) is given as input an oracle-
aided circuit C(represented as n-bit string for some n ∈ N), chooses a random
r ← {0, 1}n, and computes On(C, r) = ̂C. Then, it outputs the oracle-aided circuit
Eval(̂C, ·).
Functionality. From the fact that O is an injective function, it is easy to see that the
construction always preserves the functionality of the underlying circuit C . That is, for
any oracle-aided circuit C and for any r ∈ {0, 1}∗ it holds that C and iO(C; r) are
functionally equivalent with respect to any function f .

Indistinguishability.Since theoutput of iO is a circuit consists of a singleEval-gatewith
some hardwired value ̂C , when proving indistinguishability of two obfuscated circuits,
we show indistinguishability of these two hardwired values and ignore the wrapping
Eval-gate (i.e., the wrapping circuits). We prove the following theorem:

Theorem 3.15. For every n ∈ N and for every 2n/4-query algorithm A, it holds that
∣

∣

∣

∣

Pr
[

ExpiO�,iO,A,C(n) = 1
]

− 1

2

∣

∣

∣

∣

≤ 2−n/4,

where the probability is taken over the choice of � ← S.

In fact, we show that the above holds for any fixing of the functions f and O−n =
{Om}m∈N,m �=n . From this point and forward, we fix n ∈ N and the functions f,O−n .
The proof of Theorem 3.15 consists of two somewhat independent parts. First, in

Sect. 3.5.1 we show that the evaluation oracle Eval does not provide the adversary

722 G. Asharov, G. Segev

with any significant capabilities, and it can almost always be simulated by the adversary
itself. Specifically, since the output space of the functionOn is much larger than its input
space, the adversary should not be able to find a valid output of On without querying it
beforehand. As a result, with an overwhelming probability, all queries to Eval on values
that were not obtained from previous queries to On can be replied to with ⊥.
Then, in Sect. 3.5.2, we show that the only way in which an adversary can obtain any

advantage in the experiment ExpiO�,iO,A,C(n) without accessing the evaluation oracle
Eval is by “hitting” the randomness r∗ used for generating the challenge obfuscated
circuit in one of its O-queries. We then show that since the adversary makes a bounded
number of such queries (specifically, at most 2n/4), the probability of hitting r∗ is very
small.

3.5.1. Simulating the Evaluation Oracle Eval

The event spoof will help up show that the oracle Eval can be simulated by the adver-
sary itself. We formally define this event and then show that it occurs with very small
probability. We have:

Definition 3.16. For any oracle-aided algorithm M , consider the following event
spoofn that may occur during an execution of M�(1n): The algorithm makes a query
Evaln(̂C, a)with |̂C | = 10nwhose output is not⊥, yet ̂C was not an output of a previous
On-query.

We prove that for any q-query algorithm (recall Definition 3.12), the event spoofn
occurs with probability that in linear in q and inverse exponential in n.

Claim 3.17. For any n ∈ N, for any f andO−n = {Om}m∈N,m �=n, and for any q-query
algorithm M, the probability that spoofn occurs in an execution of M�(1n) satisfies

Pr
On

[

spoofn
] ≤ q · 2−8n .

Proof. Fix M, n, f and O−n . The input space of On is of size 22n , whereas its output
space is 210n . Since On is chosen uniformly at random, there are at most 22n elements
in the range On and these are distributed uniformly in a space of size 210n . Any query
to On reveals one point in the range of On , but gives no information about other points
in the range. Similarly, any Eval query may give information regarding one point in
the range of On , but nothing else. Therefore, the oracle queries do not give significant
information regarding the range of O, and an adversary cannot hit points in the range
without previous queries to O.

Formally, we follow the computation of M�(1n). During this computation, we store
a table T of oracle queries and answers for On , initialized to ∅. We now show that the
oracleOn sampled lazily during the computation of M� , where we reply to M’s queries
as follows:

• Each fn-query of M can be answered since this oracle is fixed and this does not
trigger the event spoofn .

On Constructing One-Way Permutations from Indistinguishability Obfuscation 723

• With each On query on some input (C, r) ∈ {0, 1}2n , we first check in T whether
(C, r) was queries before. If so—we answer the stored value in T . Otherwise, we
choose a random output ̂C ∈ {0, 1}10n that does not appear in T .

• With each Evaln-query (̂C, a), with |̂C | = 10n and |a| = n, we check whether
there exists a valid pair ((C, r), ̂C) ∈ T with (C, r) ∈ {0, 1}n × {0, 1}n , or an
invalid pair (⊥, ̂C) ∈ T .
If there does not exist such pairs, then we toss a coin α with probability p j =
(22n − j)/210n to be 1, where j is the number of valid pairs in T . If α = 1, we
choose a uniformly random (C, r) ∈ {0, 1}n × {0, 1}n such that (C, r) �∈ T and
add it to T . Otherwise, we store (⊥, ̂C) ∈ T .
Now, in T there is a pre-image of ̂C . If this pre-image is ⊥, we reply ⊥ to the
adversary. Otherwise, let (C, r) be the valid pre-image, and return the evaluation
C f (a) to the adversary.

Note that spoofn occurs whenever α = 1. With each Evaln query, this coin may be
tossed at most once. Since there are at most q queries overall, using union bound the
probability that in one of the queries α = 1 is bounded by:

Pr
On

[

spoofn
] ≤ q

28n
.

�

In what follows, recall that ExpiO�,iO,B,C(n) denotes the indistinguishability experi-
ment associated with the obfuscator iO and a distinguisher B. (See Definition 2.4.) We
denote by ExpiO�,iO,B,C(n; b, r∗) this experiment when using specific values b and r∗,
where b is the bit chosen in step 1 of the experiment, and r∗ is the randomness used by
the algorithm iO to obfuscating the challenge circuit in step 3.

In addition,we denote by Ẽxp
iO
�,iO,B,C(n; b, r∗) an execution of the experiment,where

the distinguisher B has an oracle access to f ,O and Eval−n , but has no access to the
oracle Evaln . We show that if there exists an algorithm A whose advantage in the
experiment ExpiO�,iO,A,C(n; b, r∗) is ε, then there exists an algorithm B that does not

use the oracle Evaln at all, and its advantage in the experiment Ẽxp
iO
�,iO,B,C(n; b, r∗) is

very close to ε.

