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Abstract

We introduce a continuous version of the contact model which is well-known and widely

studied in the lattice case. Under certain general assumptions on the infection spreading

characteristics we construct the contact process as a Markov process in the configuration

space of the system.
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1 Introduction

Let us start with a reminder of some facts from the theory of stochastic lattice gases
on the cubic lattice Z

d, d ∈ N. In the lattice gas model with spin space S = {0, 1}, the
configuration space is defined as X = {0, 1}Z

d

. For a given σ = {σ(x) |x ∈ Z
d} ∈ X we

say that a lattice side y ∈ Z
d is free or occupied by a particle depending on σ(y) = 0

or σ(y) = 1 respectively.
In the Glauber type stochastic dynamics of the lattice gas particles randomly dis-

appear from occupied sites or appear of free places of the lattice. Obviously, this
dynamics may be interpreted as a birth-and-death process on Z

d. The generator of
this dynamics is given by

(Lf)(σ) =
∑

x∈Zd

a(x, σ)(∇xf)(σ),
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where
(∇xf)(σ) = f(σx) − f(σ),

σx denoting the configuration σ in which the particle at site x has changed its spin
value.

An extremely important example of such type stochastic dynamics is given by the
classical contact model. In the model σ → σx at rate 1 if σ(x) = 1 and at rate
λ|{y | |y − x| = 1}| if σ(x) = 0, where |A| denotes the cardinality of the set A. The
interpretation is that sites with σ(x) = 1 are infected while sites with η(x) = 0 are
healthy. Infected sites recover from the infection after an exponential time of rate 1,
while healthy sites became be infected at a rate proportional to the number of infected
neighbors. The contact model is one of the simplest ones in the theory of interacting
particle systems. But even this simple model has very reach and interesting proper-
ties, especially, concerning the asymptotic behavior and the structure of equilibrium
measures, see [6], [7].

If we consider a continuous particle system, i.e., a system of particles which can take
any position in the Euclidean space R

d, then an analog of the discussed lattice stochastic
dynamics should be a process in which particles randomly appear and disappear in
the space, i.e., a spatial birth-and-death process. The generator of such a process is
informally given by the formula

(LF )(γ) =
∑

x∈γ

d(x, γ)(D−
x F )(γ) +

∫

Rd

b(x, γ)(D+
x F )(γ) dx,

where
(D−

x F )(γ) = F (γ \ x) − F (γ), (D+
x F )(γ) = F (γ ∪ x) − F (γ). (1.1)

Here and below, for simplicity of notations, we just write x instead of {x}. The
coefficient d(x, γ) describes the rate at which the particle x of the configuration γ dies,
while b(x, γ) describes the rate at which, given the configuration γ, a new particle is
born at x.

Spatial birth-and-death processes were first discussed by Preston in [8]. Under some
conditions on the birth and death rates, Preston proved the existence of such processes
in a bounded domain in R

d. Though the number of particles can be arbitrarily large
in this case, the total number of particles remains finite at any moment of time. The
problem of construction of a spatial birth-and-death process in the infinite volume was
initiated by Holley and Stroock in [2]. In fact, in that paper, birth-and-death processes
in bounded domains were analyzed in detail. Only in a very special case of nearest
neighbor birth-and-death processes on the real line, the existence of a corresponding
process on the whole space was proved and its properties were studied. For the par-
ticular case of the Glauber stochastic dynamics in continuum (in which we have an a
priori given stationary measure) so-called equilibrium Markov processes in infinite vol-
ume were constructed in [4]. A general case of birth-and-death processes in unbounded
domains is considered in our forthcoming paper [5].
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In this paper we introduce a continuous version of the contact model described
above. This model can be interpreted also as a spatial infinite particle branching model
with killing. Our first result (Theorem 3.1) shows that for a bounded contact rate and
for a large set of initial configurations there exists corresponding contact process as a
Markov process in the configuration space of the system. Conditions on the infection
spreading rate are quite general. Only one essential assumption should be mentioned:
we assume a finite range of the influence of infected points in the infection spreading
process. The second result is related with the case of possible unbounded contact
rate but still under the compact support assumption (Theorem 3.2). There we should
modify the phase space of the contact process depending on the integrability property
of the contact rate s.t. corresponding process will not leave this (bigger) phase space
under the stochastic evolution.

