
IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 21, NO. 5, OCTOBER 2013 1499

On Construction of Quality Fault-Tolerant Virtual

Backbone in Wireless Networks
Wei Wang, Donghyun Kim, Member, IEEE, Min Kyung An, Student Member, IEEE, Wei Gao, Xianyue Li,

Zhao Zhang, and Weili Wu, Member, IEEE

Abstract—In this paper, we study the problem of computing
quality fault-tolerant virtual backbone in homogeneous wireless

network, which is defined as the -connected -dominating set

problem in a unit disk graph. This problem is NP-hard, and
thus many efforts have been made to find a constant factor ap-

proximation algorithm for it, but never succeeded so far with

arbitrary and pair. We propose a new strategy for
computing a smaller-size 3-connected -dominating set in a unit

disk graph with any . We show the approximation ratio of

our algorithm is constant and its running time is polynomial. We

also conduct a simulation to examine the average performance

of our algorithm. Our result implies that while there exists a

constant factor approximation algorithm for the -connected

-dominating set problem with arbitrary and

pair, the -connected -dominating set problem is still open with

.

Index Terms—Approximation algorithm design and analysis,

connected dominating set, fault tolerance, graph theory, virtual

backbone.

I. INTRODUCTION

A WIRELESS network consists a set of computing devices

referred to as wireless nodes, which are connected with

each other using wireless communication technology. During

recent years, two particular types of infrastructureless wireless

networks, ad hoc network and wireless sensor network, drew a

spotlight due to their wide range of applications [1], [2]. In the

Manuscript received August 02, 2011; revised May 01, 2012; September

10, 2012; and October 17, 2012; accepted October 30, 2012; approved by

IEEE/ACM TRANSACTIONS ON NETWORKING Editor S. Ramasubramanian.

Date of publication December 11, 2012; date of current version October

11, 2013. This work was supported in part by the NSFC under Grants

NSFC-11071191, NSFC-61073046, NSFC-11201208, and NSFC-61222201;

the NSF CREST under Grant No. HRD-0833184; the US ARO under

Grant No. W911NF-0810510; and the US NSF under Grants CNS-0831579,

CNS-1016320, and CCF-0829993.

W. Wang and W. Gao are with the Department of Mathematics, Xi’an

Jiaotong University, Xi’an 710049, China (e-mail: wang_weiw@163.com;

w_gao@foxmail.com).

D. Kim is with the Department of Mathematics and Computer Science,

North Carolina Central University, Durham, NC 27707 USA (e-mail:

donghyun.kim@nccu.edu).

M. K. An and W. Wu are with the Department of Computer Sci-

ence, University of Texas at Dallas, Richardson, TX 75083 USA (e-mail:

mka081000@utdallas.edu; weiliwu@utdallas.edu).

X. Li is with the School of Mathematics and Statistics, Lanzhou University,

Lanzhou 730000, China (e-mail: lixianyue@lzu.edu.cn).

Z. Zhang is with the College of Mathematics and System Sciences, Xinjiang

University, Urumqi 830046, China (e-mail: hxhzz@163.com).

Color versions of one or more of the figures in this paper are available online

at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TNET.2012.2227791

rest of this paper, we will denote these infrastructureless wire-

less networks by “wireless networks” in short. Because of its

simplicity, many existing routing protocols in wireless networks

exploit flooding strategy, in which every node participates in the

protocols by broadcasting the messages it received to its neigh-

bors. However, it is known that such flooding-oriented proto-

cols suffer from a huge amount of collisions and redundancy,

and thus are very energy-exhaustive [3]. It is widely believed

that Ephremides et al. first introduced the idea of constructing a

backbone-like structure to wireless networks [4], which is gen-

erally referred as virtual backbone nowadays. In this scheme, a

subset of nodes is selected such that: 1) every node in a given

wireless network is either in or adjacent to a node in ; and

2) the subgraph induced by is connected. Then, each node

communicates with another through the connected subset .

This strategy has several apparent benefits to wireless networks.

Above all, regardless from the specific routing algorithm used

over this structure, only the nodes in will be involved in mes-

sage routing, and therefore the number of routing-related control

messages can be reduced, and the amount of wireless signal col-

lision and interference will be decreased. As a result, the routing

protocol will work much faster and efficiently [5].

Clearly, the advantage of a virtual backbone can be magni-

fied as its size becomes smaller. This motivated many people to

investigate the problem of computing smaller virtual backbones

in wireless networks. Guha and Kuller modeled this problem as

the minimum connected dominating set (MCDS) problem [6].

Since this is a very well-known NP-hard problem, they intro-

duced approximation algorithms for it [7]. After all, due to the

significant merit and potential of virtual backbone in wireless

networks, extensive research has been conducted on the MCDS

problem and its variations [8]–[33].

In many applications of wireless networks, the topology of

the networks can be altered due to many reasons such as mo-

bility of nodes, temporal communication disruption, and energy

exhaustion of nodes. Unfortunately, a virtual backbone structure

is fragile in such an environment. That is, once the topology is

changed, the structure may be disconnected and needed to be re-

constructed. Conversely, a node may be disconnected from the

virtual backbone structure due to the loss of its only neighboring

virtual backbone node. In order to deal with these issues, Dai

and Wu have introduced the concept of the fault-tolerant virtual

backbone [14]. In their seminary work, a virtual backbone is

said to be fault-tolerant if it satisfies following two properties.

1) -vertex-connectivity: A graph is said to be -connected

only if after any nodes are removed from , the graph

is still connected. By enforcing such property to a virtual

backbone for some greater than 1, the backbone can be

still connected after the loss of at most nodes

1063-6692 © 2012 IEEE

1500 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 21, NO. 5, OCTOBER 2013

2) -domination: A subset of a graph is an -domi-

nating set of only if for every node , has

at least neighbors in .

By enforcing these two properties, a virtual backbone struc-

ture is still operational even after the loss of any

nodes. Generally, the problem of computing the min-

imum cardinality subset satisfying those two properties is called

the -connected -dominating set problem, the -CDS

problem in short. Apparently, this problem is NP-hard since

its simplest case is the MCDS problem, in which and

. So far, many efforts concerning this problem have

been made [17]–[19], [26]–[28], [33]. However, as we showed

in our previous surveys [34], [35], there exists no constant factor

approximation algorithm that always succeeds in computing a

-CDS with arbitrary and pair from a UDG

with a feasible solution.

In this paper, we propose the first polynomial time constant

factor approximation algorithm for the (3, 3)-CDS problem.

Then, we generalize this result to have the first polynomial time

constant factor approximation for the (3,)-CDS for any pos-

itive integer . We also conduct a simulation to exam the

performance of our algorithm. Due to our consecutive efforts,

the problem of designing a constant factor approximation algo-

rithm for the -connected -dominating set problem in a unit

disk graph with arbitrary and pair is proven to be

still open.

The rest of this paper is organized as follows. In Section II,

we introduce some notations, assumptions, and definitions. The

related works are introduced in Section III. Our major result,

a polynomial-time constant factor approximation algorithm

for the (3, -)CDS problem for any , is introduced in

Section IV. Our simulation result is given in Section V. We

conclude our paper and present future works in Section VI.

II. NOTATIONS, ASSUMPTIONS, AND DEFINITIONS

In this paper, we assume that the wireless networks of

our interest are homogeneous (i.e., the wireless networks of

identical wireless nodes) and use the unit disk graph, which

is defined in the following, to abstract the networks. Let

be the euclidean distance between and . A graph

is a unit disk graph (UDG) if

, if and only if . A subset

is an independent set (IS) of if , .

