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Abstract. In this report, certain properties of context-free (CF or type 2) grammars are 
investigated, like that  of Chomsky. In particular, questions regarding structure, possible am- 
biguity and relationship to finite automata are considered. The following results are presented : 

(a) The language generated by a context-free grammar is linear in a sense that  is defined 
precisely. 

(b) The requirement of unatabigui ty-- that  every sentence has a unique phrase s t ructure--  
weakens the grammar in the sense that  there exists a CF language that cannot be generated 
unambiguously by a CF grammar. 

(c) The result that  not every CF language is a finite automaton (FA) language is impr~)ved 
in the following way. There exists a CF language L such that for any L '  ~ L, if L' is FA, aa 
L" C L can be found such that  L" is also FA, L'  C L" and L" contains infinitely many 
sentences not in L'. 

(d) A type of grammar is defined that  is intermediate between type 1 and type 2 grammars. 
I t  is shown that  this type of grammar is essentially stronger than type 2 grammars and has 
the advantage over type 1 grammars that  the phrase structure of a grammatical sentence is 
unique, once the derivation is given. 

1. Preliminaries 
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Definition 1. By a phrase-structure grammar G is meant a set V of symbols 
and a set R of rules R~ of the form R~ : ¢o~ --~ n~, where ~0~ and n~ are strings (pos- 

sibly null) composed of members of V. 
Definition 2. The grammar G will be said to be of type 1 (a context grammar) 

if all the rules are of the type: Ri = ~¢tabl --~ ,~¢0~bl, where A~ are individual 
symbols of V; ~ ,  ¢o~, ~b~ are some strings on V; and ~0, are not null. I t  will also be 

assumed that  S = A~ for at, least one i. 

Definition 3. A type 1 grammar G will be said to be of type 2 or context free 
(CF) if all the ~i,  ~b~ as given in the foregoing are null. 

Definition 4. If G is a type 1 grammar, then by V~ is meant the subset {A~} 

of V. By Vr is meant V-- VN (T  means terminal; N means nonterminal). 
Convention 1. Hereafter, when talking about type 1 grammars we will use the 

following convention. Capital letters denote strings on V~r, lower-ease letters 

denote strings on Vr and Greek letters denote strings on V. Early letters of the 
alphabet denote individual symbols; late letters denote arbitrary (possibly empty)  

strings. The boundary symbol $ will always belong to Vr (although it does not 
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belo~tg ~o ~he alphai>::~). [~ dL#eu:~.sio~~s o[ kYt>:~ 2 grammg~r~% dfi~ <ymbot will ofte.~ 
be omi~u~d. 

Severed res~,~R~ frc~m png>.,a~s by Chomsky  ~md o~,hers I2-4I will be used~ While  

this r~:,por~ does ~aot pre;~'dpp~,:~ aequaingam:e with (.ho.~e paper~% they form ~,he 
co~iex~ of t:ifi:~ pa~cr. 

D L g ~ n ~  5. }~y ~he .a t  of .~-ge~.er~d.~le siri~gs of a phm~,se-struetm.'e gr~mm~a.r G 

in)  ~: :i: A,,.  

If a s~riag ~ bel+'++~g::~ ~o d~i:.+ :-+:q we wi~[ call ig ¢-.gc~erabte, and wri~,e ¢ .,:,~ ~+. 

The sc~. of geese>rifle ~ri~g~ wi~i by ~he se~ of :~ S ~ -genembte s~ri~g:s. A member  of 

this seI. wi~ be called g~,~xe~dAe. 

©9*i!~lio~z 5~ The  l :~guage L ge~cra~cd by  G will be l~he set of those s~rh~g.s oa  

Vr {~ha{ are &f~.erable. Sud* stri~g:s will be referr~:d ~{.~ as  ~:~mte~ce~s of G or  L. Thus  

s e~enteace is a <eae~:abie stri,~g which co~I;ai~s ~o uo~,efm{nat ~.y'mboE< A hmDmge 

wi!1 be said I.o be of ~ype X if i~. can be generated by  a gamm~a,~ o~" gyfn} X. 

Note. Herea(~.r,  ~il gm<nmacs wilt be tyF,? t g~m~mars ua/es.~ otherwise sped -  

fled. For  example,  ~he A , ,  a,~ of Defiait io~ 7 refer to I)~Naitdo~ 2. 