2 Configuration spaces

The configuration space Γ := Γ(Rd) over R
d is defined as the set of all subsets of R

d

which are locally finite:

Γ :=
{

γ ⊂ R
d : |γΛ| < ∞ for each compact Λ ⊂ R

d
}

,

where | · | denotes the cardinality of a set and γλ := γ ∩Λ. One can identify any γ ∈ Γ
with the positive Radon measure

∑

x∈γ εx ∈ M(Rd), where εx is the Dirac measure

with mass at x,
∑

x∈∅
εx:=zero measure, and M(Rd) stands for the set of all positive

Radon measures on B(Rd). The space Γ can be endowed with the relative topology as
a subset of the space M(Rd) with the vague topology, i.e., the weakest topology on Γ
with respect to which all maps

Γ ∋ γ 7→ 〈f, γ〉 :=

∫

Rd

f(x) γ(dx) =
∑

x∈γ

f(x), f ∈ C0(R
d),

are continuous. Here, C0(R
d) is the space of all continuous real-valued functions on

R
d with compact support. We shall denote the Borel σ-algebra on Γ by B(Γ). In

the sequel, we will use equally both interpretations for configurations that does not
produce any confusion because it will be always clear from the context.

The vague topology on Γ is metrizable with the metric

dw(γ, γ′) =
∑

n

(d(n)
w (γBn(0), γ

′
Bn(0)) ∧ 1)2−n,

where d
(n)
w is the metric in the space M(Bn(0)) of the finite measures on the ball Bn(0)

in R
d of the radius n ∈ N with the center at point 0 ∈ R

d. In this metric Γ is not
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complete. But it is possible to modify this metric in such a way that the space Γ with
the new metric dΓ became be a complete separable metric space, see, e.g., [3].

Let us describe compacts in the configuration space. Introduce a sequences of
functions on Γ :

δn(γ) = inf{|x − x′| | x, x′ ∈ γBn(0), x 6= x′}, n ∈ N.

Lemma 2.1 A set F ⊂ Γ is a relatively compact set iff for any n ∈ N

sup
γ∈F

{|γBn(0)| + δ−1
n (γ)} < ∞. (2.1)

For the proof see [2], [3].
We denote by K(Γ) the set of all relatively compact subsets of Γ.
For any β > 0 introduce a function eβ(x) := e−β|x|, x ∈ R

d and symmetric kernel

Ψβ(x, y) := e−β|x|e−β|y| |x − y| + 1

|x − y|
1{x 6=y} (2.2)

on R
d × R

d. We construct the following functions on Γ:

Lβ(γ) :=< eβ(x), γ >=
∑

x∈γ

e−β|x|(≤ +∞), γ ∈ Γ, (2.3)

Eβ(γ) :=
1

2

∫ ∫

Ψβ(x, y)γ(dx)γ(dy) =
∑

{x,y}⊂γ

Ψβ(x, y) (≤ +∞), γ ∈ Γ, (2.4)

Vβ(γ) := Lβ(γ) + Eβ(γ), γ ∈ Γ, (2.5)

Following lemma is a particular case of a general statement about compact functions
on Γ, for the proof see [3],[5].

Lemma 2.2 For any C ∈ R+ holds

{γ ∈ Γ |Vβ ≤ C} ∈ K(Γ).

Denote
Γβ := {γ ∈ Γ |Vβ(γ) < +∞}. (2.6)

Then for β < β′ we have Γβ ⊂ Γβ′ . Due to Lemma 2.2 Γβ is a σ-compact set. Introduce
subspace

Γ∞ :=
⋃

β>0

Γβ ⊂ Γ. (2.7)
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Remark 2.1 The subspace Γ∞ is massive enough to contain supports for a large class
of probability measures on B(Γ). Namely, for a probability measure µ ∈ M1(Γ) we
assume the existence of second local moments, that is the condition

∀Λ ⊂ R
d, compact

∫

Λ

|γΛ|
2µ(dγ) < ∞.