A subset is a maximal independent set (MIS) of if

is an IS of and , is not an IS

anymore. A subset is a dominating set (DS) of if

, either or such that . A

subset is a connected dominating set (CDS) of if

is a DS and the subgraph of induced by is connected.

Clearly, an MIS of is a DS of . Based on this fact, one

typical approach to compute a CDS is: 1) compute anMIS

using a simple 2-coloring algorithm; and 2) find a subset such

that the subgraph induced by is connected. Usually, a

variation of minimum spanning tree algorithm or Steiner min-

imum tree algorithm is used to find such that for

some constant . Based on this relationship and a known fact

that for some constant , where

is an optimal CDS, the above strategy is in fact an approxima-

tion of the MCDS problem whose performance ratio is .

Fig. 1. This figure illustrates how (right) a leaf-block graph can be computed

from (left) a given 2-connected graph.

This approach is initially introduced by Guha and Kuller [6]

and later becomes a standard approximation technique for the

MCDS problem and its variations.

A DS is a -dominating set (-DS) of if ,

is a neighbor of at least nodes in . A graph is

-vertex-connected if the subgraph induced by is con-

nected for any such that . In the rest of this

paper, “ -vertex-connected” and “ -connected” will be used

interchangeably. In addition, will imply a -connected

graph. A subset is a -connected -dominating set of

if the subgraph induced by is -connected and is an

-dominating set of . In the rest of this paper, we will

interchangeably use -CDS and to denote a -con-

nected -dominating set. Also, we will use -CDS to notate

-DCS. Finally, is an optimal -CDS. This

paper assumes that the UDG induced from the input wireless

network is -connected. However, how to obtain

such a wireless network is out of scope of this paper, and we

will focus on how to obtain quality -connected -dominating

set. We also assume the connectivity of each pair of nodes

remains the same during the computation of a -CDS. A

vertex is a cut-vertex of only if the graph induced

by is disconnected. A subgraph of is called a block

only if it is a maximal connected subgraph of without any

cut-vertex. Every block in a connected graph is either a max-

imal 2-connected subgraph or a bridge, which is an edge with

two endpoints. Given a connected subgraph that can be de-

composed of a set of blocks and cut-vertices, a leaf-block graph

is an induced graph from by the following construction

rules: 1) For each block of , add a corresponding node

to ; 2) for each cut-vertex of , add a node to ; and 3)

add an edge between in , which is added by the first rule,

and in , which is added by the second rule, only if

in , where is the block of , which corresponds to .

Fig. 1 illustrates how a leaf-block graph can be constructed. In

the rest of this paper, a subblock refers a block in a leaf-block

graph of a block. A leaf block is a block that has degree one

in the leaf-block graph. We would like to draw the attention

to following three facts: 1) Two different blocks of share at

most one cut-vertex in common. Since otherwise, they can be

merged into one block by definition: 2) every edge of lies in

a unique block. That is, no two blocks share the same edge; and

3) is the union of its blocks. Based on the facts, the following

proposition naturally follows.

Proposition 2.1 ([38]): The leaf-block graph of a connected

graph is a tree (i.e., a connected graph).

WANG et al.: CONSTRUCTION OF QUALITY FAULT-TOLERANT VIRTUAL BACKBONE IN WIRELESS NETWORKS 1501

Fig. 2. Given a , a , and a separator of , suppose

is divided into several connected components, .

Then, there have to be two different components and such that the length

of the shortest -path between them is at most three hops.

For a connected graph , a separator of is pair of ver-

tices such that the subgraph induced by

is disconnected. For a 2-connected graph , is a

good-point only if the subgraph induced by is 2-con-

nected. Otherwise, we call a bad-point. (i.e., is 1-con-

nected). An -path of an induced subgraph of a graph

is a path between two distinct nodes in such that no internal

node of is in . The length of an -path is just the number

of edges of . Also, means an -path with length at most

. So far, we have introduced a series of important notations and

definitions. Some other ones will be defined later if necessary.

At last, we introduce several important lemmas and a theorem.

Lemma 2.2: A 2-connected graph without any bad-point is a

3-connected graph.

Proof: Suppose is a 2-connected graph. If there is no

bad-point in , for any , the induced graph of is

still 2-connected. Then, by definition, is a 3-connected graph

and this lemma holds true.

Lemma 2.3: Consider a 3-connected graph and a 2-con-

nected 3-dominating set of . Now, suppose is a

separator of such that is divided into several

connected components, . Then, there has to be two

distinct components and having a shortest path between

them with length at most three hops.

Proof: Suppose and are the two closest components.

Since is 3-connected, there must exist a path in

connecting and . Let be the shortest

-path between them. We show that . For contradiction,

suppose that . Note that every node in is 3-dom-

inated by ; it follows that every is 3-dominated by

for (see Fig. 2).

Now, consider the node .We find that can be dominated

by neither nor ; otherwise, the length between and

can be shortened by at least one. Moreover, can be domi-

nated by and at most twice. It follows that there must exist

another connected component, say , which domi-

nates . However, the distance between and is at most

, which contradicts the fact that and are the closest

components. This shows that , and the lemma follows.

Lemma 2.4: Consider a 3-connected graph , a of ,

and a separator of . Then, is divided

into at most five connected components.

Proof: It is known that in UDG, a node has at most five in-

dependent neighbors [15]. By definition, each connected com-

ponent of has to be independent and connected

to (and), their number cannot exceed more than five.

Theorem 2.5 (Menger’s Theorem [40]): Given a graph and

two vertices , the minimum number of vertices to be

removed from so that and are separated in the remaining

graph is equivalent to the maximum number of disjoint paths

from to in .

III. RELATED WORK

The problem of computing quality fault-tolerant virtual

backbone is introduced by Dai and Wu [14]. In their seminary

work, three localized heuristic algorithms for the -CDS

problem are introduced. The first approximation algorithm

to construct fault-tolerant virtual backbone was proposed by

Wang et al. [28]. They specifically focused on the (2, 1)-CDS

problem, and they proved the performance ratio of their al-

gorithm is 62.19. A constant factor approximation for the

(1,)-CDS problem is introduced by Shang et al. [17] and

Thai et al. [18] independently. Shang et al. [17] introduced how

Wang et al.’s idea for the (2, 1)-CDS problem can be incorpo-

rated with their approximation algorithm for the (1,)-CDS

problem to achieve a constant factor approximation for the

(2,)-CDS problem. As a part of the conclusion, they conjec-

tured that it would be very difficult to design a constant factor

approximation algorithm for the -CDS problem for any

and pair. During recent few years, extensive

efforts have been made to find a constant factor approximation

algorithm for the -CDS problem for arbitrary and

pair. In most cases, UDG is used to abstract a wireless

network. Thai et al. tried to use a generalization of Wang et al.’s

approximation scheme for the (2, 1)-CDS problem to design

a constant factor approximation [18]. Based on this result,

Zhang et al. [26] designed an approximation algorithm for the

-CDS problem in terms of the size of a -CDS

as well as its diameter. Wu et al. [19] proposed the first dis-

tributed approximation algorithm for this problem. Afterwards,

several centralized/distributed approximation algorithms for

the -CDS problem are introduced [27], [33]. However,

as we showed in our previous surveys [34], [35], there is no

constant factor approximation algorithm that always succeeds

in computing a -CDS with arbitrary and

pair from a UDG including a feasible solution.