Claim 3.18. For every n ∈ N, if there exists a q-query algorithm A with q(n) ≤ 2n/2

such that
∣

∣

∣

∣

∣

Pr
On ,(b,r∗)←{0,1}n+1

[

ExpiO�,iO,A,C(n; b, r∗) = 1
]

− 1

2

∣

∣

∣

∣

∣

> ε,

then there exists a q2-query algorithm B that does not make any queries to Evaln, such
that

∣

∣

∣

∣

∣

Pr
On ,(b,r∗)←{0,1}n+1

[

Ẽxp
iO
�,iO,B,C(n; b, r∗) = 1

]

− 1

2

∣

∣

∣

∣

∣

> ε − 2−7n .

724 G. Asharov, G. Segev

Proof. Fix n. Given the algorithm A, we build an algorithm B that makes no oracle
queries to Evaln . As long as spoofn does not occur, all oracle queries to Evaln can be
answered by the previous queries to On and some additional fn-queries. We proceed
with a formal description of B.
The Algorithm B = (B1,B2). We show how to construct the algorithm B = (B1,B2)

using the algorithm A = (A1,A2). Recall that B1 participates in the experiment in
Step 2 (before the algorithm receives challenge), and B2 participates in the experiment
in Step 4 (i.e., after the algorithm receives the challenge).
The algorithm B1 is invoked on a security parameter 1n ; it invokes A1 on the same

input and simulates all its oracle queries as follows:

• WheneverA1 queries its f,O−n,Eval−n oracles, B1 just submits theses queries to
its respective own oracle and gives A the result.

• Whenever A1 makes an On query, B1 submits the query to its own On query, but
sores the query and the response.

• WheneverA1 makes anEvaln query (̂C, a)with |̂C | = 10n, the algorithmB1 looks
whether there was a previous query ofOn with output ̂C . If there was such a query,
let (C, r) be the pre-image ofOn . It evaluates C f (a) and repliesA1 with the result.
(Note that in order to evaluate this circuit, B1 may perform some additional queries
to f .) If there was no such a pair, then it replies with ⊥.

Whenever A1 outputs a pair of circuits (C0,C1) and state, the algorithm B1 outputs
these same values. When B2 receives the challenge obfuscated circuit ̂C (and state),
it submits them to the algorithm A2 and continues to simulate its oracle queries as B1
answers A1 as above with the following modification:

• Whenever A2 makes an Evaln query (̂C, a) where ̂C is the challenge obfuscated
circuit that B has receives, the algorithm B2 evaluates C

f
0 (a) and replies with this

result. This is correct since A is a valid algorithm that outputs two circuits C0,C1
that are functionally equivalent.

When A2 outputs a bit b′, B2 outputs the same bit and halts.

Analysis.Clearly, the algorithmBmakes no oracle queries toEvaln . Moreover, it makes
the same amount of oracle queries to On as A, but may make at most q2 queries to fn .
Therefore, B is a q2-query algorithm.
Assume that the event spoofn does not occur (where the machine M that we consider

includes the challenger and the algorithm A). Then, assuming that spoofn does not
occur, an execution of B without the oracle Evaln is equivalent to an execution of A
with the oracle, where both adversaries also have accesses to f,O−n,Eval−n . That is:

Pr
On

(b,r∗)←{0,1}n+1

[

Ẽxp
iO
�,iO,B,C(n; b, r∗) = 1 ∧ spoofn

]

= Pr
On

(b,r∗)←{0,1}n+1

[

ExpiO�,iO,A,C(n; b, r∗) = 1 ∧ spoofn
]

Moreover, we have that

On Constructing One-Way Permutations from Indistinguishability Obfuscation 725

Pr
[

ExpiO�,iO,A,C(n; b, r∗) = 1
]

≤ Pr
[

ExpiO�,iO,A,C(n; b, r∗) = 1 ∧ spoofn
]

+Pr
[

spoofn
]

.

where the probability is taken over On and the choice (b, r∗) ← {0, 1}n+1. Since A
makes at most q(n) < 2n/2 oracle queries, from Claim 3.17 it holds that Pr

[

spoofn
] ≤

2−7n . We conclude:
∣

∣

∣

∣

∣

∣

∣

Pr
On

(b,r∗)←{0,1}n+1

[

Ẽxp
iO
�,iO,B,C(n; b, r∗) = 1

]

− 1

2

∣

∣

∣

∣

∣

∣

∣

> ε − 2−7n .

�

3.5.2. From Distinguishing to Hitting

In this sectionwe show that an algorithm can gain an advantage in the indistinguishability
experiment only if it “hits” the randomness r∗ which is used in the encryption of the
challenge message. We then show that the probability of hitting r∗ using its oracles is
very small. Formally:

Definition 3.19. For a given n ∈ N and an oracle-aided algorithm B = (B1,B2), we

consider the following events thatmayoccur during the executionof Ẽxp
iO
�,iO,B,C(n; b, r∗).

1. Denote by initialHit the event where B1 makes someOn query of the form (C, r∗)
for some circuit C ∈ C.

2. Let C0,C1 be the two circuits that B1 outputs in step 2 of the experiment. Denote
by hit the event in which B2 makes On-query with input (C0, r∗) or (C1, r∗).

Claim 3.20. For every n ∈ N, q-query algorithm B with q(n) < 2n/2 that does not
make any Evaln queries, if

∣

∣

∣

∣

∣

∣

∣

Pr
On

(b,r∗)←{0,1}n+1

[

Ẽxp
iO
�,iO,B,C(n; b, r∗) = 1

]

− 1

2

∣

∣

∣

∣

∣

∣

∣

> ε,

then

Pr
On

(b,r∗)←{0,1}n+1

[

initialHit ∨ hit
]

> ε.

Proof. Note that

Pr
On

(b,r∗)←{0,1}n+1

[

Ẽxp
iO
�,iO,B,C(n; b, r∗) = 1

]

726 G. Asharov, G. Segev

≤ Pr
On

(b,r∗)←{0,1}n+1

[

Ẽxp
iO
�,iO,B,C(n; b, r∗) = 1 | initialHit ∧ hit

]

+ Pr
On

(b,r∗)←{0,1}n+1

[

initialHit ∨ hit
]

.