Define first and second correlation measures on B(Rd) and B(Rd ×R
d) respectively via

the following relations
∫

Γ

∑

x∈γ

f(x)µ(dγ) =

∫

Rd

f(x)ρ(1)(dx),

∫

Γ

∑

{x,y}⊂γ

g(x, y)µ(dγ) =

∫

Rd

∫

Rd

g(x, y)ρ(2)(dx, dy),

for any function f ∈ C0(R
d) and any symmetric kernel g ∈ C0(R

d × R
d). Then

∫

Γ

Vβ(γ)µ(dγ) =

∫

Rd

eβ(x)ρ(1)(dx) +

∫

Rd

∫

Rd

Ψβ(x, y)ρ(2)(dx, dy) (2.8)

and the finiteness of the last expression will imply µ(Γβ) = 1. In particular, assume that
the first and second correlation measure are absolutely continuous w.r.t. the Lebesgue
measure, i.e.,

ρ(1)(dx) = k(1)(x)dx

(k(1)(x) is called first correlation function) and

ρ(2)(dx, dy) =
1

2
k(2)(x, y)dxdy,

with a symmetric function k(2)(x, y) (so-called second correlation function of the mea-
sure µ). Then sub-exponential bound

k(1)(x) ≤ A exp(B|x|), k(2)(x, y) ≤ A exp(B|x| + B|y|), x, y ∈ R
d,

with some A, B > 0 imply
∫

Rd

eβ(x)k(1)(x)dx +

∫

Rd

∫

Rd

Ψβ(x, y)k(2)(x, y)dxdy < ∞

for all β > B taking into account
∫

B1(0)

∫

B1(0)

dxdy

|x − y|
< ∞

for any d ∈ N. Therefore, µ(Γ∞) = 1 for any such measure µ.
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3 Contact models

Contact models we are going to discuss can be considered as a particular case of general
birth-and-death Markov processes in configuration spaces. These spatial birth-and-
death processes describe a stochastic evolutions in Γ in which points of a configuration
can randomly appear and disappear. The generator of such process is heuristically
given on functions F : Γ → R by

(Lb,dF )(γ) =
∑

x∈γ

d(x, γ \ x)(D−
x F )(γ) +

∫

Rd

b(x, γ)(D+
x F )(γ) dx, (3.1)

where
(D−

x F )(γ) = F (γ \ x) − F (γ), (D+
x F )(γ) = F (γ ∪ x) − F (γ). (3.2)

Here and below, for simplicity of notations, we just write x instead of {x}. The
coefficient d(x, γ) describes the rate at which the particle x ∈ γ of the configuration γ

dies, while b(x, γ) describes the rate at which, given the configuration γ, a new particle
is born at x ∈ R

d.
To give a meaning to such type operators, let us introduce the set FCb(C0(R

d), Γ)
of all continuous bounded cylinder (or finitely based) functions on Γ. These functions
have the following form

Γ ∋ γ 7→ F (γ) = gF (〈ϕ1, γ〉, . . . , 〈ϕN , γ〉),

where N ∈ N, ϕ1, . . . , ϕN ∈ C0(R
d) and gF ∈ Cb(R

N), where Cb(R
N) denotes the set of

all continuous bounded functions on R
N . Then under a local integrability (in x ∈ R

d)
condition on the birth rate the expression (3.1) makes sense al least pointwisely on Γ.

In the study of an infection spreading inside of a population is naturally to consider
a continuous version of the (well-known in the lattice case) contact model. This model
can be described as a birth-and-death process with the death rate d ≡ 1 and the birth
rate

b(x, γ) = λ
∑

y∈γ

a(x − y), (3.3)

0 ≤ a ∈ L1(Rd), ‖a‖1 = 1, (3.4)

where λ > 0 denotes the infection spreading rate. In the contact model a configuration
describes the set of infected individuals in a population. These individuals became be
healthy after a random exponentially distributed time independently on others (that
correspond to disappearing of a point from the configuration) or there can appear a
new infected individual at a point x with the rate (3.3) depending on the presence of
infected ones around this point.