IV. CONSTANT FACTOR APPROXIMATION FOR COMPUTING

(3,)-CDS IN UDGS

In this section, we introduce our algorithm, Fault-Tolerant

Connected Dominating Sets Computation Algorithm (FT-CDS-

CA), which computes (3,)-CDSs in UDGs. We first proceed

in this section with and later explain how our result can

be generalized for any . Roughly, FT-CDS-CA works as

follows. Given a , FT-CDS-CA first computes a

using a constant factor approximation algorithm in [17], [18]

and set . Next, the algorithm identifies the set of all

bad-points in . Note that . By Lemma 2.2,

1502 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 21, NO. 5, OCTOBER 2013

the 2-connected subgraph is 3-connected if . The

core strategy of FT-CDS-CA is that the algorithm repeatedly

changes each bad-point into a good-point by moving

at most some constant number of nodes from to

without introducing any new bad-point into . In this way, after

changing all bad-points in into good, becomes a 3-con-

nected 3-dominating set, and accordingly, the total number of

nodes newly added to is bounded by a constant factor of

.

Algorithm 1: FT-CDS-CA

1: Compute a and set .

2: Identify the set of bad-points in .

3: while do

4: Step 1: Multilevel Decomposition

5: , where is one

bad-point of .

6: if then

7: .

8: else

9: Step 2: Merging SubBlocks

10: .

11: end if

12: Step 3: One Bad-Point Elimination

13:

14: end while

15: Return .

A. How to Convert a Bad-Point to a Good-Point?

FT-CDS-CA is a round-based algorithm. In each round, it

converts one bad-point in to a good-point as follows. Given

a 2-connected subgraph (initially, this is a) and the set

of bad-points in , we select as a root and compute

a leaf-block tree of . Then, consists of a set of

blocks and a set of cut-vertices .

Clearly, can constitute a separator only with another node in

. To simplify our presentation, we classify the nodes

in each block into the following two classes: 1) internal

nodes , i.e.,

the nodes that cannot be adjacent to any node outside , and

2) external nodes, i.e., the remaining nodes ,

which consist of those spy-nodes

and those cut-vertices in each level

of decompositions. Note that while and are two different

sets, theymay share some nodes in common. The external nodes

are potential troublemakers when we try to change a bad-point

into good.

Suppose there is no external node. If every has no internal

bad-point for , then FT-CDS-CA makes either one

of for or to be a good-point by adding con-

stant number of -paths such that or is still

2-connected (Algorithm 4). Otherwise, there must exist some

having an internal node which constitutes a sepa-

rator of with another node . By Lemma 4.1,

any internal bad-point in can constitute a separator only

with another node in (while this may not be true for the

external nodes such as cut-vertices and spy-nodes). It follows

that . Note that by switching to , we can make

the original problem smaller. By repeating such a process, we

can keep making our problem smaller and eventually can find

a block in which our strategy works. Finally, to handle the

external nodes (which constitute “local separators” with), we

simply add -paths to eliminate these separators.

Now, we introduce the detailed description of our algorithm

for the conversion, which consists of following three discrete

steps: 1) multilevel decomposition; 2) merging subblocks; and

3) one bad-point elimination.

Algorithm 2: MLD

1: Calculate a leaf-block tree of .

2: if all blocks in are good blocks then

3: Return

4: else

5: Return MLD , where is a bad

block of and is an internal bad-point of .

6: end if

Note that the first step takes a polynomial time since, in each

level, we can compute a leaf-block tree within a polynomial time

and at most a polynomial number of trees have to be computed.

The second step also takes a polynomial time since it will try to

merge the limited number of blocks whose number is bounded

by the number of nodes in the original graph. At last, the third

step takes a polynomial time to make one bad-point to a good-

point. Since at most a polynomial number of rounds are repeated

to eliminate all bad-points and find a subgraph , the algo-

rithm is clearly polynomial-time-executable (see Lemma 4.10

for details).

1) Multilevel Decomposition (MLD): The purpose of this

step is to find a subgraph in which the third step can be applied

to convert at least one bad-point in into a good-point. We

assume that since otherwise is already 3-connected.

Given a 2-connected block , FT-CDS-CA first picks

one and starts the initial decomposition process (say

level-0 decomposition). Then, is decomposed into a

(level-0) leaf-block graph , which is a tree whose vertices

consist of a set of blocks and a set of cut-vertices

. Observe that after the level-0 decomposition,

and .

Now, FT-CDS-CA examines each block in to see if there

is a block having an internal bad-point in it. By Lemma 4.1,

we only need to check if there is an internal node

that can constitute a separator of with another node in .

We will call such block containing an internal bad-point a bad

block; otherwise, it is called a good block. Once we find a bad

block , we stop searching, set , , and start

the next level (level-1) decomposition process on . If such a

pair does not exist, we are done with this step. Note that this

decomposition step never outputs an empty left-block tree since

each block must contain a cut-vertex that is an external node.

Once we found a bad-block-free leaf-block tree, we make the

following modifications to the tree before starting the third step,

“one bad-point elimination” on .

WANG et al.: CONSTRUCTION OF QUALITY FAULT-TOLERANT VIRTUAL BACKBONE IN WIRELESS NETWORKS 1503

Algorithm 3: MSB

1: Copy to .

2: if There is exactly one block having external nodes

connecting to nodes outside directly then

3: We mark this as a virtual block (no virtual

cut-vertex).

4: Return .

5: end if

6: repeat

7: boolMerged FALSE

8: for each pair of two different and of do

9: if: 1) each of and contains an external node

and of , respectively, and 2) and are connected

through a path in } then

10: if and are the cut-vertices of then

11: Merge all the blocks on the path from to

in into one single block.

12: boolMerged TRUE

13: Get out of for loop break

14: else if neither of nor is a cut-vertex of

then

15: Merge all the blocks on the path from to

in (including and) into one single block.

16: boolMerged TRUE

17: Get out of for loop break

18: else

19: Without loss of generality, suppose is a

cut-vertex and is not a cut-vertex. Then, merge all the

blocks on the path from to in (including) into

one single block.

20: boolMerged TRUE

21: Get out of for loop break

22: end if

23: end if

24: end for

25: until boolMerged is FALSE

26: Mark (the merged big block) as virtual block and

virtual cut-vertex (or vertices) if applicable.

27: Return

2) Merging Subblocks (MSB): Suppose after the level- de-

composition of for , we have

(1)

and every is a good block for . Please observe

that there exists at least one block having external nodes

that are adjacent to nodes in since, otherwise, and

cannot be connected with each other. In addition, we

would like to emphasize that there may exist more than one

block having external nodes connected to some nodes outside

. Suppose that (resp.) contains external node (resp.

) and . Consider the following cases.

1) If neither nor is a cut-vertex, then every cut-vertex

lying on the path between and in is actually not a

cut-vertex of (though it is a cut-vertex in). Thus,

all blocks lying on the path between and , should be

merged to form a bigger block of .

Fig. 3. Multilevel decomposition and merging of blocks. (a) Given 2-con-

nected of a graph ; (b) leaf-block tree of level-0 decomposition with

root ; (c) bad block in the level-0 decomposition tree with cut-vertices ,

spy-nodes {1, 2, 6}, internal nodes {3, 4, 5}, and an internal bad node 4;

(d) leaf-block tree of level-1 decomposition with root 4, where two blocks have

been merged into a bigger virtual block.