D~/gn.itwa 7. (R~ ~ j )  will be ~a.id to be a ,~,-derivation of ~ if e .... '~lf~A~'4~a, 

this : t ,  is t he j~h  symbol  of ~, ~md g, ,~ v a ~ e ~ , z .  The  memb<m~, of ~o~ i~ ¢ wilt be, 

said to be de.seead~:ats of A,  (here A, refers e a t  off{y ~o the pnr~icular member  of 

members  of ~ .  ~#,, ~ ,  ~;,~ i~ ~ wilt be ~,,id t~o ~m de;~eeade~s of their  eom~terpar~s 

of e wRb re~spect {o (R~ , j ) .  

D4n.igio~ 8. O ..... (R,~ , j~), . . .  , ( R e ,  j . )  witt be :.~aid go be a e ,def iva t ion  

of ~b if there exi:~,s a :~,*que~ce ~ ...... e~, ~a,  ' - .  , v',0 = ~ such t h a t  (R~ ,fi~) is a 

~ - 4  derivatioa'~ of ¢~.  £~ ia ,~ w[tl be s>.id m be  a d~xsce~den~, o{' e~ ia e witch re~q/~ec~, 

respect, to i 1¢,,, j~). 

Defiz,(~icm, 9~ Let, ,~ be a gcq~erable s tr ing amd le~ e~ be a subs t r iag  Of ,~, The{~ ~.~ 

wilt be said t o  be a. phrase og ~ of type  A with ~ s p e e t  go D~ where D .... 

(Rq , j~), . -. , ( [~,,,, j , , ) ,  if them exists :~ com,'spo~db~g se,:tueaee of stritN~ # S # '~ 

f e ,  ~og , . . .  , ~ = ~o a~d aa  ocem~>:mee d ~ of A ia  some f~ such t h a t  f;t is ~he ~e~ 

of all de,~ e a d a m s  in <# of this A~ ia ~,~ wkh  resfmeg ~o the deriva~ioa D' ~ ( R a , ~ ,  

j ~ +d ,  "'" , (R ,~ ,  j~ ) ,  We wi|l say ",~l is a p h m ~  of e of {,ype A." if there exis~,s a 

D aN m the* foregoig~g~ 

Remw4:. [ f two oecurrem~es a a,:~d ~ of symbol8 hg a s{ri~g ~# be|(m.g to the sa.me 

p h l ~ e ,  then ~.o uo aP the ocem-~w,cc> between bhe~ t, wo. 

Definigio,~ ~0. h grammar  G will be sa~d t.o have unambig;uou8 phrase st~'uc~ure 
l 

H, given ~)wo der iva tkms D. D '  from #,S # of a member  z of L, a~d  a ~ubstri~g x 

of z, x '  is a phra:~, of a,: of type  A w k h  respect, to D '  if a~*d m~ly if x" is a phrase of 

of t ype  A with resimet ~,a D. 

DefiniKon 1 1. A graramar  h~2s mtique p h r a ~  stg~acture if, give.~ ~ay  ~wo phrases 

in ~ sentence, ekher  they are d is jo int  or o~e is a par~, of the other,  

'rIiEORF~M [. I f  a grammar has u~rrdng¢au8 phrase structure, it haa unique 

phrase 8t:ruct~tre. 

P a o o F .  Let~ z~ a n d  z~ be. ~wo z u b p h r a a ~  o f  ~ se~tenee ( t h a t  is ,  a generable 

s t r i n g  on  Vr) z ,  a ~ d  ~ay x~ ,  x= are o f  W p e s  A~ a n d  A= w i t h  r e s p e c t  to  d e r i v a t i o n s  
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D, D'  of 9:. Now by unambiguity it may be assumed that D = D'. tf x~, ~ are 

disjoint there is nothing to prove. So pick a in bo~h xx and z~. (Caution: a refers 

not only to a member of V~. but to a part, icular occurrence of this member.) Now 

a is descended from an occurrence a of A~, and a is descended from an occurrence 

of A~. I t  is easy to see t~ow that. either 5 is descended from a, or c~ is descended 

from 5, or a = 5. Hence either z~ = x=, or z~ C x~, or :z:~ = x~. Q.E.D. 

Remark. Later an example will be given of a CF language that has no CF 

grammar with u~ique phrase structure. It. follows that in that case ambiguity is 

unavoidable. 

2. Principal Results 

LEMMA 1. Every CF-language L has a CF grammar G such that zf A ~ V~, and 

A ~ S then there exist terminal strings x, y and z, x not null, and at most one (~f y and 

z null, such that A ~ x and A -=, yAz  are rules of G. M(z'eover, i f  L has a CF g~'am- 

mar with unique phrase structure, then G cart be assumed to have unique phrase struc- 

ture. 