Another interpretation of this process is related to population biology models. In
such a process we have some kind of spatial branching with killing: each particle y ∈ γ

6



creates (independently of others) a new particle at point x ∈ R
d with the rate

λa(x−y)dx and each particle dies independently of others after a random exponentially
distributed time. This interpretation is motivated by the form of generator of the
contact process:

LF (γ) =
∑

x∈γ

(F (γ \ x) − F (γ)) + λ
∑

y∈γ

∫

Rd

a(x − y)[F (γ ∪ x) − F (γ)]dx (3.5)

in which the additive character of the birth rate is essential. We will call the birth
coefficient (3.3) in the contact model the linear birth rate. In our forthcoming paper
[5] we discuss general birth-and-death processes with sub-linear rates.

Theorem 3.1 Let d ≥ 2 and a ∈ L∞(Rd) has bounded support. Then for any initial
configuration γ ∈ Γ∞ there exists a Markov function X

γ
t , t ≥ 0, with the transition

probability corresponding to generator (3.5) which starts with γ and such that

∀t ≥ 0 X
γ
t ∈ Γ∞ a.s. (3.6)

Proof. Denote Γ0 ⊂ Γ the set of all finite configurations in R
d. This set has a

decomposition into disjunct union

Γ0 =
∞
⊔

n=0

Γ(n), Γ(n) = {γ ∈ Γ | |γ| = n}, n ∈ N, Γ(0) = {∅}.

The topology of Γ0 is naturally coming from the topology of disjunct components.
We would like to show first that for any starting point γ ∈ Γ0 the contact process

exists as a Markov process in Γ0. To this end we rewrite the generator (3.5) in the
standard form of a pure jump Markov generator. Namely, using explicit form of L we
have for any finite configuration η ∈ Γ0

LF (η) = λ(η){

∫

Γ0

F (η′)Q(η, dη′) − F (η)}, (3.7)

where λ(η) = |η|(1 + λ) and the transition kernel Q(η, dη′) on Γ0 is given by

Q(η, dη′) =
1

λ(η)
{
∑

x∈η

δη\x(dη′) + λ
∑

y∈η

∫

Rd

a(x − y)δη∪x(dη′)dx}.

An application of the pure jump Markov processes theory gives us the existence of of
a probability space (Ω,F , P ) and the Markov process X

γ
t (ω), t < ζ∞(ω), in the state

space Γ0 with the generator L, where ζ∞(ω) is the life time of the process, see, e.g.,
[1]. Let us show regularity of this process, i.e., the relation

P ({ω ∈ Ω | ζ∞(ω) = +∞}) = 1.
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Note that for the function
Γ0 ∋ η 7→ |η| ∈ R+

holds

L|η| = −|η| + λ
∑

y∈η

∫

Rd

a(x − y)dx = (λ − 1)|η| ≤ λ|η|.

Then the representation

|Xγ
t | = |γ| +

∫ t

0

L|Xγ
s |ds + Mt,

where Mt is a martingale, together with the Gronwall inequality imply

E|Xγ
t | ≤ |γ|eλt.

The latter shows the regularity of the process.
Now we are ready to construct the infinite particle contact process.
For any given initial configuration γ ∈ Γ∞ there exists β > 0 such that γ ∈ Γβ.

Denote γn := γ ∩ Bn(0), n ∈ N and Xn
t := X

γn

t . The sequence of Markov processes
{Xn

t |n ∈ N} in Γ0 with the same generator L has following monotonicity property:

∀n ∈ N ∀t ≥ 0 Xn
t ⊂ Xn+1

t a.s. (3.8)

This property is a consequence of the observation that for a decomposition of initial
configuration in Bn+1(0)

γn+1 = γn ∪ ηn, ηn = γn+1 \ γn

we have
Xn+1

t = Xn
t ∪ X

ηn

t a.s.