2) If and are cut-vertices of and ,

respectively, then the blocks lying on the path between

and in should be merged, and the internal cut-vertices

in the path do not constitute a separator with in (while

this not true in).

3) If exactly one of and is a cut-vertex, i.e., is a

cut-vertex and is not a cut-vertex, then the blocks

lying on the path between and have to be merged.

After merging all possible blocks into one bigger block,

we obtain a modified leaf-block tree in which one bigger

block (we call it a virtual block) is added representing

all the merged blocks, and all the cut-vertices that do not

constitute a separator with will be removed (if there is exactly

one block having external nodes that are adjacent to nodes

outside , we simply choose this block as). Moreover, we

mark every remaining cut-vertex of as a virtual cut-vertex

if it is adjacent to a node outside of . Note that by Lemma 4.2,

there is a unique after the merging process, which can be

connected to the outside of directly without going through

; see Fig. 3.

Note that if , no block has to be merged since no block

having an external node adjacent to . However, to

unify our discussions, we make the convention that the virtual

block of is a node in with degree larger than two (if

exists), or an endpoint of (now is a path).

3) One Bad-Point Elimination (OBPE): At this point, we

have a leaf-block tree as in (1), which is obtained from .

Suppose that , includes no bad block and the merging

process above has been executed (unless is 0). Then, we have

one virtual block and zero to many virtual cut-vertices. Let

us denote a virtual cut-vertex by . Note that wemust have

since otherwise is not a bad-point.

In this step, we employ a simple process to make either or

one of the cut-vertices in (is the set of

remaining cut-vertices in the virtual block) to be a good-

point. The key point here is that there always exists at least one

leaf-block in that does not contain any external node that is

1504 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 21, NO. 5, OCTOBER 2013

adjacent to , i.e., it cannot be connected to the outside of

directly without going through , since otherwise would be a

good-point. Motivated by this observation, now we explain our

core strategy after introducing one definition that will make our

writing more concise.

Algorithm 4: OBPE

1: Suppose is the

longest leaf-root path of .

2: if there is only one cut-vertex in then

3: if is the only cut-vertex in then

4: is a star centered at and can be

partitioned into at most five parts. Employ (move nodes

from to) at most four -paths to make to

be good.

5: else

6: has at most five leaf blocks connected to . Also

each leaf block is connected to the root of , , via

one cut-vertex . Employ at most five -path such that

none of for can form a separator.

7: end if

8: else

9: Elect a new root of (see the main text for details)

and modify the leaf-root path to .

Let . Let be the set of

leaf-blocks being adjacent with in .

10: if is then

11: Find an -path connecting with

for each ,

and add the nodes in the -paths to .

12: Apply Procedure-EEN and convert into a

good-point (remove from).

13: else

14: In this case, there are at least two cut-vertices in

. Then, the first two cut-vertices and constitute

a pair of separators of , and thus there must exist an

-path starting from ending at

with endpoint .

15: if does not lie in then

16: Add paths for each and to .

17: Apply Procedure-EEN and convert into a

good-point (remove from).

18: else

19: Apply Procedure-ECP and convert one of

into a good-point by adding a constant

number of -paths.

20: end if

21: end if

22: end if

Definition 4.1: Consider a leaf-block tree obtained after

the level- decomposition of the original graph. Then the leaf-

root path is the path starting from a leaf-block of to , the

root of .

Now, we pick the longest leaf-root path

(2)

Fig. 4. (a) Case 1, Subcase 1-2: There is more than one cut-vertex in .

(b) Case 2 with . (c) Case 1, Subcase 1-1: There is one virtual

cut-vertex . (d) Case 2 with .

where is the number of cut-vertices in . In what follows,

we will make either (if) or one of (,

if) to be good (but remember we will never try to make

any cut-vertex to be good if it is a virtual cut-vertex or adjacent

to a virtual block). We distinguish the following cases.

Case 1: The number of cut-vertices in is equal to one. [See

Fig. 4(c) for Subcase 1-1 and Fig. 4(a) for Subcase 1-2.]

� Subcase 1-1:There is exactly one cut-vertex in . Then,

is a star centered at , and can be partitioned into

at most five parts. Thus, we can find at most four -paths

and add them to to make to be a good-point.

� Subcase 1-2:There are at least two cut-vertices in . Then,

is a tree such that every leaf-block is connected with

by a cut-vertex. Let be the cut-vertex for . Add

several -paths to remove the pair of separators .

Then, check whether and are still a separator; if so,

add some -paths, , continuing this process until

and are no longer a separator. Since is a UDG, we

have . By adding at most five -paths, can be a

good-point (see Lemma 4.3).

Case 2: The number of cut-vertices in is at least two. In

this case, we first examine the leaf-root path from to the

root . Let be the first node (a block or a cut-vertex) in

with degree larger than two in . If such a node does not exist,

we try to use a virtual cut-vertex on the path as (if exists).

Otherwise, we just keep as . Therefore, can be a block

or a cut-vertex in , or

can coincide with the root or a virtual cut-vertex lying

in . After finding the new root , we modify the leaf-root

path given in (2) into a new leaf-root path with endpoint ,

still denoted as with understood ends at . Let

.

Let be the set of leaf-blocks being adjacent with in

. Note that the number of leaf-blocks in is at most

WANG et al.: CONSTRUCTION OF QUALITY FAULT-TOLERANT VIRTUAL BACKBONE IN WIRELESS NETWORKS 1505

Fig. 5. Procedure-ECP. (a) ends at a block or the virtual block ; if and

cannot be changed into good, will be eventually changed into good. (b)

ends at a cut-vertex or a virtual cut-vertex ; if and cannot be changed into

good, will be eventually changed into good.

four. Since and constitute a separator of ,

breaks into at most five parts, and there must exist an -path

connecting with for each

. Now consider . If

(note cannot be a virtual block since , then adding

and applying Procedure-EEN below makes to be good. Next,

suppose . Since and constitute a pair of separators

of , there must exist an -path starting from

ending at with endpoint .

� Subcase 2-1: If does not lie in , then becomes good

by adding -paths and then applying

Procedure-EEN (Eliminating the External Nodes); see

Lemma 4.6.

� Subcase 2-2: If lies in , say or

for some , then ap-

plying the Procedure-ECP (Eliminating a Cut-vertex on a

Path) makes one of to be good by adding at

most a constant number of -paths; see Lemma 4.5.

Procedure-ECP: Suppose that we are given a leaf-root

path as in (2), and there exists an -path starting from

and ending at , which lies in , we will use

an iterative process to make one of the cut-vertices to be a

good-point.

1) If ends at , then we make one of

to be good. Since is a pair of separators of , there

exists an -path connecting and .

If the endpoint of does not lie on the path

, then can be changed into a good-point

by adding and and then applying Procedure-EEN.

Otherwise, we have lies in . Now set

and . Repeat the same process until we have changed

one of the cut-vertices into good; see Fig. 5 and Lemma 4.5.

2) The similar arguments can be applied if ends at or the

virtual block (or); we omit the details.

Finally, after connecting some good blocks (which share a

common cut-vertex) by adding some -paths, we still worry

about external nodes, which can constitute separators with the

cut-vertex . The following Procedure-EEN (Eliminating the

External Nodes) is for this purpose.

