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Abstract Random packings of non-spherical granular
particles are simulated by combining mechanical contraction
and molecular dynamics, to determine contact numbers as a
function of density. Particle shapes are varied from spheres
to thin rods. The observed contact numbers (and packing
densities) agree well with experiments on granular packings.
Contact numbers are also compared to caging numbers cal-
culated for sphero-cylinders with arbitrary aspect-ratio. The
caging number for rods arrested by uncorrelated point con-
tacts asymptotes towards 〈γ 〉 = 9 at high aspect ratio, strik-
ingly close to the experimental contact number 〈C〉 ≈ 9.8
for thin rods. These and other findings confirm that thin-rod
packings are dominated by local arrest in the form of truly
random neighbor cages. The ideal packing law derived for
random rod–rod contacts, supplemented with a calculation
for the average contact number, explains both absolute value
and aspect-ratio dependence of the packing density of ran-
domly oriented thin rods.
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1 Introduction

The random rod packing is a valuable reference for packed
granular matter composed of elongated particles as can be
found in fiber-reinforced and other fibrous materials [1–4],
and anisotropic powders [5,6]. This reference packing is
a stacking of randomly oriented, rigid rods with a maxi-
mum particle volume-fraction uniquely determined by the
rod aspect ratio [5]. Similarly, disorderly packed granular
spheres are modeled by the (Bernal) random sphere packing
[7]. Spheres and rods actually belong to a whole family of
random particle packings, with a density fixed by the par-
ticle shape [5,8]. Interestingly, the maximum density does
not occur for the Bernal sphere packing, but for slightly
deformed spheres. This density maximum was first found for
sphero-cylinders [8] and later also for prolate spheroids [9]
and cut spheres [10].

An essential difference between randomly packed spheres
and thin rods is the following. Due to the excluded volume
effects there are strong positional correlations in a sphere
packing that are very difficult to incorporate in a packing
law, i.e. a general relation between packing density, parti-
cle shape and contact numbers. Despite additional rotational
degrees of freedom, it is much easier to model the random
packing density for rods, because correlations between rod–
rod contacts vanish in the thin-rod limit [5]. This asymp-
totic behavior has been clearly confirmed by simulations [8].
Absence of contact correlations entails an “ideal” packing
law (see [5] and also Sect. 2.2), namely a linear dependence
of the random rod packing density on the average contact
number 〈C〉.

The evaluation of 〈C〉, however, is not trivial. Philipse [5]
concluded from a fit of experimental rod packing densities
to the thin-rod packing law that 〈C〉 = 10.8 ± 0.4. Only
recently Blouwolff and Fraden [11] succeeded to directly
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count contacts in experimental random rod packings and they
report that for thin rods 〈C〉 is about 10. The authors ratio-
nalized this outcome via an “isostatic” argument to which
we return in Sect. 2.2. Experiments on non-spherical particle
packing have also been performed by Stokely et al. [12],
Desmond and Franklin [13] and Lumay and VandeWalle
[14,15].

Computer simulations of random rod packings are needed,
not only for better understanding experimental densities and
contact numbers, but also to investigate issues that are exper-
imentally difficult to assess. (An example is the contact num-
ber as function of particle volume fraction, treated in
Sect. 3.1). For random packing of non-spheres simulation
algorithms are available, such as molecular dynamics [16],
discrete element method [17], event-driven molecular
dynamics [18,19] and the mechanical contraction method
(MCM). The MCM generates reproducible random packings
of spheres and various non-spherical shapes [8,10] with den-
sities that are slightly below values from event driven molec-
ular dynamics [9]. However, the MCM has yielded contact
numbers that are unphysical for high aspect ratio spherocyl-
inders. Defining a contact via a threshold distance [8] yielded
for thin spherocylinders that 〈C〉 is about 3, which is too low
to achieve mechanical stability and anyhow much below the
experimental values mentioned above.

The aim of this study is firstly to reproduce experimental
contact numbers by combining MCM and molecular dynam-
ics, secondly to investigate the dependence of 〈C〉 on the par-
ticle volume fraction and finally, to analyze contact numbers
in terms of a mathematical caging problem. In Sect. 2.1 we
describe the simulation method and the evaluation of contact
numbers employing expansion of particles that interact via a
spring-dashpot model. The caging problem, i.e., finding the
average minimal number of uncorrelated contacts needed to
arrest a particle, has only been solved for spheres [20,21] and
2-dimensional discs [22]. In Sect. 2.2 we explain a numeri-
cal solution of the caging problem for sphero-cylinders with
arbitrary aspect-ratio. One of the issues in the discussion in
Sect. 3 is whether magnitude and aspect-ratio dependence of
contact numbers for randomly packed rods can be explained
as a local caging effect.