PROOF. If for some nonterminal A there is a terminal x such that A ~ x, then 

one adds the rule A --~ x. If  there is no such x, one eliminates A and every role in 

which A occurs. This does not reduce the generable Vr strings because if any rule 

with A on the right-hand side is used, then the result cannot lead to a Vr string. 

However, some nontermin,~l symbols may become terminal. Then one eliminates 

these also. This process must have an end because each time one eliminates at least 

one symbol. Finally, for every A C V~ except S one has a rule A -~ x, with x terminal. 

Now if thel~ exists an A for which there is no rule A --) ~A~o,2 with at least one of 

~ot, ¢,~ not null, then one eliminates A and for evelT ~tle of the form B --~ ,~A~2 and 

for every rule A --* ~b one replaces these two by the rule B --~ ~bq~2 (~1, ~2 may also 

contain A, in which case one repeats this process with B --+ ~b~o~), and finally one 

only has symbols A such that there exist x, ~,~, ~ with A --> x and A --~ ~,~A~2 as 

rules and at least one of ~ ,  ~ not null. But then one must Mso have terminal y, z 

so that q~ ~ y, ~ ~ z and not both y and z are null. So one adds the rule A ---+ yAz. 

This does not change the membership of L. in this entire process, a rule was never 

added that was not equivalent to a derivation. Hence, no new phrases were created 

and the new grammar must have unique phrase structure if the old one did. (If 

x~, x~ are phrases by the new grammar, then also by the old grammar they are 

phrases and then they must be disjoint or one is a part of the other.) Q.E.D. 

LE~,~MA 2. U a language L has a CF grammar, then it has a CF gra'~mar in which 

A =~ B is never true for A,  B in V~ .  

PaooF. Let us define A ~ B if A =* B and B ~ A. Replacing all the congruence 

classes by one element each, one gets a grammar G' in which A ~ B is a partial 

ordering of V~. Now, for evew minimal B in this ordering and every rule A --~ B, 

one eliminates the rule A -+ B and replaces it by the rules A ---* w whenever B --~ w 

is a rule. This would not create any more rules of the form A -~ C, since by mini- 
mahty of B, B ~ C (and hence B -~ C) is impossible. Now one has reduced the 

number of rules of the form C --~ D without changing L. One continues until all 

such rules are eliminated. Now, every rule that does not increase length will replace 

a nonterminal symbol by a terminal one and A =~ B is impossible. Q.E.D. 

Remark. The constructions of Lemmas 1 and 2 can be applied successively to 

obtain a grammar satisfying all the conditions stated in these lemmas. 

~!~iil ~ 
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2 . 1  COMMUTATIVE IMAGES OF C F  LANGUAGES 

Definition 12. Le t  J denote the nonnegative integers. Let jn  denote the direct 

p r o d u c t  of J taken n times. Then J~' is a commutat ive associative semigroup with 

ident i ty ,  under componentwise addition. (For example, in J~: (2, 3) + (5, 0) = 
(7, 3), etc.) 

A subset Q of J "  will be said to be linear if there exist members  a, ~: ,  . . .  , ~,~ 
of J'~ such tha t  

Q = {x Ix  = a 4- n:.8: A- . . .  + n ,~m,  n~ C J}. 

Q will be said to be semilinear if Q is the union of a finite nmnber of linear sets. 

Definition 13. Let  L be any CF language on the terminal symbols a: • • • a,~, Z.  
Define ~ from L into J'~ as follows: 

• (a:) = (:, ... o, o, o) 
• (a~) = ( 0 , 1 , 0 ,  . . .  0) 

¢(a=) = (0 ... 0, . . .  1) 
• (~) = (0 -.. 0, ".. 0) 
• (xy) = ~(x)  -t- ~ ( y ) .  

T h e n  ¢(x)  is called the commutat ive image of x and ~ ( L )  the commutat ive map 

of L.  (Note  tha t  • depends on the order of the a~ ; however, this fact  will be ignored.) 

THEOREM 2. Let G be a CF grammar generating the language L. Let ~ ( L )  be the 

commutative map of L. Then ~( L ) is a semilinear subset Q of J~ for the proper n. 

Moreover, a canonical description of Q in the form 

Q = Q : U Q ~ U . . .  UQ, ,  

where 

Qi = {x {x = c~s + n:~¢: + n2/3i2 -Jr " ' "  "4- rtk¢~ikj , n i  ~ J} 

can be found effectively from G. 