Procedure-EEN: Let be good blocks in

with cut-vertex connecting them. Suppose that each of is

not a virtual block and they can be connected by some paths

without going through after adding some -paths. For each

external node , check whether is a sep-

arator of , if so, adding an -path to eliminate this pair of

separators, until any external node cannot constitute a sepa-

rator of with . It can be shown that at most five -paths are

needed to finish this step; see Lemma 4.4.

Algorithm 1 is the formal description of our algorithm. In

the subsequent sections, we show the correctness proof, perfor-

mance analysis, and time complexity of this algorithm.

B. Analysis of FT-CDS-CA

In this section, we prove that given any containing a solu-

tion, FT-CDS-CA can correctly generate a . In addition, we

show that the approximation ratio of our algorithm is a constant

and the running time of our algorithm is polynomial.

Lemma 4.1: Let be a 3-connected graph and be a

2-connected subgraph of . Let be a bad-point of and

be a leaf-block tree that can be obtained after a decomposition

of . Suppose . Let

be an internal points of . Then, is not a

separator of graph for .

Proof: The intuition behind the lemma is clear. Now, we

give a formal proof. The assertion that is not a separator

of follows easily from the fact that is 1-connected

and is 2-connected. Thus, the deletion of keeps the con-

nectedness of . Next, let . We show is

not a separator of , i.e., is connected. Letting

be two distinct vertices, we shall show

and can connect to each other in . We distinguish

two cases.

Case 1: () and . If and are

contained in the same block , then and can be connected

to each other in . This follows immediately when

; while if or , since is 2-connected,

and can still be connected to each other after the deletion of

and . Next, suppose that and are not contained in the same

block, and let be a path in the

leaf-block tree connecting and such that

. Clearly, there is a path in

connecting and , where (resp.) is a

path contained in (resp.) connecting (resp.) and

(resp.), and () is a path contained

in connecting and . If and is not contained in

any of , then our assertion clearly holds. Now, suppose that

is contained in, say, . Since is 2-connected,

there is a path (which is independent of) in con-

necting and . If is also contained in some of

1506 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 21, NO. 5, OCTOBER 2013

(), then there exists a path a path (which is inde-

pendent of) in connecting and . Replace

(resp.) with (resp.) in the original path .

Then, and are still connected to each other in after

the deletion of and . In the case that one of and is con-

tained in some of , it is not difficult to see that the same result

still holds.

Case 2: (), and .

Note is 2-connected. It follows that there exists another path

connecting and , which is in-

dependent of the previous path and passes through vertex .

If is not contained in the path , clearly and are still con-

nected through after the deletion of in . Otherwise,

suppose is contained in . Similar to Case 1, we can replace

one with another independent path in such that after

the deletion of , the vertices and still connect each other in

.

Thus, and are always connected with each other in

for . Therefore, the lemma

holds.

Lemma 4.2: After the merging process, there is exactly one

virtual block left in for .

Proof: Suppose after level- decomposition, we get a leaf-

block tree with all blocks being good, and the vertices of

which are given as in (1).

Construct a subtree as follows. Let be the

blocks each of which has external nodes that are adjacent to

. If , i.e., there is exactly one block having external

nodes connecting to nodes outside directly, then is just

block . Next, suppose . Then, consists of those

blocks and cut-vertices lying on the path between any two

and for .

Examine the leaf-blocks of . They can be partitioned into

two classes and : consists of those having exactly one

cut-vertex as external node that are adjacent to (i.e., vir-

tual cut-vertex); consists of those having at least one external

node that are not cut-vertex and adjacent to . Then, ac-

cording the rules of merging process, after removing all leaf-

blocks in from the blocks in , the remaining blocks can be

merged into a unique block .

Lemma 4.3: After Line 2 of Algorithm 4 is executed, then

becomes a good-point by adding at most five -paths.

Proof: Suppose after level- decomposition we obtain a

leaf-block tree from with vertex set given as in (1)

whose blocks are all good. is the longest leaf-root path

in with a root that may end at the virtual cut-vertex or the

virtual block VB. In any case, since is the longest leaf-root

path with one cut-vertex, must be a tree like a star (centered

at the virtual cut-vertex), or a tree (centered at the virtual block

) with all blocks being leaf-blocks except for the center .

In the former case, since is a pair of separators of ,

breaks into at most five parts, and hence at most four

-paths are needed to add to to reconnect them.

In the latter case, let be the cut-vertices in

that are adjacent to leaf-blocks. Then, breaks

into at most components, and -paths are needed to

remove the separator and . Note that is adjacent to all the

leaf-blocks, which are pairwise disjoint. Since is a UDG,

every nodes can have at most five independent neighbors. It

follows that . Thus, totally at most five

-paths are needed to remove all separators .

Note that is an internal node. It follows fromLemma 4.1 that

can constitute a separator only with the cut-vertices inside

the block . After adding at most five -paths, cannot con-

stitute separators of with any , therefore becomes good.

Lemma 4.4: At most five -paths are needed to finish

Procedure-EEN.

Proof: After adding several -paths, can constitute sep-

arators only with nodes in for .

Since after the multidecomposition process finished, has

no bad internal points, can constitute separators only with

those nodes in . Therefore, removing every pair of

separators for all makes to be good.

Now we show at most five -paths are needed in this step.

Let be the leaf-block tree of , then can constitute

separators only with those cut-vertices in . However, we note

that every cut-vertex in , except for those that are adjacent

to the leaf-blocks, cannot constitute a separator with . This is

because are external nodes that are adjacent to nodes in

. Thus, the number of nodes in that make a pair of

separator with is no more than the number of leaf-blocks in

.

Since can be adjacent to at most five leaf-blocks, the total

number of separators for all is at most

five. Removing a pair of separators needs at most one -path,

and hence five -paths are needed to finish this step.

Lemma 4.5: After Procedure-ECP is executed, at least one

cut-vertex can be changed into a good-point by adding at most

seven -paths.

Proof: We prove the lemma by induction on the number of

blocks . If , then can be changed into a good-point by

adding -path and applying Procedure-EEN, which needs

at most -paths. Suppose that the lemma is true if

the number of blocks is no more than .

If and are connected by an -path , then

can constitute a separator of with only , and some

of those external nodes of and (which we have ignored

in the multidecomposition process). Now, since and con-

stitute a pair of separators of , there exists an -path con-

necting and . If the endpoint of does

not lie on the path , then cannot

constitute a separator of with any of . Then, after

applying Procedure-EEN, cannot constitute a separator of

with those external nodes of and . Therefore, can be

changed into a good-point by adding two -paths and and

then applying Procedure-EEN, which needs at most

-paths in total.

Otherwise, we have lies in . By induction hypothesis,

we get that one of the cut-vertices can be changed

into a good-point.

Similarly, if and (or or) are connected

by an -path , we can still get either or one of

can be changed into a good-point.

Lemma 4.6: After Line 13 of Algorithm 4 is executed, at least

one becomes a good-point by adding at most 10 -paths.

WANG et al.: CONSTRUCTION OF QUALITY FAULT-TOLERANT VIRTUAL BACKBONE IN WIRELESS NETWORKS 1507

Proof: Suppose that we are confronted with Case 2, Sub-

case 2-1. Note can constitute a separator only with , the

cut-vertices lying in the leaf-root path and the external nodes

of those blocks being adjacent to . However, after adding at

most four -paths , and cannot constitute a separator

of . Adding with endpoint lying outside path , cannot

constitute a separator with the cut-vertices lying in the leaf-root

path any more.