2 Methods

2.1 Simulation method

The starting configuration is a random particle packing gen-
erated with the MCM [8]. The particles are then expanded
in steps at a constant growth rate. Contacts created between
particles are modeled as spring-dashpots following Silbert
et al. [23] for spheres and Pournin et al. [24] for spherocyl-
inders. The approach of these authors was adopted in the

Fig. 1 Illustration of the overlap δi j that is shown as a line segment, n̂
is the unit vector that points into the direction of the line segment and
rci j is the branch vector connecting the center of mass of a particle with
the center of the overlap line, i.e. the contact

sense that only the normal component of the overlap was
considered whose magnitude is calculated as the diameter
minus the shortest distance between the two line segments
forming the spherocylinders (see Fig. 1). The contact force
acting between overlapping particles is then given by

f = − (
kδ + γ vrel · n̂

)
n̂ (1)

where k is a spring constant, δ is the amount of overlap
between two particles, γ is a viscosity constant, vrel is the
relative velocity of the two particles and n̂ is a unit vec-
tor in the direction of the shortest distance between the two
line segments forming the two spherocylinders. All particles
experience a small background viscosity force but friction
between particles is not modeled. Typical simulation param-
eters are k = 105, γ = 10, γbg = 0.1 and dt = 10−5

during the growth and 10−4 during relaxation. The mass of
a particle is equal to the particle volume, i.e. density is equal
to one. The particle positions are updated by integrating the
Newton-Euler equations of motion using a simple Euler
scheme [25]:

ẋ = v

ṗ = f (2)

q̇ = 1

2
ωq

L̇ = τ

where q is a quaternion representing the orientation of a par-
ticle, ω is the angular velocity, L is the angular momentum
and τ is the total external torque.

The expansion of particles is terminated when a user
-specified volume fraction is reached and after that the sys-
tem of spheres is allowed to relax to zero total (kinetic +
potential) energy within the numerical error. Then the size
of the particles is increased again by a small increment such
that the volume fractions increases by 0.1 and the relaxation
is repeated. The final volume fraction is reached when it is
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no longer possible for the system to relax to zero potential
energy by reorganization in response to the overlaps (forces)
created. The expansion rate and viscosity of the particles
were chosen such that the kinetic energy component of the
total energy is about 10–100 times smaller than the potential
energy on average during a simulation run in order to keep
the final structure as close as possible to the original starting
configuration generated with the MCM and to maintain a
disordered structure during the simulation. The final kinetic
energy of the spheres is zero within the numerical error. The
method described here is similar to [26,27], where disor-
dered collections are created by minimizing potential energy
using a conjugate gradient method. In these studies particles
can grow or shrink depending on whether the configuration
is above or below the jamming point.

2.2 Caging of non-spherical particles

The random contact equation [5] states that for a random
packing with completely uncorrelated contacts, the volume
fraction φ is given by

φ = 〈C〉Vp

Vexcl
(3)

where 〈C〉 is the average contact number per particle, Vp

the particle volume and Vexcl the orientationally averaged
excluded volume for two particles, i.e., the volume that can-
not be occupied by the center of mass of one spherocylinder
with fixed orientation when sliding over another spherocyl-
inder. For spherocylinders with diameter D and a length L ,
the excluded volume [28] is

Vexcl = 4

3
π D3 + 2π L D2 + π

2
DL2 (4)

Substituting (4) into (3) we find for the limit of thin rods:

φ
L

D
≈ 〈C〉

2
; for

L

D
� 1 (5)

This packing law for random thin rods has been verified in
experiments [5,11] as well as simulations [8].

To calculate a value for 〈C〉 we note that in a rod pack-
ing almost all particles are caged/jammed i.e. the particles
cannot move because their movement is blocked by neigh-
boring particles. Consequently, an appropriate mathematical
approximation for 〈C〉 is to calculate the caging number 〈γ 〉,
defined as the minimum average number of contacts required
to immobilize a particle by randomly placed contacts, where
a contact can be a fixed point or another particle. Analyt-
ical solutions exist for 2-dimensional disks [21] and for 3
-dimensional spheres caged by point contacts [20]. In [22] a
caging number is calculated for rods (〈γ 〉 = 5) where only
the translations are blocked, which is a lower bound for the
contact number in random rod packings.