PaooF.  Let  V' be a subset of V. Consider the set L t of all members x of L such 

t h a t  in some derivation D of x, the members of V ' are precisely the symbols tha t  

are used. I t  is enough to find a canonical description for L',  since L is a finite union 

of such L' .  Obviously, L'  is empty  unless V' contains S .  Since no rule involving 

some symbol outside V' can be used in such a D, it can be assumed without loss of 

general i ty  tha t  V' is V. 
A t  this point, the  notion of a tree is introduced by means of an illustration. Sup- 

pose  one has the rules S ---> ABC,  A ~ aA, A --~ aa, B --+ ba, C ~ A B A .  Then one 

could have the derivation S --~ A B C  ----> aaBC --~ aabaC ---> aabaABA --> aabaaaBA 

aabaaabaA --~ aabaaabaaA. This could be writ ten diagrammatically as follows: 

S 

( T h e  different occurrences of a, b, c, etc., are numbered for convenience.) The 
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order h~ which the rules arc applied is not pre~;>erx'ed but nothing e-~...< ~h~1 i~ IosL 
(I t  is possible t;o define a t~:e as~ a~ equivakmee class of dedvat.io~s, bus. 'i~ ~h~ ea!-e 

int~tidvely obvious facts would have to be proved. Here, it is enoug}~ io ~4e I L a  
such ~ formal a,~d more rigorous approach is pos4dbte, ) Some ~o~io;>: ~r~,  i!tus ~ t e d  

here, 
SAia~, SB~ are c&~ms; SA ~}~ is ~/o/; al is desee~ded from A~ arid S bu~ :'~o~ from 

tq ; A~ is des~:erM( d from A a, herme A is de::~ eroded from itudf; 

i8 a, sul)trc{ aml :-;o i8 

a~ h~ 

but 

A~ 
/ 

is not. The string ~1,b(to.(,~,baaA. is O~e p'raJ~ct of the tree, 
Now, for every a in V,¢ we defi~m two eu~ts R~ grad 7%. ~ is sMd ,o be i~ R~ if 

(a)  e contains +~ a~d ~ is the o~ty ~mr~termi~M syrM~)l in v; arid (b) d+e~> is a tree 
with c~ at, the vertex such that  ~ is the product of the trim a,id uo 8ymbot oee'urs 

more than n times in a~w d~ain of the tree, where n is the ~mamber of eIeme~t,s in V. 
51% is defi.ed analogously exeept that eondRion (a) is replaced by the cow, didos, 

that  ~ be terminal. I t  is :dso requi~xd ghat every symbol of V appear ia ~,he ~.r~:; of 

condition (b).  
We dMm that them is o @  a fird~ :r~mnber of tre~s sa~iJyiag eoadRioa (b) ,  

since h:t aa~y such g~e ~he length of N~y dhai~ eafmot be g~~t.er thai~ the square of 
the m~mber of symbols in V. Hence R .  and T~ are fimte a~~d e~m be found effee° 

tively flx)m G. 
For each a~ let v, ~, va", . . ,  , v~ ~ be the veetom obtahmd by removing ~ from a 

member e of R.  and then taking the image ~mder ~, (See I)efinitio~l 13.) Let 

u~, . . .  , ~a be the imag~.s under el, of the member's of 7%. Set 

n~ , n /  , . * .  <~ J ,  ~ ,  a ,  ~ " " {5 V , d .  

Then~(L*) = Q, O Q= U . . .  O ( £ ,  
For, certainly, if some string y is in L ~ and a E e~, then a must oeeur somewi~ere 

in a t~e  for y. Then in the Naee whe~  ~ ocxa~ one t e n d  imbed (%r any ~:'~ that  

one pleases) a tree with a product string e, ~ E R .  and ~ ( e  - a)  = v~% Hence 

~l,(y) + v~" is Mso in ~(L'). 
On the other hand, if a string has a t~;e ~dth mm~ O~a~a n ~'s ia a chain then, 

%r some [~, one can find n ÷ t [~'s in a deseending seq,mnee & ,  ---  , 3~+~ such 
that  d l  of them occur in a chain which, mo~over ,  has the property that there is no 
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.... * ....... [ .laeap~J~e ia egu,~'ah~'na a~ a AnL~e-J{a& &n#~age mgd~do 
7eJgyTgg~dg~I ~o~g< 

Couom~.a~c{" "2. ke~ L be ant} O F  b<}nge~af~e ~a'n.d ea (ii V~, D+4~iea# a ~ a p  ~) ]>'ore 