We prove the claim by showing that

Pr
On

(b,r∗)←{0,1}n+1

[

Ẽxp
iO
�,iO,B,C(n; b, r∗) = 1 | initialHit ∧ hit

]

= 1

2
.

In order to show this, fix the entire probability space except for the oracle On on all the
valuesOn\On(·; r∗), that is,wefix everything except for the answers to the oracle queries
On(C, r∗) for any C ∈ {0, 1}n . We now show that giving this fixing, and assuming that
initialHit does not occur, the two circuits C0,C1 and the state state that the algorithm

B1 outputs in step 2 in the experiment Ẽxp
iO
�,iO,B,C(n; b, r∗) are fully determined. In

particular, we show that all the oracle queries that B1 may produce can be answered.
Specifically:

• The oracle f,O−n,Eval−n are fully determined.
• On an oracle query toOn can be answered. This is because initialHit does not occur,
and therefore, B never makes a query (·, r∗) to On .

• Recall that B never makes an Evaln-query.

As a result, the two circuitsC0,C1 thatB1 outputs at step 2 of the experiment and the state
state are fully determined.We now proceedwith fixing the oracleOn(·; r∗) on all values
except for On(C0, r∗) and On(C1, r∗). Choose two random values t, t ′ ∈ {0, 1}10n for
which there does not exist some s ∈ {0, 1}2n for which On(s) = t and On(s) = t ′.
We now consider two cases, one corresponds to b = 0, where we set On(C0, r∗) to t
(and On(C1, r∗) to t ′), and the other case, corresponds to b = 1, where we assign the
opposite values (i.e., On(C0, r∗) = t ′ and On(C1, r∗) = t). In both cases we give B2
the value t . The two cases are equally likely, but yield different values to b. We show
that if B2 makes no hit, then its view is independent of b and it must output the same
value in the two cases. In particular, we show that all queries B2 may query in step 4 of

Ẽxp
iO
�,iO,B,C(n; b, r∗) can be answered. Specifically:

• The oracle f,O−n,Eval−n are fully determined.
• All oracle queries toOn can be answered, since hit does not occur, and so B2 never
queries On(C0, r∗) or On(C1, r∗). We recall that all other queries to On are fully
determined.

• Recall that B2 never makes an Evaln query.

�

We now show that the probability that initialHit or hit occur is small. That is:

On Constructing One-Way Permutations from Indistinguishability Obfuscation 727

Lemma 3.21. For every n ∈ N and for every q-query algorithm B that does not make
any Evaln queries, it holds that

Pr
On

(b,r∗)←{0,1}n+1

[

initialHit ∨ hit
] ≤ q(n)

2n − q(n)

Proof. Fix the entire probability space except forOn and r∗. The view of the algorithm
B1, i.e., the view of B prior to the challenge phase, is completely independent of r∗.
Moreover, it makes at most q(n)-oracle queries toOn and the responses to these queries
are distributed uniformly in {0, 1}10n . Similarly, after receiving the obfuscated circuit
̂C , the algorithm B2 (who does not have an oracle access to Evaln) receives with each
oracle query to On a uniformly chosen value in {0, 1}10n . These values do not provide
any information regarding r∗, unless a direct query to r∗ is performed.
Since r∗ is distributed uniformly in {0, 1}n , the probability that the i th query hits r∗,

both by B1 or by B2, is 1/(2n − i). Thus, the success probability of B is bounded by
q(n)

2n−q(n)
. �

3.5.3. Concluding the Proof

We are now ready for the proof of Theorem 3.15.

Proof of Theorem 3.15. Assume toward a contradiction that there exists aq-query algo-
rithm A with q(n) < 2n/4 queries, such that:

∣

∣

∣

∣

∣

∣

∣

Pr
On

(b,r∗)←{0,1}n+1

[

ExpiO�,iO,A,C(n; b, r∗) = 1
]

− 1

2

∣

∣

∣

∣

∣

∣

∣

> 2−n/4

for infinitely many n’s. By Claim 3.18, this implies the existence of a Q-query algorithm
B with Q(n) = q(n)2 < 2n/2, that does not make any Evaln-query for which

∣

∣

∣

∣

∣

∣

∣

Pr
On

(b,r∗)←{0,1}n+1

[

Ẽxp
iO
�,iO,B,C(n; b, r∗) = 1

]

− 1

2

∣

∣

∣

∣

∣

∣

∣

> 2−n/4 − 2−7n

By Claim 3.20, this implies that

∣

∣

∣

∣

∣

∣

∣

Pr
On

(b,r∗)←{0,1}n+1

[

initialHit ∨ hit
] − 1

2

∣

∣

∣

∣

∣

∣

∣

> 2−n/4 − 2−7n > 2−n/4+1.

728 G. Asharov, G. Segev

However, this is in contradiction to Lemma 3.21, which shows that this probability is
bounded by

Q(n)

2n − Q(n)
≤ 2n/2

2n − 2n/2 = 1

2n/2 − 1
≤ 2−n/4+1.

�

3.6. Proof of Theorem 3.3

Equipped with the proofs of Theorems 3.4 and 3.5, we are now ready to prove Theo-
rem 3.3.