Here we show how to calculate the caging number 〈γ 〉 for
general shapes using a linear algorithm. In [29] it is shown
that the relative acceleration of n contact points under the
application of non-zero forces in a collection of rigid bodies
can be written as the linear equation

Af + b = a (6)

where A is a symmetric and positive semi-definite n × n
matrix, f is a vector with all elements larger than or equal
to zero, f ≥ 0, representing a positive pushing force, b is a
vector that takes external forces into account and a is a vec-
tor whose elements consist of the relative accelerations of
the n contact points. Rigid bodies are not allowed to overlap,
which requires a ≥ 0, which can be written as a so-called
Linear Complementarity Problem (LCP) [30,31], which is
defined as follows:

Af + b ≥ 0, f ≥ 0 and fT (Af + b) = 0 (7)

In the caging problem contacts are randomly placed on
a rigid body until all translations and rotations are blocked
for that body. A body is caged if the relative acceleration at
all contact points is zero under the application of a non-zero
force [32] and we can use a LCP solver to determine whether
a body is caged or not by examining the total force acting
on a body. For a spherocylinder, fixed contact points are ran-
domly distributed on the spherocylinder with the restriction
that the probability to place a contact on a hemi-spherical
cap or the cylindrical part is proportional to their respective
surface areas.

3 Results and discussion

3.1 MCM + MD hybrid simulation results

A random sphere gas consisting of 2,048 particles is con-
tracted with the MCM to a volume fraction of 0.49. The
spheres are then grown in size at various growth rates and
the average contact number was recorded as a function of
volume fraction (Fig. 2a). Note that only the final points
in Fig. 2a, b corresponds to mechanically stable packings,
whereas the other points represent intermediate states dur-
ing the simulation. A lower growth rate keeps the spheres
in contact resulting in a higher contact number. At a volume
fraction of around 0.60 the average contact number becomes
the same irrespectively of the growth rate. Similar results
were obtained in the work of Silbert et al. [23] where the
packing properties depended on the coefficient of restitution
and the friction coefficient but became independent of sim-
ulation parameters in the limit of close packing. The same
procedure was followed for spherocylinders of aspect ratio
1.5, 6 and 11 with results shown in Fig. 2b. Note that the
generated packings are not stable at low volume fractions
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Fig. 2 Evolution of contact
number as a function of volume
fraction for random packings
with expanding particles.
a Spheres with different growth
rates; b Spherocylinders with
aspect ratio α = L

D = 1.5
(circles), 6 (triangles) and 11
(squares)

Fig. 3 Distribution of contact
numbers in random rod
packings at different volume
fractions for aspect ratio
α = 1.5 (a) and 11 (b). Black
bars represent the maximum
random packing density for the
given aspect ratio

and should be considered as disordered collections of par-
ticles in contact. Only above a certain volume fraction (dif-
ferent for different aspect ratios) do the packings become
stable—as indicated by the jump in Fig. 2b. For frictionless
spheres the strict criterion for stability is C ≥ 6 (if rattlers
are excluded) but we do not exclude rattlers here so that C
for a stable packing can be somewhat smaller than 6. Note
that there is no jump around the stability onset, but the dif-
ferent growth rates converge. In contrast to spheres, where
the contact number increases roughly linearly with volume
fraction, spherocylinders show a sharp non-linear increase
in contact number from about three up to a value between
9 and 10. Reducing the growth rate leads to a less steep
increase.

As the volume fraction increases the distribution of con-
tact numbers keeps roughly the same shape (Fig. 3) but the
average shifts to a higher value. Note also that the average
contact number (Fig. 2b) at the maximum density is fairly
insensitive to the aspect ratio. This is consistent with the
trend in the average caging number below in Fig. 10.

The sharp non-linear increase in contact number in Fig. 2b
for the spherocylinders could indicate a phase transition such
that upon increasing the volume fraction of the random sphe-
rocylinder packings, the amount of order is increased in the
packings due to alignment of spherocylinders. Graphical ren-
dering of the packings (Fig. 4), however, shows that the sharp
increase in Fig. 2b is not caused by particle alignment but
apparently by particles suddenly coming into contact with
each other.