. . . . . . . . . .  . .... . . -, {4xa;  + {TJ(J)+ TAe;~ ,#~er~ ex7~ 

Pm~om h is ea~+y to s~'o~t dmt< C} (L)  ~+A[J be a~ ~+emthm:~r ~,~b~+ef, of  ~hv i~ltvge.r~. 

s~eh tlm~. 7{ a q o,.l~, ~hen x + & {{ A , ,  Hem & is., of  corn%e, ~:m h'~{.egero "&Ne. m to 

be  b i ~ e r  ~h:m aH t.he eteram~£t~ of  ~he f in i te  ~ t ~  A~ ,  . .-  , A .  ~md t, he fi~f~ e t e m e ~  

of  A.+.a, - , .  , A . , .  I a k e  m t~"~ be ~he produe~ o f  a t  ~he 7L~ ainu :hi ,  . - .  ~ ,  ~he 

2.=2 [ N ~{ £'<lll~N"F ~ M I~t l ( t  t<JlT7 

T~{~:<<.m~;~0~ 3. 7'&:*'e e~)~& a C F - 4 a , g , ~ W ~  L ~eu<:h &aa no .. #r~tmmm" Se~r L aa~ 

J[a o lde r  I.o p rove  tm~)rem 3, we  ~.~.how. f i r~L t, haf, [he hmg~mge 

= ~s: ~:.',.',ab a ?> or  ~ = = a b  a b  , ~ m ~ e n ,  n , m , m .  ~:! d - . 1 0 1  

is CF .  For,  ~.'o~;~ider ~hr~ r~te:~: 

S ...... A B A --.* aAca, A *-.., al ia .  B .-., b,. B .... bB, 

5 - CD C -~+* bC6,  (]' -.-~ bD6,  D .- ~,  D --~ ~ff). 

T h e  te rmina l  ",tea~ce~daat~, o f  B have t:,he fbm~ F '  ~.~ > 0. "lTh~ u ,mm~al deg~e~d~mf,a 

~Jm te~mhmt de~eend lm~ f)f C l;JrlgiD{ ~ /:J+~t"D '~'. I t  k~ e ~ y  1;o ~e~:~ It.hal f4m,.~ nih~ 

general.e. L, 

Supl~~:~ ~,ht~A. L has ~ g r a m m a r  ~'ith umque {:)hr~':~e ~nmti l re~ [~y Imm.m~.~ I ~, 

r~'m'~" }'~' a~w.m~e{t ~.hat for every  A in g;,¢ the>ee exi.8~ n l le~  k o--- z, A -..- ¢IAz with 

z, y, z termi~al ,  ~ ~m~ ~mp~y aad+ a~ m{×%, oae  of  y a~d  z ao~ empty .  [~. m~y M~, 

t~] a&~'umed t ha t  evec¢ A in V~ is &~eeaded  from ~ bee~m:~e ~ he o~hem c~m~o~ eog'~- 

td[mt~- u~ L. 

"1'he inh~itSve idea behind the prg×~f is ~.~ . folows.  L c o ~ i a ~  preeh~ely ~he 8tri~:~g~s 

of  the £orm a~b~a~b ~ w i t h  eigher i = k or j =o l, or bath.  N o w  ~he strh~ga a%Sa~b ~ vAlt  
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have subphrases of the form aibJa ~, while the strings a4bJa~b j will have subphrases of 

the form biakb j. Hence the strings aibJa~b¢ must contain both and will therefore have 

overlapping phrases. This is the essence of the proof. The details follow. 

We claim that  there are only eight types of nonterminal symbols A which can 

occur in V: 

la. There exist x and y such that  A --~ z A y  is a rule 'and x = a "~, y = a "~', and 

no b's are ever descended from A. 

lb. Same as la  except that  there are b's descended from A and m ~ m' in at 

least one pair x, y. However, there is an integer 1A such tha t  in any string descended 

from A there are less than lab 's .  

2a. Same as l a  with a and b interchanged. 

2b. Same as lb  with a and b interchanged. 

3a. Whenever A -~ x A y  is a rule, x = y = a ~ for some m. There are b's de- 

scended from A,  but the number of b's in a string from A is bounded by lA. 

3b. Whene.ver A ---~ x A y  is a rule x = y = a ~ for some m. There are integers 

la , gA = g, fA = f such that  A --) a~Aa ~ is a rule; some string descended from A 

has lA b's; and if xby is a terminal string descended from A with at least lA b's, then 

xbb/y is also descended from A. 

4a. Same as 3a with a and b reversed. 

4b. Same as 3b with a and b reversed. 