Really, due to the additive structure of the generator 3.5, Xn
t and X

ηn

t are independent
Markov processes of spatial branching with killing and Xn

t ∩ X
ηn

t = ∅ a.s.
Introduce limiting process

X
γ
t (ω) =

∞
⋃

n=1

Xn
t (ω).

The following lemma shows that the function Vβ can be considered as a Lyapunov
function for the generator L.

Lemma 3.1 There exists a constant C > 0 such that

LVβ(γ) ≤ CVβ(γ), γ ∈ Γβ. (3.9)
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Proof. Let us take any γ ∈ Γ0. Using 3.5 we obtain

LLβ(γ) = −Lβ(γ) + λ
∑

y∈γ

∫

Rd

a(x) exp(−β|x − y|)dx ≤

−Lβ(γ) + λ
∑

y∈γ

∫

BR(0)

a(x) exp(−β|x − y|)dx ≤

−Lβ(γ) + C1

∑

y∈γ

exp(−β|y|) = C2Lβ(γ),

where we have used a compact support property of a.
Similarly,

LEβ(γ) = −
∑

x∈γ

∑

y∈γ\x

Ψβ(x, y) + λ
∑

y∈γ

∑

z∈γ

∫

Rd

a(x − y)Ψβ(x, z)dx.

Using again compact support property and boundedness of a and explicit form of Ψβ

we can estimate the latter by

C3

∑

y∈γ

∑

z∈γ

exp(−β|y|) exp(−β|z|)

∫

BR(0)

1

|x − y − z|
dx.

The integral over BR(0) in this expression is uniformly bonded in y, z ∈ R
d for d ≥ 2

that gives

LEβ(γ) ≤ C4

∑

y∈γ

∑

z∈γ

exp(−β|y|) exp(−β|z|) =

2C4

∑

{x,y}⊂γ

exp(−β|y|) exp(−β|z|) + C4

∑

y∈γ

exp(−2β|y|) ≤

2C4Eβ(γ) + C4Lβ(γ) ≤ C5Vβ(γ).

Obtained estimations prove the statement of the lemma for γ ∈ Γ0. The general case
follows for any γ ∈ Γβ by the consideration of the monotonically growing approximate
sequence {γn = γ ∩ Bn(0)|n ∈ N} ⊂ Γ0 with a use of monotonicity arguments in the
expressions for Vβ(γn) and LVβ(γn) (see calculation above).�

Consider now Vβ(Xn
t (ω)). Due to the Markov property we have

E[Vβ(Xn
t )] = Vβ(γn) +

∫ t

0

E[LVβ(Xn
s )]ds ≤

Vβ(γ) + C

∫ t

0

E[Vβ(Xn
s )]ds,
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where we have used Lemma 3.1. The Gronwall inequality gives then

∀n ∈ N ∀t ≥ 0 E[Vβ(Xn
t )] ≤ Vβ(γ)eCt. (3.10)

The bound (3.10) gives due to a.s. monotonicity in n of the sequence of processes Xn
t

E[Vβ(Xt)] ≤ Vβ(γ)eCt

that means ∀t ≥ 0 Xt ∈ Γβ a.s. Due to the construction, the Markov process X
γ
t has

the generator L and X
γ
0 = γ. �

Remark 3.1 From the proof of the theorem follows that the restriction d ≥ 2 is related
only with the needing integrability

∫

BR(0)

dx

|x|
< ∞.

For the case d = 1 we can just modify the definition of the kernel Ψβ taking in the
definition |x− y|δ with some δ < 1 instead |x− y|. Then the presented proof works also
for the one-dimensional contact model.