Moreover, applying Procedure-EEN removes all separators

for every external node lying the blocks being adjacent

to . Therefore, at most -paths are needed

to make to be good.

Similarly, if we are confronted with Case 2, Subcase 2-2, Pro-

cedure-ECP makes one of to be good by adding at

most -paths.

Lemma 4.7: Each time Line 12 of Algorithm 1 is executed,

at least one bad-point in will become a good-point by adding

at most 20 nodes, where is the number of bad-points in

.

Proof: By Lemmas 5.3–5.6, at each iteration, at least one

bad-point becomes good by adding at most 10 -paths, the

length of which is at most three (which includes two extra

nodes). Therefore, at most nodes are needed to

change one bad-point into a good-point.

Theorem 4.8 ([17]): There exists a polynomia-time approx-

imation algorithm that can generate an approximated solu-

tion for ()-CDS with performance ratios for

and 11 for .

Lemma 4.9: Given a , let be a connected subgraph con-

taining a of the . Then, adding an -path to does

not introduce a new bad-point to .

Proof: To prove this, we consider following two cases in

which the length of is two or three hops. In the first case,

includes only one new node . Then, no node in can con-

stitute a separator with in since is 2-connected.

Therefore, all nodes in are good-points in . Now, we

consider the second case in which has two new points and

. Now, we claim that is not a bad-point in . Sup-

pose is a bad-point and it constitutes a separator with another

node . Clearly, since is 2-connected.

On the other hand, since is 2-connected and has at least

three neighbors in , is at least 2-connected. Hence,

is connected for any . Therefore, is

not a bad-point, and by the same argument, is not a bad-point.

In conclusion, the lemma is true.

Lemma 4.10: The time complexity of Algorithm 1 is at most

, where is the order of the input graph .

Proof: By [17], can be computed in .

Given , all of its bad-points can be computed in

since, for every vertex , we can determine whether

is 2-connected in time . Now we estimate the time of

eliminating one bad-point from .

In order to eliminate one bad-point, we have to find a

block with cut vertex such that can be de-

composed into good blocks and cut vertices

. This can be achieved by multilevel decompo-

sition. Since it takes time to construct a leaf-block tree

at each level [41], in the worst case, we have at most levels

and need time at most to finish this step. The merging

process also takes time at most by Floyd’s algorithm for

computing the shortest path between any pair of nodes.

Once is found, we have to change either one of the

bad-points in or into a good-point by adding

several -paths. This step takes time since finding an

-path between two connected components of a graph takes

time , and we have to try at most times to

find such -paths to eliminate one bad-point.

There are bad-points in total. Therefore, the

complexity of Algorithm 1 is at most .

Theorem 4.11: Algorithm 1 is a 280-approximation for the

3-Connected 3-Dominating Set problem.

Proof: From Theorem 4.8, we have an -approximation al-

gorithm for computing a , where . Then, we can

have a such that . In Algorithm 1, since

, . From Lemma 5.7, Algorithm 1 will

use at most nodes to augment the to a . As a

result, the size of final is bounded by

.

C. Generalization for Any

When , we first compute a using the existing

algorithm in [17] and [18]. Then, we augment to

using Algorithm 1. Now, we prove that the size of the outputs by

this strategy is within a constant factor from an optimal solution

even in the worst case.

Theorem 4.12: The approximation ratio of this strategy is

for , where for and 11 for

Proof: For , it is easy to show that

using the argument in the proof of Theorem 4.11.

When , We start from a , then augment to

. Both can be computed by the existing method in [17] and

[18]. Finally, augment to using Algorithm 1. Now, we

evaluate the worst-case quality of outputs of this approach.

Theorem 4.13: The approximation ratio of this strategy is

for .

Proof: First, we focus on the case , and show that the

obtained is within a constant factor from . In fact, by

the algorithms in [10] and [11], we have ,

where is the maximal independent set obtained sequentially

and is some additional nodes added to make to be con-

nected. Since () and ,

we have . Moreover, by the proofs in [10]

and [11], we have . By Algorithm 1,

. Note that

. It follows that .

For , the same algorithm as above can be applied.

The approximation ratio can be obtained similarly by noting that

.

By combining Theorems 4.11–4.13, we have the following

conclusion.

Theorem 4.14: There exists an -approximation algo-

rithm for computing ()-CDS in UDGs for any .

1508 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 21, NO. 5, OCTOBER 2013

Fig. 6. Comparison of the size of CDS by the (2, 3)-CDS computation

algorithm by Shang et al. [17] and our (3, 3)-CDS computation algorithm,

FT-CDS-CA. (a) 25 25 virtual space. (b) 50 50 virtual space. (c) 75 75

virtual space.

V. SIMULATION RESULTS

In this section, we study the average performance and char-

acteristics of our proposed algorithm via simulations. For the

simulation, we randomly generate a set of nodes over a virtual

space. The number of nodes varies from 40 to 200 increased

by 20. The size of the virtual space is 25 25, 50 50, and

75 75. For each graph instance, we check if the graph is 3-con-

nected. Otherwise, we discard it and generate a new one. For

each parameter setting, we create 100 (3-connected) graph in-

stances and apply the constant factor approximation algorithm

for (2, 3)-CDS by Shang et al. [17] and our (3, 3)-CDS compu-

tation algorithm, FT-CDS-CA, and calculate the average size of

CDSs.

Fig. 6(a)–(c) is the result of our simulation performed over

a 25 25, 50 50, and 75 75 virtual space, respectively.

Largely speaking, from all of the three figures, we can notice

that the average size of (3, 3)-CDS is roughly 20%–30% greater

Fig. 7. Size of (3, 3)-CDS generated by FT-CDS-CA under various virtual

space size.

Fig. 8. Running time of FT-CDS-CA to compute (3, 3)-CDS under various

virtual space size.

than that of (2, 3)-CDS. In addition, we can observe that the

ratio is getting smaller as the number of nodes in the network

increases (roughly 30% with and 20% with).

Therefore, as the network size grows, our algorithm becomes

more efficient to increase the connectivity of CDS. The figures

also show that as increases, we need more nodes to augment

a (2, 3)-CDS to (3, 3)-CDS. This is because if the nodes are

deployed within a smaller space, a large part of a (2, 3)-CDS is

already connected. From this observation, we can also expect

that our algorithm will work more efficiently in a very dense

network.

In Fig. 7, we compare the average size of (3, 3)-CDS gen-

erated by FT-CDS-CA under various virtual space size and

number of nodes. In general, when the size of the virtual space

is smaller, the size of (3, 3)-CDS is smaller. This is natural

since with the same number of nodes within a smaller space,

the density and connectivity of the network is usually higher,

and we consequently will need less nodes to form a (3, 3)-CDS.

However, the simulation result also implies the affect of the

size of network is not significant.