PI~OOF OF CLAIM. First, it is easy to see that  for every A either A ~--~ x A y  im- 

plies x = a '~, y = am' for some m, rn' > 0; or A ~ x A y  implies x = b ", y = b "  

for some m, m' > 0. 

Anything else would contradict one of two requirements: 

(a) Every  sentence has exactly two groups of a's and two groups of b's. 

(b) Either the groups of a's are identical, or else tim groups of b's are. 

Now, if A --~ x A y  with x = a", y = am' with m ¢ rn', then A can oMy occur in 

the derivation of a string a~bSakbi. Now the number of b's generated by A must  be 

fixed. Otherwise one could not have matching of the groups of b's. Hence A is of 

type la  or lb. Now let us assume that  A --~ x A y  with x and y powers of a, and A 

is not of type la, lb  or 3a. I t  will be shown that  it must  belong to type 3b. I t  is 

already known that  if A ~ xAy ,  then x = y must be true. Also, all strings gene- 

rated from A paust have the form a%ka ''' where m - m '  is constant. 

Consider a string u descended from A which has more b's than the largest number  

occurring on the right-hand side of any rule, Then at  the time in the derivation of u 

when the first b is generated, there must~ be a nonterminal symbol B left, over. Now 

tha t  string has the form ato~byBOa t or a*~oBnbOa ~. (The existence of the a * at the two 

sides can be asstmmd because we could always have used the rule A --~ a:Aa ~ before 

starting.) I t  is easy to see that  if B --+ x B y  is a rule, then x and y must  be powers 

of b. Let xy  = b In. Let such an fB be chosen for each B with a rule B --~ x B y  at- 

tached to it and x and y powers of b. Now, in the string a*~ob~BOa z or aZwB~bOa ~, no 

a 's  could possibly come from ,7. Hence if u has the form zbz' one can also ge~ the 

string zbbIAz ' from A, where fA is the product of all the f~ taken above. Hence A 
is of type 3b. 

Types 2, 4 are handled in a similar manner. The claim is proved. 

PRooF oF THEOREM 3. Let p be a positive number divisible by  all the f x ,  g~ 

described in types 3b and 4b. Let  n / 2  be larger than all the l;~ described in the fore- 

going. Consider the string xo = a~+~b"a"+~b "+~. 
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Now 11o derivable string can contain more than three symbols of type lb or 2b. 

The string xc cannot have contained in its derivation any symbols of types la, lb, 

3a or 4b. On the other hand, not enough a's could come from type 2b or 4a. Hence 

there must have been an occurrence of a symbol A of type 3b, whose descendant is 
n ! 

a phrase of the form zb z .  If one applies the rule A --~ xAy enough extra times, one 

can get another string in which the phrase coming from A is of the form a%b~a'a p. 

This can be changed, as before, to aPzbPb~Pz'a p. Thus one gets the string xl = 

a~+2~b~+2~a~+2;b ~+2~ with the A-phrase containing at least a'b"+~'a p, and bounded 

on both sides by a's. Similarly, by duality between a and b, there is a phrase of xl 

containing at least bPa~+2% ~', and bounded on both sides by b's. But these phrases 
overlap, and yet one cannot include the other. 

Hence G cannot have unique phrase structure. Q.E.D. 

COROLLA.I~Y. L is a CF language for which there is no CF grammar with unambiguous 
phrase structure. 

PROOF. The proof follows immediately from Theorem 1. 

2.3 REbATION TO FA LANGUAGES 

Definition 14. A finite-state grammar G consists of a finite set S (called the 

internal states of G), a finite set W (called the vocabulary of G), two distinguished 

elements So and Sf of S and a subset R of S X S × W' (called the rules of G), 

where W' = W U {A} and A is the empty string. 

Remarlc. Here we depart somewhat from the 1959 Chomsky definition [4] in 

that we do not require a symbol to be emitted at every interstate transition. I t  is 

not difficult to show, however, that the difference is unimportant and that  the same 

class of languages is generated. 

Definition 15. Let G be a finite-state grammar. Then it will be said that the 

sentence x is generated by G if there exists a sequence (So, S1, x0), (S1, $2, xl) • • • 
(S,, ,  S f ,  x,~) of members of R such that x = x0x~ . . -  x~. The language generated 

by G is the set of all such sentences x. 
THEOREM. Every language generated by a finite-state grammar (FA language) 

is CF. 
:PRoof. The proof has been given by Chomsky [4]. 

THEOREM 4. There exists a CF language L such that given a grammar G' for 

an FA language L' with L'  ~ L, one can effectively find a grammar G" for an FA 
language L" such that L' ~ L" ~ L and L"  has infinitely many sentences not in L'. 