Remark 3.2 Let µ0 ∈ M1(γ) be an initial distribution on B(Γ) s.t. µ0(Γ∞) = 1 and
Xt ∈ Γ denotes the contact Markov process with this initial measure. Let kt(x), x ∈ R

d,
denotes the density of the infected population at the time t (i.e., the first correlation
function of the distribution µt on Γ of the process Xt). Then the definition of the
process shows that this density satisfies the following Cauchy problem:

∂kt(x)

∂t
= −kt(x) + λ(kt ∗ a)(x)

with the initial value k0(x) that is the first correlation function for µ0 (density of the
initial infected population) which we can assume be bounded and continuous.

This equation can be rewritten as

∂kt(x)

∂t
= (λLa − C)kt(x), (3.11)

where

(Laf)(x) =

∫

Rd

a(x − y)[f(y) − f(x)]dy,

is the generator of a pure jump Markov process in R
d and C = 1 − λ. Due to this

equation we see 3 possible cases:
(i) λ < 1 (subcritical). In this case kt → 0, t → ∞ uniformly on R

d. Therefore, the
infected population will be asymptotically degenerated.

(ii) λ > 1 (supercritical). Here kt → +∞, t → ∞ pointwisely exponentially fast.

10



(iii) λ = 1 (critical). Now the time evolution of the density is describing by the
Kolmogorov equation for the mentioned jump process:

∂kt(x)

∂t
= Lakt(x)

and its asymptotic is nontrivial. From the point of view of applications, the asymptotic
of the distribution µt and the problem of the existence of corresponding invariant dis-
tribution are most interesting open questions. These problems we study in a separated
work.

Theorem 3.1 gives the existence of the contact process in the case of a bounded
contact rate a which has compact support. Let us consider more general case of a
(possible unbounded) rate a.

To this end we will need to introduce some additional topological structures on Γ.
For any β > 0 and α > 0 we introduce the exponential function eβ(x) := e−β|x|, x ∈

R
d and the kernel

Ψα
β(x, y) := e−β|x|e−β|y| |x − y|α + 1

|x − y|α
1{x 6=y}, x, y ∈ R

d.

Then we construct following functions on Γ:

Lβ(γ) :=< eβ(x), γ >=

∑

x∈γ

e−β|x|(≤ +∞), γ ∈ Γ,

E
α
β(γ) :=

1

2

∫ ∫

Ψα
β(x, y)γ(dx)γ(dy) =

∑

{x,y}⊂γ

Ψα
β(x, y) (≤ +∞), γ ∈ Γ,

and introduce a generalization of function (2.5) as follows:

V
α
β(γ) := Lβ(γ) + E

α
β(γ), γ ∈ Γ.

Similarly to Lemma 2.2 we can show that it is a compact functions on Γ. Namely,
for any C > 0 holds

{γ ∈ Γ |Vα
β ≤ C} ∈ K(Γ).

Denote
Γα

β := {γ ∈ Γ |Vα
β(γ) < +∞}.

It is easy to see that
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β < β′ =⇒ Γα
β ⊂ Γα

β′

and
α < α′ =⇒ Γα′

β ⊂ Γα
β .

For given α, β > 0 the subspace Γα
β is a σ-compact set. Denote

Γ0
∞ :=

⋃

α>0

⋃

β>0

Γα
β ⊂ Γ.

Theorem 3.2 Let
a ∈ L1+δ(Rd)

for some δ > 0 and has bounded support. Then for all

α <
δd

1 + δ
,

β > 0 and γ ∈ Γα
β there exists a Markov function X

γ
t , t ≥ 0, with the transition

probability corresponding to generator (3.5) which starts with γ and such that

∀t ≥ 0 X
γ
t ∈ Γα

β a.s.

Proof. The proof of this theorem is similar to the proof of Theorem 3.1 with only one
modification. We will use the function V

α
β as a Lyapunov functional for the generator

L. It will need an inequality
LV

α
β ≤ CV

α
β .

The latter can be stated as in Lemma 3.1 if we will exploit in the bound for the integral

∫

Rd

a(x − y)Ψα
β(x, z)dx

the compact support property of a and the Hölder inequality instead of the uniform
bound on a as before.�
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