Running Time Analysis: Fig. 8 illustrates the running time

of FT-CDS-CA under various virtual space size and number

of nodes. The figure is based on the average of 100 trials per

each parameter setting. For this simulation, we ran the simu-

lation on a personal computer with AMD Phenom IIX4 840

Processor 3.20 GHz and 8 GB memory. The simulation code

is written Java (ver. 1.7.0_03) and executed Windows 7 64 bits

Operating System with Java SE Runtime Environment Build:

1.7.0_03-b05 and Java HotSpot(TM) 64-Bit Server VM Build:

WANG et al.: CONSTRUCTION OF QUALITY FAULT-TOLERANT VIRTUAL BACKBONE IN WIRELESS NETWORKS 1509

22.1-b02, mixed mode. In general, as the number of nodes in-

creases, the running time of FT-CDS-CA is increased propor-

tionally. Our simulation result also indicates that the running

time of our algorithm is mainly affected by the number of nodes,

but not significantly by the size of the virtual space.

Optimality Analysis: Finally, we evaluate the performance of

Shang et al.’s algorithm in [17] and FT-CDS-CA against the op-

timal (2, 3)-CDS and (3, 3)-CDS, respectively. Note that since

the problems of computing optimal (2, 3)-CDS and (3, 3)-CDS

are NP-hard, we were able to perform these comparisons only in

very small size networks. In detail, we prepare a 10 10 virtual

space, deploy 15 nodes, and generate a 3-connected unit disk

graph. Then, we exhaustively search the optimal (2, 3)-CDS and

(3, 3)-CDS and compare them to the (2, 3)-CDS by Shang et al.’s

algorithm and the (3, 3)-CDS by FT-CDS-CA, respectively.

After 30 repetitions, we compute the average. From the sim-

ulation, we found the average size of optimal (2, 3)-CDS is

4.8 and the average size of (2, 3)-CDS by Shang et al. is 7.10.

In addition, we found the average size of optimal (3, 3)-CDS

is 5.27 and the average size of (3, 3)-CDS by FT-CDS-CA is

10.57. Our simulation result indicates that the average (experi-

mental) performance ratio of our algorithm, based on this sim-

ulation, is 2, which is much smaller than the performance ratio

of FT-CDS-CA that we were able to prove.

VI. CONCLUSION

This paper investigated the problem of constructing fault-tol-

erant CDS in homogeneous wireless networks, which is ab-

stracted as the minimum -connected -dominating set prob-

lems. In our recent surveys, we pointed out that each of existing

approximation algorithms for this problem is flawed for .

Therefore, we proposed a constant factor polynomial-time ap-

proximation algorithm to compute (3,)-CDSs. Our algorithm

works for any abstract graph without the information of geo-

metric coordinates of the input graphs, and we only use the prop-

erty of UDG in the analysis part to get a constant approximation.

As a future work, we are interested in generalizing our algo-

rithm for any and pair. We will also investigate a

constant factor approximation algorithm for and

in a disk graph. In addition, we plan to continue studying the

problem of computing quality fault-tolerant virtual backbone in

more realistic network abstractions as our future work.

ACKNOWLEDGMENT

The authors would like to appreciate the time and effort of the

editors and reviewers for their comments to improve the quality

of this paper.

REFERENCES

[1] I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, “A

survey on sensor networks,” IEEE Commun. Mag., vol. 40, no. 8, pp.

102–114, Aug. 2002.

[2] C. R. Dow, P. J. Lin, S. C. Chen, J. H. Lin, and S. F. Hwang, “A study

of recent research trends and experimental guidelines in mobile ad hoc

networks,” in Proc. 19th AINA, Taiwan, Mar. 2005, pp. 72–77.

[3] S. Ni, Y. Tseng, Y. Chen, and J. Sheu, “The broadcast storm problem

in a mobile ad hoc network,” in Proc. 5th Annu. ACM/IEEEMobiCom,

Washington, DC, Aug. 1999, pp. 152–162.

[4] A. Ephremides, J. Wieselthier, and D. Baker, “A design concept for re-

liable mobile radio networks with frequency hopping signaling,” Proc.

IEEE, vol. 75, no. 1, pp. 56–73, Jan. 1987.

[5] P. Sinha, R. Sivakumar, andV. Bharghavan, “Enhancing ad hoc routing

with dynamic virtual infrastructures,” in Proc. 20th Annu. Joint Conf.

IEEE Comput. Commun. Soc., 2001, vol. 3, pp. 1763–1772.

[6] S. Guha and S. Khuller, “Approximation algorithms for connected

dominating sets,” Algorithmica, vol. 20, pp. 374–387, Apr. 1998.

[7] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide

to the Theory of NP-Completeness. San Francisco, CA: Freeman,

1978.

[8] J. Wu and H. Li, “On calculating connected dominating set for efficient

routing in ad hoc wireless networks,” in Proc. 3rd DIAL-M, 1999, pp.

7–14.

[9] P.-J. Wan, K. M. Alzoubi, and O. Frieder, “Distributed construction

of connected dominating set in wireless ad hoc networks,” in Proc.

21st Annu. IEEE INFOCOM, New York, NY, Jun. 2002, vol. 3, pp.

1597–1604.

[10] X. Cheng, X. Huang, D. Li, W.Wu, and D.-Z. Du, “A polynomial-time

approximation scheme for the minimum-connected dominating set in

ad hoc wireless networks,”Networks, vol. 42, no. 4, pp. 202–208, 2003.

[11] Y. Li, S. Zhu, M. T. Thai, and D.-Z. Du, “Localized construction of

connected dominating set in wireless networks,” in Proc. NSF TAWN,

Chicago, IL, Jun. 2004, pp. 1–9.

[12] L. Ruan, H. Du, X. Jia, W. Wu, Y. Li, and K.-I. Ko, “A greedy approx-

imation for minimum connected dominating sets,” Theoret. Comput.

Sci., vol. 329, no. 1–3, pp. 325–330, 2004.

[13] P.-J. Wan, K. M. Alzoubi, and O. Frieder, “Distributed construction

of connected dominating set in wireless ad hoc networks,” J. Mobile

Netw. Appl., vol. 9, no. 2, pp. 141–149, 2004.

[14] F. Dai and J. Wu, “On constructing -connected -dominating set in

wireless network,” in Proc. 19th IEEE IPDPS, 2005, p. 81a.

[15] W.Wu, H. Du, X. Jia, Y. Li, and S. C.-H. Huang, “Minimum connected

dominating sets and maximal independent sets in unit disk graphs,”

Theoret. Comput. Sci., vol. 352, pp. 1–7, 2006.

[16] S. Funke, A. Kesselman, U. Meyer, and M. Segal, “A simple improved

distributed algorithm for minimum CDS in unit disk graphs,” Trans.

Sensor Netw., vol. 2, no. 3, pp. 444–453, 2006.

[17] W. Shang, F. Yao, P. Wan, and X. Hu, “On minimum -connected

-dominating set problem in unit disc graphs,” J. Combin. Optim., vol.

16, no. 2, pp. 99–106, Dec. 2007.

[18] M. T. Thai, N. Zhang, R. Tiwari, and X. Xu, “On approximation al-

gorithms of -connected -dominating sets in disk graphs,” Theoret.

Comput. Sci., vol. 358, pp. 49–59, 2007.

[19] Y. Wu, F. Wang, M. T. Thai, and Y. Li, “Constructing -connected

-dominating sets in wireless sensor networks,” in Proc. IEEE

MILCOM, Orlando, FL, Oct. 29–31, 2007, pp. 1–7.

[20] M. T. Thai, F. Wang, D. Liu, S. Zhu, and D.-Z. Du, “Connected dom-

inating sets in wireless networks with different transmission ranges,”

IEEE Trans. Mobile Comput., vol. 6, no. 7, pp. 721–730, Jul. 2007.