Before this theorem is proved, two definitions are given and a lemma is proved. 

Definition 16. A finite translator T consists of two finite sets V, V' (called the 

vocabularies of T),  a set S (called the internal states of T) and a certain subset R 

(called the rules of T) of S × V X S X V" × {0, 1}. Here V" = V' U {h} and A 

is the empty string. A member So of S is distinguished and called the initial state 

of T. 
Definition 17. Given a finite translator T = {V, V', S, R} and a sentence x = 

xi -. • x~ on V, ~ntenee z will be said to be a translation of x by T, if there exists a 

sequence 

(So, yl ,  S1, zi ,  @, (S1, y~, S~, z:, i~}, . . .  , (S~, y,+i, S,+l, z,+i , i~+l} 

of members of R such that  y~ = xt .  If y, = x~. and i, = 0, then y~+t = x,. ; other- 

wise y,+l = xj+~. Furthermore, y,+l = x,~, i~+1 = 1 and z = z~ .- • Z,+l (where 

the zi will, of course, be either A or members of V') .  
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LIi~,M~A 3. Let L be an FA la'a¢guage ~ a vocab~lar~t V wi& ~ra.~a,~ 0 = (V, 

ti~mv g mew&cr~ g L by T i~ an FA language L" ~n V' and a g r a m m ~ u  ~ (J" for L" 

can be f ~ . ~  effectively from G and T. 
Pm)o~< For dm 'vocab'uh~.w of G" take the ~.~t V'. Eor S" take a ~e~. of ordered 

triples (o., b, c), where a ~ S, b ({ Si and c ~ V or c = A, R" is defi~md a~ foilows: 
(a) Whenever (S~, 2f~, z) is a rule of G, x 5 V, and (h,  ;z; ~ ,  z, O) is. a ~ate of 

T w e  introduce the rule ((h, & ,  z), (/~, & ,  ¢), z} into R". 
(b) Wh(mever(S~, Sz,;c) is a rute of g, x % V, a~d(h,a'. ' ,  t~,z, t ; i s a m J e o f  

T we int,roduee the rubs ((h, S~ , x), (~, S~, y), z) into |U; %r eveo" y G g '  or 

y ..... A. 
(c) If ( & ,  S~, A) in a rule of G, then for every h we im.roduee the aries {(h, 

& ,  A), (h ,  S~, y), A) for every y ~! V' or y = A. 
We also i~tmdu(~ two raore states 1 a~d F m be the hfidat and ii~M states of 

G", and the rules (I, (t~, &~, y), A), whore y ~ V' or y = A, and ((< S / ,  X), F, A), 
where So, S~ are the iuitial and final states of G, t is any state of T a~:~d g<~ is the 

itStial stat*e of T. 
Now it is caw to see that G" produces exacdy the tra~slations of senter~ees pro- 

duced by G, Cousider the %llowi~g eases: 
(a) G in i~ state S~, moves to state S~ and produces x. The trm:~slator T in s~,te 

t:~ t~anslates x as z and the rule used is (h,  x., h ,  z, 0). Then, eorrespo~di~@y, G" 
iu state (h ,  & ,  x} produces z and moves go suite (h,  & ,  z). Thi~ eontim.~es until 

ease (b) is obtah~ed. 
(b) g is in state & ,  moves to state &, and produces z. The translator T in state 

h tr~mslates x as z and the, atle used is (h,  x, ~:, z, 1}. This mea~'~s, then, *hag the 

translator in finished tranmating x~ The~ G" i~ state (h ,  & ,  x) produces z m~d may 
move to (ta, S~, y) for a~N y. Thus it is ready to trm~slat~.) the ~mx~ symbol that  G 

may produce. 
(c) G moves from & to & m~d produces aothi~g~ The~ G" moves from (h, S~, A) 

tO (h,  S~, y) h)r a~ty y. The traaslamr is tmaffeeted. 
Thus the second and third parts of the stat(vs of G" trace out the states of G ~md 

symbols pmdueed by G, while the first part trfmes out the reaction of T. 
P~oo~' OF ".['m~oaEu 4, The language L ° = {a"b%' tn ,  m ~ J} can be easily 

shown m be CF but not FA. (See Chomsky ~4].) Cow,sider the language L = 
[A~B"A"], where each A has the form cdc fer some ~ > 0. Each B has the form 

df~d for ~:}me k > 0. Cousider the tmt:~slator 7' defined by V = {a, b}, V' "= {e, d, 

e,f}, S .... (,%, & ,  & ,  & ,  &),  & '= N ,  a~d the rules 

(S<),a,&,c,O), (S~,a,&,e,O), (&,a,&,e,O),  (& ,a ,&,c ,  t3. 