A study of the nematic order parameter S (Fig. 5) confirms
that the packings remain disordered (S ≈ 0) as the particles
grow in size, however, the spikes in the order parameter indi-
cate small orientational changes in the packing. Donev et al.
[33] calculated S for spheroids and found an experimental
value in the order of 0.05 consistent with the values in Fig. 5.

As the volume fraction increases, more particles come into
contact and motion is progressively hindered. The percentage
of caged particles was calculated, defining a caged particle
as a particle whose translations and rotations are blocked by
the presence of its contacting neighbors [20,21]. It should be
noted that the percentage of caged spheres does not provide a
criterion for the stability of a sphere packing. A packing can
be static when non-caged spheres rest on other spheres. Fur-
thermore, caging is a local criterium and for modeling global
jamming more complicated linear programming algorithms
are necessary [34] but it appears that long thin rods form
an exception to this due to their highly uncorrelated entan-
glement. Nevertheless, a packing with a large percentage of
non-caged spheres will certainly be unstable.

Slower expansion rates produce packings with more caged
spheres as can be seen in Fig. 6a. The starting configuration
was generated with the MCM. Possibly, a slow expansion
rate leaves the cages intact whereas a higher rate destroys the
initial cages, resulting in more non-caged spheres at lower
volume fractions. A growth rate lower than 10−9, for example
10−10, did not produce more caged spheres but a percentage
similar to 10−9. This explanation is supported by the graph
of the contact number versus volume fraction (Fig. 2a): for
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Fig. 4 Graphical rendering of
several packings. a Rods with
aspect ratio α = 1.5 at φ = 0.51
and at their maximum random
packing density, b φ = 0.708.
c Rods with aspect ratio 11 and
φ = 0.40 and at their maximum
density, d φ = 0.43. These
images indicate that the steep
rise in contact number in Fig. 2b
is not accompanied by a
significant structural change

higher growth rates the contact number is lower at the same
volume fraction indicating a higher percentage of non-caged
spheres. At around 0.61 volume fraction the percentage of
non-caged spheres converges for all growth rates while for
α = 1.5 this rate independence is obtained for φ > 0.68, see
Fig. 6b.

The caging of spherocylinders was studied as described
in Sect. 3. In Fig. 6b the percentage of non-caged particles is
plotted as a function of volume fraction for different growth
rates. For the caging of rods only the blocking of translations
and rotations perpendicular to the axis of symmetry were
checked. The percentage of non-caged spheres and sphero-
cylinders is directly correlated to the contact number as can
be seen by comparing Figs. 2 and 6.

Figure 2b, and Fig. 6c also shows clear similarities; when
the contact number sharply increases, the fraction of non-
caged particles sharply decreases. Plotting the percentage of
non-caged particles as a function of contact number (Fig. 7)
shows that the percentage of non-caged particles is almost
independent of the aspect ratio.

3.1.1 Aspect ratio dependence for random rod packings

So far packing properties of spherocylinders with three dif-
ferent aspect ratios have been studied with the hybrid

Fig. 5 Order parameter S as a function of volume fraction for sphero-
cylinders with aspect ratio α = 1.5 (circles), 6 (triangles), 11 (squares).
Upon increasing the volume fraction no significant increase in the
amount of order is observed

MCM-MD method, which yielded packings with different
volume fractions but having roughly the same contact num-
ber. To see how the contact number depends on the aspect
ratio, and whether it depends on the method, we now con-
sider in more detail the volume fraction and contact number
as a function of aspect ratio. In Fig. 8 the volume fraction
of a random spherocylinder packing is plotted as a func-
tion of aspect ratio for the MCM and the MD simulation
of growing particles. The shapes of the curves are very
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Fig. 6 Fraction non-caged
particles as a function of volume
fraction for different expansion
rates; a spheres,
b spherocylinders with aspect
ratio α = 1.5, c Fraction of
non-caged rods with aspect ratio
α = 1.5 (circles), 6 (triangles)
and 11 (squares) in the
quasi-static limit with growth
rate 10−7

similar and the volume fraction obtained via the MD simula-
tion is slightly higher, as expected, since the MCM packings
are used as starting configuration for the growth procedure.
Note that the simulation data approach the thin-rod packing
law Eq. (5) at an aspect ratio in the range 10–20. This is
also the aspect ratio range in Fig. 10 in which the caging
number asymptotes to its constant value in accordance with
Eq. (5).