Proof of Theorem 3.3. Let (Gen,Samp,P, M, TM , εM,1, εM,2) be a fully black-box
construction of a domain-invariant one-way permutation family from a one-way function
f and an indistinguishability obfuscator iO for the classC of all oracle-aided polynomial-
size circuits C f . (Recall Definition 3.2.) Theorem 3.4 guarantees the existence of an
oracle-aided algorithm A that runs in polynomial time TA(n) such that

Pr
[

APSPACE,�(α,P�(α, x)) = x
]

≥ εA(n)

for any n ∈ N, where εA(n) = 1 − 2−10, and the probability is taken over the choice
of � ← S, α ← Gen�(1n), x ← Samp�(α), and over the internal randomness of A.
Definition 3.1 then states that there are two possible cases to consider: A can be used
either for inverting the one-way permutation f or for breaking the indistinguishability
obfuscator iO.
In the first case, we obtain from Definition 3.1 that

Pr
[

MAPSPACE,� (f (x)) ∈ f −1(f (x))
]

≥ εM,1

(

TA(n) · ε−1
A (n)

)

· εM,2(n)

for infinitely many values of n ∈ N, where the probability is taken over the choice of
x ← {0, 1}n and over the internal randomness of M . The algorithm M may invoke
A on various security parameters (i.e., in general M is not restricted to invoking A
only on security parameter n), and we denote by 	(n) the maximal security parameter
on which M invokes A (when M itself is invoked on security parameter n). Thus,
viewing MA as a single oracle-aided algorithm that has access to a PSPACE-complete
oracle and to �, its running time TMA(n) satisfies TMA(n) ≤ TM (n) · TA((n)) (this
follows since M may invoke A at most TM (n) times, and the running time of A on

each such invocation is at most TA((n))). In particular, viewing M ′ def= MAPSPACE
as a

single oracle-aided algorithm that has oracle access to �, implies that M ′ is a q-query
algorithm where q(n) = TMA(n).10 Theorem 3.5 then implies that either 2n/4 ≤ q(n)

10Recall that an algorithm that has oracle access to � is a q-query algorithm if it makes at most q queries
to �, and each of its queries to Eval consists of a circuit of size at most q.

On Constructing One-Way Permutations from Indistinguishability Obfuscation 729

or εM,1

(

TA(n) · ε−1
A (n)

)

· εM,2(n) ≤ 2−n/2. In the first sub-case, noting that 	(n) ≤
TM (n), we obtain that

2n/4 ≤ q(n) = TMA(n) ≤ TM (n) · TA((n)) ≤ TM (n) · TA(TM (n)).

The running time TA(n) of the adversaryA (when given access to a PSPACE-complete
oracle) is some fixed polynomial in n, and therefore, TM (n) ≥ 2ζn for some constant
ζ > 0. In the second sub-case, we have that εM,1 (TA(n)) · εM,2(n) ≤ 2−n/2, and
since TA(n) is some fixed polynomial in n (and εA(n) is a constant) we obtain that
εM,1(nc) · εM,2(n) ≤ 2−n/2 for some constant c > 1.

In the second case, we obtain from Definition 3.1 that

∣

∣

∣

∣

Pr
[

ExpiO
�,iO,MAPSPACE

,C(n) = 1
]

− 1

2

∣

∣

∣

∣

≥ εM,1

(

TA(n) · ε−1
A (n)

)

· εM,2(n)

for infinitely many values of n ∈ N, where � ← S. As in the first case, viewing

M ′ def= MAPSPACE
as a single oracle-aided algorithm that has oracle access to �, implies

that M ′ is a q-query algorithm where q(n) = TMA(n). Theorem 3.5 then implies that

either 2n/4 ≤ q(n) or εM,1

(

TA(n) · ε−1
A (n)

)

· εM,2(n) ≤ 2−n/4. As in the first case, this

implies that either TM (n) ≥ 2ζn for some constant ζ > 0, or εM,1(nc) ·εM,2(n) ≤ 2−n/4

for some constant c > 1. �

4. Impossibility for Constructions Based on One-Way Functions

As discussed in Sect. 1.3.4, the known impossibility results for constructing one-way
permutations based on one-way functions [45,48,57] fall short in two aspects. First,
these results rule out constructions of a single one-way permutation and do not rule out
constructions of a one-way permutation family. Second, these results rule out construc-
tions that are domain invariant (recall Definition 3.2), and do not rule out constructions
that are not domain invariant (such as the construction of Bitansky et al. [15]).
In this sectionwe resolve this surprising gap by ruling out all fully black-box construc-

tions of one-way permutation families from one-way functions—even constructions that
are not domain invariant. In what followswe first formally define this class of reductions,
and then state and prove our result.

Definition 4.1. A fully black-box construction of a one-way permutation family from
a one-way function consists of a triplet of oracle-aided probabilistic polynomial-time
algorithms (Gen,Samp,P), an oracle-aided algorithm M that runs in time TM (·), and
functions εM,1(·) and εM,2(·), such that the following conditions hold:

• Correctness: For any function f the triplet (Gen,Samp,P) is a permutation
family relative to f (as in Definition 2.1).

730 G. Asharov, G. Segev

• Black-Box Proof of Security: For any function f , for any oracle-aided algorithm
A that runs in time TA = TA(n), and for any function εA = εA(n), if

Pr
[

A f (α,P f (α, x)) = x
]

≥ εA(n)

for infinitely many values of n ∈ N, where the probability is taken over the choice
of α ← Gen f (1n), x ← Samp f (α), and over the internal randomness ofA, then

Pr
[

M f,A (f (x)) ∈ f −1(f (x))
]

≥ εM,1

(

TA(n) · ε−1
A (n)

)

· εM,2(n)

for infinitely many values of n ∈ N, where the probability is taken over the choice
of x ← {0, 1}n and over the internal randomness of M .

The above definition clearly captures constructions that are not domain invariant.
First, it allows the support of the distribution Gen f (1n) to depend on f . Second, for
each permutation index α that is produced by Gen f (1n), it allows the domain of the
permutation P f (α, ·) to depend on f . For this general class of reductions, we prove the
following theorem:

Theorem 4.2. Let (Gen,Samp,P, M, TM , εM,1, εM,2) be a fully black-box construc-
tion of a one-way permutation family from a one-way function. Then, at least one of the
following propertied holds:

1. TM (n) ≥ 2ζn for some constant ζ > 0 (i.e., the reduction runs in exponential
time).

2. εM,1(nc) · εM,2(n) ≤ 2−βn for some constants c > 1 and β > 0(i.e., the security
loss is exponential).11

4.1. Attacking Non-domain-Invariant Permutation Families in the Random-Oracle
Model

Toward proving Theorem 4.2, we generalize the attack presented in Sect. 1.3.2 from
inverting any single oracle-aided domain-invariant permutation to inverting any oracle-
aided one-way permutation family—even such families that are not domain invariant.
We prove the following theorem:

Theorem 4.3. Let (Gen,Samp,P)bea triplet of oracle-aidedprobabilistic polynomial-
time algorithms that is a permutation family relative to any oracle f . Then, there exists
an oracle-aided algorithm A that makes a polynomial number of oracle queries such
that for any function f it holds that

Pr
[

A f (α,P f (α, x)) = x
]

= 1

11In particular, if the adversary-dependent security loss εM,1(·) is polynomial, then the adversary-
independent security loss εM,2(·) is exponential.