[21] Y. Li, D. Kim, F. Zou, and D.-Z. Du, “Constructing connected domi-

nating sets with bounded diameters in wireless networks,” in Proc. 2nd

WASA, Chicago, IL, Aug. 1–3, 2007, pp. 89–94.

[22] X. Li, X. Gao, and W. Wu, “A better theoretical bound to approximate

connected dominating set in unit disk graph,” in Proc. WASA, 2008, pp.

162–175.

[23] D. Li, H. Du, P.-J. Wan, X. Gao, Z. Zhang, and W. Wu, “Minimum

power strongly connected dominating sets in wireless networks,” in

Proc. ICWN, 2008, pp. 447–451.

[24] D. Kim, X. Li, F. Zou, Z. Zhang, and W. Wu, “Recyclable connected

dominating set for large scale dynamic wireless networks,” in Proc.

3rd WASA, Dallas, TX, Oct. 26–28, 2008.

[25] F. Zou, X. Li, D. Kim, and W. Wu, “Construction of minimum con-

nected dominating set in 3-dimensional wireless network,” in Proc. 3rd

WASA, Dallas, TX, Oct. 26–28, 2008, pp. 134–140.

[26] N. Zhang, I. Shin, F. Zou, W. Wu, and M. T. Thai, “Trade-off scheme

for fault tolerant connected dominating sets on size and diameter,” in

Proc. ACM FOWANC, 2008, pp. 1–8.

[27] Y. Wu and Y. Li, “Construction algorithms for -connected -domi-

nating sets in wireless sensor networks,” in Proc. 9th ACM MobiHoc,

Hong Kong, May 26–30, 2008, pp. 83–90.

[28] F. Wang, M. T. Thai, and D.-Z. Du, “On the construction of 2-con-

nected virtual backbone in wireless network,” IEEE Trans. Wireless

Commun., vol. 8, no. 3, pp. 1230–1237, Mar. 2009.

[29] M. Li, P.-J. Wan, and F. Yao, “Tighter approximation bounds for min-

imum CDS in wireless ad hoc networks,” in Proc. 20th ISAAC, Dec.

16–18, 2009, pp. 699–709.

1510 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 21, NO. 5, OCTOBER 2013

[30] D. Kim, Y. Wu, Y. Li, F. Zou, and D.-Z. Du, “Constructing minimum

connected dominating sets with bounded diameters in wireless net-

works,” IEEE Trans. Parallel Distrib. Syst., vol. 20, no. 2, pp. 147–157,

Feb. 2009.

[31] D. Kim, Z. Zhang, X. Li, W. Wang, W. Wu, and D.-Z. Du, “A better

approximation algorithm for computing connected dominating sets

in unit ball graphs,” IEEE Trans. Mobile Comput., vol. 9, no. 8, pp.

1108–1118, Aug. 2010.

[32] H. Du, W. Wu, S. Shan, D. Kim, and W. Lee, “Constructing weakly

connected dominating set for secure clustering in distributed sensor

network,” J. Combin. Optim., vol. 23, no. 2, pp. 301–307, Feb. 2012.

[33] Y. Li, Y.Wu, C. Ai, and R. Beyah, “On the construction of -connected

-dominating sets in wireless networks,” J. Combin. Optim., vol. 23,

no. 1, pp. 118–139, 2012.

[34] D. Kim, X. Gao, F. Zou, and D.-Z. Du, “Construction of fault-tolerant

virtual backbones in wireless networks,” in Handbook on Security and

Networks, Y. Xiao, F. H. Li, and H. Chen, Eds. Singapore: World

Scientific, Apr. 2011, pp. 488–509.

[35] H. Du, L. Ding, W. Wu, D. Kim, P. M. Pardalos, and J. Willson, , P.

M. Pardalos, D.-Z. Du, and R. Graham, Eds., “Connected Dominating

Set in Wireless Networks,” in Handbook of Combinatorial Optimiza-

tion. New York: Springer, Jul. 2013.

[36] M. L. Huson and A. Sen, “Broadcast Scheduling Algorithms for Radio

Networks,” in Proc. IEEE MILCOM, 1995, vol. 2, pp. 647–651.

[37] B. N. Clark, C. J. Colbourn, and D. S. Johnson, “Unit disk graphs,”

Discrete Math., vol. 86, pp. 165–177, Dec. 1990.

[38] R. Diestel, “Graph theory,” in Graduate Texts in Mathematics, 3rd

ed. Heidelberg, Germany: Springer-Verlag, 2005, vol. 173.

[39] D. S. Johnson, “Approximation algorithms for combinatorial prob-

lems,” J. Comput. Syst. Sci., vol. 9, pp. 256–278, 1974.

[40] K.Menger, “Zur allgemeinen Kurventheorie,” Fundam.Math., vol. 10,

pp. 96–115, 1927.

[41] B. Korte and J. Vygen, Combinatorial Optimization, Theory and Ap-

plications. New York: Springer, 2000.

Wei Wang received the B.S. degree from ZheJiang

University, Hangzhou, China, in 1991, and the M.S.

and Ph.D. degrees from Xi’an Jiaotong University,

Xi’an, China, in 1994 and 2006, respectively, all in

mathematics.

He is currently an Assistant Professor with the De-

partment of Mathematics, Xi’an Jiaotong University.

His research interests include algebraic graph theory

and approximation algorithm design and analysis.

Donghyun Kim (M’10) received the B.S. degree

in electronic and computer engineering and M.S.

degree in computer science and engineering from

Hanyang University, Ansan, Korea, in 2003 and

2005, respectively, and the Ph.D. degree in computer

science from the University of Texas at Dallas,

Richardson, in 2010.

He is currently an Assistant Professor with the

Department of Mathematics and Computer Science,

North Carolina Central University, Durham. His

research interests include wireless networks, mobile

computing, and algorithm design and analysis.

Min Kyung An (S’11) received the M.S. degree in

computer science from the University of Texas at Ar-

lington in 2007, and is currently pursuing the Ph.D.

degree in computer science at the University of Texas

at Dallas, Richardson.

Her major areas of interest are wireless ad hoc and

sensor networks, design and analysis of approxima-

tion algorithm, and graph theory.

Wei Gao is currently an undergraduate student with

the Department of Information and Computational

Science, Xi’an Jiaotong University, Xi’an, China.

His research interests include algorithms for

routing in wireless ad hoc networks.

Xianyue Li received the B.S. and Ph.D. degrees in

mathematics from Lanzhou University, Lanzhou,

China, in 2003 and 2009, respectively.

He is currently an Assistant Professor with the

School of Mathematics and Statistics, Lanzhou

University. His research interests include wireless

networks, graph theory, and approximation algo-

rithm design and analysis.

Zhao Zhang received the Ph.D. degree in mathe-

matics from Xinjiang University, Urumqi, China, in

2003.

She is a Full Professor with the College of Math-

ematics and System Sciences, Xinjiang University.

Her current research interests are in combinatorial

optimization and graph theory.

Weili Wu (M’09) received the Ph.D. degree in com-

puter science from the University ofMinnesota, Twin

Cities, in 2002.

She is currently an Associate Professor with the

Department of Computer Science, University of

Texas at Dallas, Richardson. She has produced a

number of research papers in spatial data mining,

distributed database systems, and algorithm design.

She was also a co-editor of a book on clustering and

information retrieval. Her main research interest is

in database systems.