Though the volume fractions between the two methods
do not differ much, there is a difference in the contact num-
ber (Fig. 9). For the MD simulation the contact numbers
are clearly higher than for MCM and comparable to the
results from Blouwolff and Fraden [11] for uncompacted
rods. Blouwolff and Fraden give an argument for the contact
number in random rod packings, which we briefly recapitu-
late here. For N rods, there will be Nc = N 〈C〉/2 contacts
and Nc contact equations that must be satisfied. Rods have 5
degrees of freedom, so there are a total of 5N variables speci-
fying the configurations of the rods. The number of constraint
equations must be less than the number of variables, yielding
N 〈C〉/2 ≤ 5N and 〈C〉 ≤ 10. Mechanical stability gives 5
force-torque equations per particle. The number of mechan-
ical stability equations cannot exceed the number of force
variables, thus, 5N ≤ N 〈C〉/2 or 10 ≤ 〈C〉. Combining
these two limits gives the isostatic value 〈C〉 = 10. In [10,35]
it is noted that the isostatic contact value is not reached when
spherocylinders are only slightly deviating from spheres. The
number of degrees of freedom changes discontinuously and
via the isostatic conjecture the number of contacts should

Fig. 7 Fraction of non-caged particles as a function of contact number
from data of Fig. 2b, and Fig. 6c showing that the percentage of non-
caged particles is almost independent of the aspect ratio for growth rate
10−7

change discontinuously too which, however, is not observed
in computer simulations.

In Fig. 9 the contact number is plotted as a function of
aspect ratio for random spherocylinder packings. The con-
tact number increases monotonically and asymptotes towards
a value between 9 and 10, which agrees quite well with the
direct experimental value 〈C〉 = 9.8±0.3 found in [11]. The
finding that 〈C〉 asymptotes towards a constant value implies
according to the random contact equation (1.5) the scaling
φL/D = 〈C〉

2 for L/D � 1, which has also been found
experimentally [5,11]. In the next section a physical expla-
nation for this constant 〈C〉 will be given in terms of a local
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Fig. 8 a Volume fraction of a
random spherocylinder packing
as a function of aspect ratio
(circles) MCM and (triangles)
MD. The line corresponds to
Eq. (5). b Log–log plot of the
volume fraction as a function of
aspect ratio with slope −1.08

Fig. 9 Contact number 〈C〉 as
a function of aspect ratio for
random spherocylinder packings
at the close packing volume
fraction. The dip in contact
number after aspect ratio 6 is
probably due to the packings
being not completely jammed
and further densification should
be possible

caging argument. The molecular dynamics procedure allows
for slightly denser packings with better-defined contacts. The
value of 10 is not reached but possibly implementing a “shak-
ing” algorithm, which perturbs the packings without inducing
an ordered phase allows for further densification and increase
of contact number.

3.1.2 Contact number as a function of aspect ratio

In [32] it was shown that the parking number for spheres is
about 8.4 but that it is not possible to pack each sphere with
that contact number locally due to excluded volume effects.
A contact number below the parking number is more opti-
mal for a dense disordered packing of spheres. When slightly
deviating from spheres the surface area of the particles hardly
changes and also the excluded area as described for spheres
in Wouterse et al. [21] will not alter significantly. Thus the
parking number [36] for small aspect ratio spheroids and
spherocylinders is expected to be around the same value as
for spheres, which is below 10 and the parking number is an
upper bound for the number of contacts that can be placed
at random. It should be noted that the parking number is
not really well-defined for higher aspect ratio spheroids and
spherocylinders. As contacts are added randomly the avail-
able parking space decreases due to the non-overlap condi-
tion. At a certain point only spherocylinders with the right
orientation will fit in that space which induces alignment in
the particles.