On Constructing One-Way Permutations from Indistinguishability Obfuscation 731

for any n ∈ N, where the probability is taken over the choice of α ← Gen f (1n) and
x ← Samp f (α), and over the internal randomness of A. Moreover, the algorithm A
can be implemented in polynomial time given access to a PSPACE-complete oracle.

At a first sight, it seems that a natural approach toward proving the above theo-
rem would be to fix some α, and then apply Rudich’s attack on the single permu-
tation P f (α, ·). That is, the adversary A is invoked on some index α and a value
y∗ = P f (α, x∗), chooses in each iteration a set of oracle queries f ′ and an input x ′
such that P f ′

(α, x ′) = y∗, and updates its set of oracle queries Q similarly to the
original proof.
However, this approach seems somewhat insufficient due to the following reasons.

First, A may sample a function f ′ for which it may be that α is not in the support
of Gen f ′

(1n), and therefore, P f ′
(α, ·) might not be a permutation. Second, when A

inverts y∗ relative to some function f ′, it may be that two domains of the permutations
P f (α, ·) and P f ′

(α, ·) are completely different (maybe except for y∗), and therefore, it
is unclear what guarantee we have when considering the hybrid function ˜f . Specifically,
given that x∗ is in the domain of the permutation P f (α, ·) and x ′ is in the domain of the
permutation P f ′

(α, ·), we have no guarantee that neither x∗ nor x ′ are in the domain of
the permutation P˜f (α, ·). We therefore revisit the attack and its analysis.
In particular, in addition to sampling oracle queries and an input x ′ such that

P f ′
(α, x ′) = y∗, our adversary also samples “certificates” that ensure that α is a valid

index relative to f ′ and that x ′ is in the domain of the permutation P f ′
(α, ·). Specifi-

cally, these certificates are the randomness of the algorithmsGen and Samp. Likewise,
such certificates exist with respect to true pre-image x∗ and the true oracle f . Given
these certificates, we can construct an hybrid oracle ˜f relative to which both x∗ and
x ′ are elements in the domain of the permutation P˜f (α, ·), and for both it holds that
P˜f (α, x ′) = P˜f (α, x∗) = y∗. In case x ′ �= x∗, we reach a contradiction, guarantying
that our algorithm learns a new query with each iteration.

Proof of Theorem 4.3. Let (Gen,Samp,P) be a triplet of oracle-aided probabilistic
polynomial-time algorithms that is a permutation family relative to any oracle f . Recall
that for any oracle f and for every n ∈ Nwe denote by I f

n the support of the distribution

Gen f (1n), and we let I f def= ⋃

n∈N I f
n . In addition, for any index α ∈ I f we denote

by D f
α the domain of the permutation P f (α, ·). We proceed to a formal description of

the adversary A.

The Adversary A.

• Input: An index α ∈ I f
n and an element y∗ ∈ D f

α .
• Oracle Access: The function f .
• The Algorithm:

1. Initialize an empty list Q of query/answers to f .
2. Run the following for q + 1 iterations (where q denotes the total number of

oracle gates in the circuits Gen, Samp and P):

732 G. Asharov, G. Segev

(a) Simulation Phase: A finds values (r ′
1, r

′
2, x

′) and a set of queries/answers
f ′ that is consistent with Q such that:

Gen f ′
(1n; r ′

1) = α, Samp f ′
(α; r ′

2) = x ′ and P f ′
(α, x ′) = y∗.

(a) Evaluation Phase: The adversary evaluates Gen f (r1), if the output of
this evaluation is α, then it proceeds to evaluate Samp f (α; r ′

2) and
P f (α,Samp f (α; r ′

2)). If the output of this latter evaluation is y∗, then
it outputs Samp f (α; r ′

2) and halts.
(b) Update Phase: Otherwise, A makes all the queries in f ′ \ Q to the true

oracle f and continues to the next iteration.

3. In case the adversary has not halted yet, it aborts and outputs ⊥.

We first observe thatAmakes at most a polynomial number of oracle queries to f , and
all other computations that are done by A are clearly polynomial-time computations.
Therefore, as in the work of Impagliazzo and Rudich [42], the algorithm A can be
implemented in polynomial time given access to aPSPACE-complete oracle: Sampling
f ′ can be done in polynomial space, requires access only to Q which is of polynomial
size, and does not require access to f .

We now claim that after at most q +1 iterations, the algorithmA is always successful
in finding the pre-image x∗ of y∗. This is a direct consequence of the following claim.

Claim 4.4. In each iteration of A’s execution, at least one of the following occurs:

1. A outputs the pre-image x∗ such that P f (α, x∗) = y∗.
2. During the update phase, A makes at least one of the f -queries that are made

during the following computations:

Gen f (1n; r1), Samp f (α; r2), or P f (α, x∗),

where Gen f (1n; r1) = α, Samp f (α, r2) = x∗ and P f (α, x∗) = y∗.

Proof. Assume that there exists an iteration in which neither one of the above events
occurs. We show that this contradicts the correctness of (Gen,Samp,P). Specifically,
when neither one of the above events occurs, then there exists a function ˜f that is
consistent with f in the computations Gen f (1n; r1), Samp f (α; r2), and P f (α, x∗),
and is consistent with f ′ in the computations of Gen f ′

(1n; r ′
1), Samp f ′

(α; r ′
2) and

P f ′
(α, x ′). According to this oracle ˜f , the following hold:

1. α = Gen
˜f (1n; r1) = Gen

˜f (1n; r ′
1). Therefore, α ∈ I ˜f

n . That is, α is a valid index
with respect to ˜f (and not only with respect to f and f ′).

2. x∗ = Samp
˜f (α; r2) and x ′ = Samp

˜f (α; r ′
2). As a result, x

∗, x ′ ∈ D˜f
α . That is,

both x∗ and x ′ are in the domain of the permutation P˜f (α, ·).
3. P˜f (α, x ′) = y∗ and P˜f (α, x∗) = y∗.