3.2 Caging number for spherocylinders

Using the formalism described in Sect. 2.2 we reproduced
the exact caging number 〈γ 〉 = 5 for two-dimensional disks
caged by uncorrelated point contacts [22]. We determined
the caging number for infinitely long rods, considering only
translations and rotations perpendicular to the axis of sym-
metry to be blocked (thus the rods can always move along and
rotate around their long axis). The result for two- and three-
dimensional rods is, respectively, 〈γ 〉 = 5 and 〈γ 〉 = 9. The
caging number for spherocylinders as a function of aspect
ratio was calculated (Fig. 10) where contacts are placed ran-
domly on the cylindrical part or the hemi-spherical end caps
with a probability proportional to the surface area of the cylin-
drical respectively hemi-spherical surface. For aspect ratio
zero the caging number for 3-d spheres 〈γ 〉 = 7 is repro-
duced numerically; a number derived analytically elsewhere
[20]. For high aspect ratios 〈γ 〉 approaches the value of 9
for infinite rods, as expected, since the probability of plac-
ing a contact on an end cap vanishes in the thin rod limit.
Interestingly, immediately upon deviating from spheres (see
Fig. 10) the caging number jumps to around 12 and then starts
to decrease.

Although we have reproduced limiting cases with our
method of which we have the analytical solutions, it is diffi-
cult to numerically solve the LCP and it is not completely sure
whether the results for almost spherical particles are numeri-
cally robust. However, the increase in caging number as such
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Fig. 10 a Average number of contacts required to block rotations and translations perpendicular to the axis of symmetry for a spherocylinder as
a function of its aspect ratio, computed as discussed in Sect. 2.2. b Distribution of contacts for the caging number of a spherocylinder with aspect
ratio 11

Fig. 11 (triangles) Average number of contacts required to block rota-
tions perpendicular to the axis of symmetry and all translations for a
spherocylinders as a function of its aspect ratio (circles; Fig. 10a)

is physically plausible since the volume fraction of a random
packing increases upon slightly deviating from spheres which
supports the fact that it becomes harder to cage or jam the
non-spherical particles.

Even though the caging number is a local contact num-
ber, the limiting value of 〈γ 〉 = 9 is surprisingly close to
the isostatic value of 10 and average contact numbers from
experiments 〈C〉 = 10.8 ± 0.4 [5] and 〈C〉 = 9.8 ± 0.3 [11].
Somewhere in the aspect ratio range 15–20 the caging num-
ber has become almost constant which is where the random
contact equation yields a good comparison with experiments
[5,8]. High aspect ratio thin rods have uncorrelated contacts
making the point contact approximation a valid choice where
the difference in contact number between 9 and 10 could
make sense to satisfy global jamming conditions. Interest-
ingly, our results match well with simulations on semi-flex-
ible rods, where a caging number of 8 was found [37].

In Fig. 11 the caging number is plotted as a function of
aspect ratio, for the case where also translations along the
axis of symmetry are required to be blocked. Here, the cag-
ing number is completely dominated by the probability to

place a contact on both hemi-spherical caps, which becomes
infinitesimally small in the limit of infinite aspect ratio yield-
ing a sharp increase in the contact number. In view of the
experimental and simulated contact numbers it is clear that
in random thin rod packings the large majority of rods is
unblocked at its ends. It should be noted that any small motion
of rods parallel to their main axis has little effect on the
random packing density because these axes are randomly
oriented.

4 Conclusions

Performing molecular dynamics simulations on packings
prepared with the MCM is an efficient way for generating
random packings with volume fractions and contact numbers
comparable to experimental packings. In the limit of jam-
ming, the packing properties such as contact number and per-
centage of caged spheres becomes independent of simulation
parameters for random sphere packings. For spherocylinder
packings the contact number rises sharply at a critical volume
fraction up to a value between 9 and 10 at the jamming point
in line with the caging number 〈γ 〉 = 9, the isostatic value
〈C〉 = 10 and the experimental value 〈C〉 = 9.8 ± 0.3. The
percentage of non-caged spherocylinders follows the same
trend as the contact number as expected. The amount of order
does not increase substantially with volume fraction while
keeping the aspect ratio constant. At higher aspect ratio the
contact number drops, which is probably due to the packing
being not totally jammed.

The caging number for rods arrested by uncorrelated point
contacts asymptotes towards 〈γ 〉 = 9 at high aspect ratio
according to the LCP prediction. This value is strikingly
close to the experimental contact number 〈C〉 = 9.8 for thin
rods, which confirms that thin-rod packings are dominated
by local effects in the form of truly random neighbor cages.
The aspect-ratio independence of the thin-rod caging number
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further validates the random contact equation. Together with
a value for the contact number, either from an isostatic argu-
ment or a caging analysis, this law quantitatively explains the
density of a random thin-rod packing.
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