On Constructing One-Way Permutations from Indistinguishability Obfuscation 733

Moreover, assuming that Condition 1 in the claim does not occur, we conclude that x∗ �=
x ′. As a result, the element y∗ has two pre-images in the domain D˜f

α , in contradiction

to the assumption that P˜f (α, ·) is a permutation over D˜f
α .

The function ˜f can be constructed as follows:

• For every input w of f that appears in one of the evaluations Gen f (1n; r1) = α,
Samp f (α; r2) = x∗, or P f (α, x∗) = y∗, set ˜f (w) = f (w).

• For every input w of f ′ that appears in one of the evaluations Gen f ′
(1n; r ′

1) = α,

Samp f ′
(α, r ′

2) = x ′, or P f ′
(α, x ′) = y∗, set ˜f (w) = f (w).

• For every other input w, set ˜f (w) arbitrarily (say, to 0).

The above is well defined since f ′ and f agree on all the queries Q that were made
so far, and from the fact that Condition 2 in the statement does not hold, there are no
further intersection queries between these two sets of evaluations. �

This completes the proof of Theorem 4.3. �

4.2. Proof of Theorem 4.2

Equipped with the proof of Theorem 4.3, we are now ready to prove Theorem 4.2.

Proof of Theorem 4.2. Let (Gen,Samp,P, M, TM , εM,1, εM,2) be a fully black-box
construction of a one-way permutation family from a one-way function. Theorem 4.3
guarantees the existence of an oracle-aided algorithm A that runs in polynomial time
TA(n), such that for any function f it holds that

Pr
[

APSPACE, f (α,P f (α, x)) = x
]

= εA(n)

for any n ∈ N, where εA(n) = 1, and the probability is taken over the choice of
α ← Gen f (1n), x ← Samp f (α), and over the internal randomness ofA. Definition 4.1
then states that for any function f it holds that

Pr

[

(

MA)PSPACE, f
(f (x)) ∈ f −1(f (x))

]

≥ εM,1 (TA(n)) · εM,2(n)

for infinitely many values of n ∈ N, where the probability is taken over the choice of
x ← {0, 1}n and over the internal randomness of M . This holds, in particular, when the
function f = { fn}n∈N is chosen uniformly at random (i.e., for each n ∈ N we sample
fn : {0, 1}n → {0, 1}n uniformly at random).
The algorithm M may invoke A on various security parameters (i.e., in general M

is not restricted to invoking A only on security parameter n), and we denote by 	(n)

the maximal security parameter on which M invokes A (when M itself is invoked on
security parameter n). Thus, viewingMA as a single algorithm, its running time TMA(n)

satisfies TMA(n) ≤ TM (n) · TA((n)). (This follows since M may invoke A at most
TM (n) times, and the running time of A on each such invocation is at most TA((n)).)
Since we now consider the task of inverting a random function relative to a PSPACE-

734 G. Asharov, G. Segev

complete oracle, it holds that either 2βn ≤ TMA(n) or εM,1 (TA(n)) · εM,2(n) ≤ 2−βn

for some constant β > 0 (see, for example, [42])12.
In the first case, noting that 	(n) ≤ TM (n), we obtain that

2βn ≤ TMA(n) ≤ TM (n) · TA((n)) ≤ TM (n) · TA(TM (n)).

The running time TA(n) of the adversaryA is some fixed polynomial in n, and therefore,
TM (n) ≥ 2ζn for some constant ζ > 0. In the second case, we have that εM,1 (TA(n)) ·
εM,2(n) ≤ 2−βn , and since TA(n) is somefixed polynomial in n, we obtain that εM,1(nc)·
εM,2(n) ≤ 2−βn for some constant c > 1. �

Acknowledgements

We thank the anonymous referees andMohammadHajiabadi for their helpful comments.

References

[1] P. Ananth, Z. Brakerski, G. Segev, V. Vaikuntanathan, From selective to adaptive security in functional
encryption, in Advances in Cryptology—CRYPTO ’15 (2015), pp. 657–677

[2] P. Ananth, A. Jain, Indistinguishability obfuscation from compact functional encryption, in Advances in
Cryptology—CRYPTO ’15 (2015), pp. 308–326

[3] G. Asharov, G. Segev, Limits on the power of indistinguishability obfuscation and functional encryption,
To appear in Proceedings of the 56th Annual IEEE Symposium on Foundations of Computer Science
(2015). Available at https://eprint.iacr.org/2015/341.pdf

[4] A. Bogdanov, C. Brzuska, On basing size-verifiable one-way functions on NP-hardness, in Proceedings
of the 12th Theory of Cryptography Conference (2015), pp. 1–6

[5] P. Baecher, C. Brzuska, M. Fischlin, Notions of black-box reductions, revisited, in Advances in
Cryptology—ASIACRYPT ’13 (2013), pp. 296–315

[6] N.Bitansky,R.Canetti,H.Cohn, S.Goldwasser,Y.TaumanKalai,O. Paneth,A.Rosen,The impossibility
of obfuscation with auxiliary input or a universal simulator, in Advances in Cryptology—CRYPTO ’14
(2014), pp. 71–89

[7] N. Bitansky, R. Canetti, Y. TaumanKalai, O. Paneth, On virtual grey box obfuscation for general circuits,
in Advances in Cryptology—CRYPTO ’14 (2014), pp. 108–125

[8] C. Brzuska, P. Farshim, A. Mittelbach, Random-oracle uninstantiability from indistinguishability obfus-
cation, in Proceedings of the 12th Theory of Cryptography Conference (2015), pp. 428–455

[9] B.Barak,O.Goldreich,R. Impagliazzo, S.Rudich,A. Sahai, S.P.Vadhan,K.Yang,On the (im)possibility
of obfuscating programs. J. ACM 59(2), 6 (2012)

[10] Z. Brakerski, J. Katz, G. Segev, A. Yerukhimovich, Limits on the power of zero-knowledge proofs in
cryptographic constructions, in Proceedings of the 8th Theory of Cryptography Conference (2011), pp.
559–578

[11] M. Blum, S. Micali. How to generate cryptographically strong sequences of pseudo-random bits. SIAM
J. Comput. 13(4), 850–864 (1984)

[12] B. Barak, M. Mahmoody-Ghidary, Merkle puzzles are optimal—an O(n2)-query attack on any key
exchange from a random oracle, in Advances in Cryptology—CRYPTO ’09 (2009), pp. 374–390

[13] N. Bitansky, O. Paneth, ZAPs and non-interactive witness indistinguishability from indistinguishability
obfuscation, in Proceedings of the 12th Theory of Cryptography Conference (2015), pp. 401–427

12It is crucial to note that the PSPACE-complete oracle does not access the function f directly.

https://eprint.iacr.org/2015/341.pdf

On Constructing One-Way Permutations from Indistinguishability Obfuscation 735

[14] N. Bitansky, O. Paneth, A. Rosen, On the cryptographic hardness of finding a Nash equilibrium, in
Proceedings of the 56th Annual IEEE Symposium on Foundations of Computer Science (2015), pp.
1480–1498

[15] N. Bitansky, O. Paneth, D. Wichs, Perfect structure on the edge of chaos—trapdoor permutations from
indistinguishability obfuscation, in Proceedings of the 13th Theory of Cryptography Conference (2016),
pp. 474–502

[16] Z. Brakerski, G.N. Rothblum, Virtual black-box obfuscation for all circuits via generic graded encoding,
in Proceedings of the 11th Theory of Cryptography Conference (2014), pp. 1–25

[17] M. Bellare, I. Stepanovs, S. Tessaro, Poly-many hardcore bits for any one-way function and a framework
for differing-inputs obfuscation, in Advances in Cryptology—ASIACRYPT ’14 (2014), pp. 102–121

[18] N. Bitansky, V. Vaikuntanathan, Indistinguishability obfuscation from functional encryption, in Pro-
ceedings of the 56th Annual IEEE Symposium on Foundations of Computer Science (2015), pp. 171–190

[19] D. Boneh, M. Zhandry, Multiparty key exchange, efficient traitor tracing, and more from indistinguisha-
bility obfuscation, in Advances in Cryptology—CRYPTO ’14 (2014), pp. 480–499

[20] R. Canetti, S. Goldwasser, O. Poburinnaya, Adaptively secure two-party computation from indistin-
guishability obfuscation, in Proceedings of the 12th Theory of Cryptography Conference (2015), pp.
557–585

[21] Y. Chang, C. Hsiao, C. Lu, The impossibility of basing one-way permutations on central cryptographic
primitives. J. Cryptol. 19(1), 97–114 (2006)

[22] K. Chung, H. Lin, M. Mahmoody, R. Pass, On the power of nonuniformity in proofs of security, in
Proceedings of the 4th Innovations in Theoretical Computer Science Conference (2013), pp. 389–400

[23] K. Chung, H. Lin, R. Pass, Constant-round concurrent zero-knowledge from indistinguishability obfus-
cation, in Cryptology ePrint Archive, Report 2014/991 (2014)

[24] R. Canetti, H. Lin, S. Tessaro, V. Vaikuntanathan, Obfuscation of probabilistic circuits and applications,
in Proceedings of the 12th Theory of Cryptography Conference (2015), pp. 468–497

[25] R. Canetti, Y. Tauman Kalai, O. Paneth, On obfuscation with random oracles, in Proceedings of the 12th
Theory of Cryptography Conference (2015), pp. 456–467

[26] D. Dachman-Soled, J. Katz, V. Rao, Adaptively secure, universally composable, multiparty computation
in constant rounds, in Proceedings of the 12th Theory of Cryptography Conference (2015), pp. 586–613

[27] D. Dachman-Soled, Y. Lindell,M.Mahmoody, T.Malkin, On the black-box complexity of optimally-fair
coin tossing, in Proceedings of the 8th Theory of Cryptography Conference (2011), pp. 450–467

[28] D. Dachman-Soled, M. Mahmoody, T. Malkin, Can optimally-fair coin tossing be based on one-way
functions?, in Proceedings of the 11th Theory of Cryptography Conference (2014), pp. 217–239

[29] S. Goldwasser, S.D. Gordon, V. Goyal, A. Jain, J. Katz, F.-H. Liu, A. Sahai, E. Shi, H.-S. Zhou, Multi-
input functional encryption, in Advances in Cryptology—EUROCRYPT ’14 (2014), pp. 578–602

[30] S. Garg, C. Gentry, S. Halevi, M. Raykova, A. Sahai, B. Waters, Candidate indistinguishability obfus-
cation and functional encryption for all circuits, in Proceedings of the 54th Annual IEEE Symposium on
Foundations of Computer Science (2013), pp. 40–49

[31] S.Garg,C.Gentry, S.Halevi,M.Raykova, Two-round secureMPC from indistinguishability obfuscation,
in Proceedings of the 11th Theory of Cryptography Conference (2014), pp. 74–94

[32] R. Gennaro, Y. Gertner, J. Katz, L. Trevisan, Bounds on the efficiency of generic cryptographic con-
structions. SIAM J. Comput. 35(1), 217–246 (2005)

[33] Y. Gertner, T. Malkin, S. Myers, Towards a separation of semantic and CCA security for public key
encryption, in Proceedings of the 4th Theory of Cryptography Conference (2007), pp. 434–455

[34] Y. Gertner, T. Malkin, O. Reingold, On the impossibility of basing trapdoor functions on trapdoor
predicates, in Proceedings of the 42nd Annual IEEE Symposium on Foundations of Computer Science
(2001), pp. 126–135

[35] O. Goldreich, On security preserving reductions—revised terminology, in Cryptology ePrint Archive,
Report 2000/001 (2000)

[36] O.Goldreich, Foundations ofCryptography—Volume 1:Basic Techniques (CambridgeUniversity Press,
Cambridge, 2001)

[37] S. Garg, A. Polychroniadou, Two-round adaptively secure MPC from indistinguishability obfuscation,
in Proceedings of the 12th Theory of Cryptography Conference (2015), pp. 614–637

736 G. Asharov, G. Segev

[38] I. Haitner, J.J. Hoch, O. Reingold, G. Segev, Finding collisions in interactive protocols—tight lower
bounds on the round and communication complexities of statistically hiding commitments. SIAM J.
Comput. 44(1), 193–242 (2015)

[39] J. Håstad, R. Impagliazzo, L.A. Levin, M. Luby, A pseudorandom generator from any one-way function.
SIAM J. Comput. 28(4), 1364–1396 (1999)

[40] C. Hsiao, L. Reyzin, Finding collisions on a public road, or do secure hash functions need secret coins?,
in Advances in Cryptology—CRYPTO ’04 (2004), pp. 92–105

[41] S. Hohenberger, A. Sahai, B. Waters, Replacing a random oracle: full domain hash from indistinguisha-
bility obfuscation, in Advances in Cryptology—EUROCRYPT ’14 (2014), pp. 201–220

[42] R. Impagliazzo, S. Rudich, Limits on the provable consequences of one-way permutations, in Proceed-
ings of the 21st Annual ACM Symposium on Theory of Computing (1989), pp. 44–61

[43] I. Komargodski, T. Moran, M. Naor, R. Pass, A. Rosen, E. Yogev, One-way functions and (im)perfect
obfuscation, in Proceedings of the 55th Annual IEEE Symposium on Foundations of Computer Science
(2014), pp. 374–383

[44] J.Kahn,M.E. Saks,C.D. Smyth,Adual version ofReimer’s inequality and aproof ofRudich’s conjecture,
in Proceedings of the 15th Annual IEEE Conference on Computational Complexity, Florence, Italy, July
4–7, 2000 (2000), pp. 98–103

[45] J. Kahn, M. Saks, C.D. Smyth, The dual BKR inequality and Rudich’s conjecture. Comb. Probab.
Comput. 20(2), 257–266 (2011)

[46] M. Luby, Pseudorandomness and Cryptographic Applications (Princeton University Press, Princeton,
1996)

[47] T. Matsuda, On the impossibility of basing public-coin one-way permutations on trapdoor permutations,
in Proceedings of the 11th Theory of Cryptography Conference, pp. 265–290 (2014)

[48] T. Matsuda, K. Matsuura, On black-box separations among injective one-way functions, in Proceedings
of the 8th Theory of Cryptography Conference (2011), pp. 597–614

[49] M. Mahmoody, H.K. Maji, M. Prabhakaran, On the power of public-key encryption in secure computa-
tion, in Proceedings of the 11th Theory of Cryptography Conference (2014), pp. 240–264

[50] M. Mahmoody, R. Pass, The curious case of non-interactive commitments—on the power of black-box
vs. non-black-box use of primitives, in Advances in Cryptology—CRYPTO ’12 (2012), pp. 701–718

[51] M. Naor, M. Yung, Universal one-way hash functions and their cryptographic applications, in Proceed-
ings of the 21st Annual ACM Symposium on Theory of Computing (1989), pp. 33–43

[52] R. Pass, W.D. Tseng, M. Venkitasubramaniam, Towards non-black-box lower bounds in cryptography,
in Proceedings of the 8th Theory of Cryptography Conference (2011), pp. 579–596

[53] M.O. Rabin, Digitalized signatures and public-key functions as intractable as factorization. Technical
report 212, Massachusetts Institute of Technology, Laboratory for Computer Science (1979)

[54] J. Rompel, One-way functions are necessary and sufficient for secure signatures, in Proceedings of the
22nd Annual ACM Symposium on Theory of Computing (1990), pp. 387–394

[55] R.L. Rivest, A. Shamir, L.M. Adleman, A method for obtaining digital signatures and public-key cryp-
tosystems. Commun. ACM 21(2), 120–126 (1978)

[56] O. Reingold, L. Trevisan, S.P. Vadhan, Notions of reducibility between cryptographic primitives, in
Proceedings of the 1st Theory of Cryptography Conference (2004), pp. 1–20

[57] S. Rudich, Limits on the Provable Consequences of One-way Functions. PhD thesis, EECS Department,
University of California, Berkeley (1988)

[58] D.R. Simon, Finding collisions on a one-way street: can secure hash functions be based on general
assumptions?, in Advances in Cryptology—EUROCRYPT ’98 (1998), pp. 334–345

[59] A. Sahai, B. Waters, How to use indistinguishability obfuscation: deniable encryption, and more, in
Proceedings of the 46th Annual ACM Symposium on Theory of Computing (2014), pp. 475–484

[60] B. Waters, A punctured programming approach to adaptively secure functional encryption, in Advances
in Cryptology—CRYPTO ’15 (2015), pp. 678–697

[61] H.Wee,One-way permutations, interactive hashing and statistically hiding commitments, inProceedings
of the 4th Theory of Cryptography Conference (2007), pp. 419–433

	On Constructing One-Way Permutations from Indistinguishability Obfuscation
	1. Introduction
	1.1. Our Contributions
	1.2. Related Work
	1.3. Overview of Our Results
	1.3.1. Capturing Non-Black-Box Constructions via icalO for Oracle-Aided Circuits
	1.3.2. Warm-up: Rudich's Attack in the Random-Oracle Model
	1.3.3. Attacking Domain-Invariant Permutation Families Relative to Our Oracle
	1.3.4. Attacking Non-domain-Invariant Permutation Families in the Random-Oracle Model

	1.4. Paper Organization

	2. Preliminaries
	2.1. Oracle-Aided One-Way Permutation Families
	2.2. Indistinguishability Obfuscation for Oracle-Aided Circuits

	3. Impossibility for Constructions Based on iO and One-Way Functions
	3.1. The Class of Constructions
	3.2. Proof Overview and the Oracle Γ
	3.3. Attacking Domain-Invariant Permutation Families Relative to Gamma
	3.4. f is a One-Way Function Relative to Γ
	3.5. iO is an Indistinguishability Obfuscator Relative to Gamma
	3.5.1. Simulating the Oracle Eval
	3.5.2. From Distinguishing to Hitting
	3.5.3. Concluding the Proof

	3.6. Proof of Theorem 3.3

	4. Impossibility for Constructions Based on One-Way Functions
	4.1. Attacking Non-domain-Invariant Permutation Families in the Random-Oracle Model
	4.2. Proof of Theorem 4.2

	Acknowledgements
	References