( & , b , & , d , O ) ,  ( & , b , & , f , O ) ,  ( S a , b , S ~ , f , O ) ,  ( 8 ~ , b , & , , d ,  1). 

The language L is the map of L ~ m:~der T. 
" ' " , { a , b } ,  S { & ,  &, &} On the other trend, define T by l . . . .  [c, d, e, f} V" . . . . .  

and the rules 

( & , c , & , a ,  1), ( & , e , & , A , t } ,  ( & , c , & , , a , l > .  

( S ~ , d , S ~ , b , l ) ,  ( S ~ , f , & , A ,  1 ) ,  ( S ~ , d , S ~ , A , I ) .  

Then L ° is the map of L under ~ .  
~ ~ ~ , --. L e. Now consider any FA language L' { L. [he~ T(L  ) C T(L)  = But T(L ' )  

is FA ~md L ° is not. Hence L ° must contain a stri~g x not in T(L ' ) ,  A grammar for 
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for T ( L ' )  U {z} c4a be fo~md ~F~ec~ive]y. (L '~ o t ~ o ~ d y  i ~  a ~ i o ~ i  procedure 

for n ieml :~hip+ So do FA languages, We ~ske the firs't :~; i~ L + +.+ T ( L  ~) +rod era> 
st re.let the g~mm~+r, using s ~+d the g:a~,+m~a.:r for T(L')+ ) 

But  if L ~' is the h ~ g u i g e  ge~ierated by G ~,, the~'l L +" D 7 ' (L ' ) ,  Heaee T ' ( L  +>') 
D T ' T ( L ' )  D L' arid, ia fi~eL must co+:,taia the iafi~litely m~my 8eage+~ce~ obtMaed 
from z which caaaot  :be i~ L'+ Q+E,D. 

Definit ion I8. A +yg~ I gm.mm~r G is said to be of type I,:~ if there exists a hmc+ 
tioga f from V i~to tt~e ~o+megsdve iagege~> suct~ ~t~++~ if ~o+~,4 + ..... ~ ¢  is a r'u.le with 

2 iu V, the~ f(g~) < f ( @ .  
D~finiden t9. A tyga:~ 1 g rammar  is said ~;o be of Wpe 1~ if daere ar~, +~e rules ef 

the form e a t  ..... f [ @  w'igh A ,  B (~! V,++ 

C(mOLL<RY+ A @pe t~ f]rammar+ 'i.s ej  @'pc 1 ~ + 

Note  that. il' G is of W ~  ~, 1~, x ~.{. L, D is a derivation+, of % a~ is a phrase of z of 
type  A with respec~ to D sad  xl is a phrase of :~ of {~y> B wid~ ~aj['~et~ to D+ th(m 

A = B, For  if A ¢ B+ ghe~ we would buve aA<+ :=+' rd~++e or +~B++ ,~,~ e~Ae N r  seine 

c,, co+ But  this is impossible+ 
[~emark, Ig is ~log dif~icult to show ghost them e>dst a gype 1 g ~ m m a r  G sad 

stdngs eA, B¢, eBA~ such thag g, ABe =+ eBA,¢ Such dt~u~:+tie~ are ebvie~ly  

+'tmfertmlate" from a gmmma~,ieai poia+ ~>}+ view, +rod +he feItewi+~g t] eere+~:+ ++hews 

+..his does +~o+ h a ~ x m  i+:l Wpe ia  grammars+ 
T:+~x>aEx~ 5. Let L be a type, 1 a gang~geg#~ ~ e r a g e d  b~'/a @pc Ia  ~a~m++'v G+ Let 

+~ and ¢' be two +~tinct etr,~ag+ on V a+~+h O+ag ~ :=> ¢+ TMn &+ cammu~aE*,e i,n~ea qf 
+0 and + +:+re dizti'neL ( S t  dvfin+ion i8+) 

P~oov+ E x t ~ M  the fmietioa f ef  Ek+@fi+,ioa 18 m aii st, ring+ r m g  by gsNag 

f (vav)  = f(~o+) .... f(o~) + f(g~), *17he~ f caa l:~ tt~oughg of a+ g hmct~i(m ea  +#(L)+ 

Bug if +0 a,~d ¢. have the same l+,,~:~g'ti~ arid e +++ ¢+ ~,:hea f(+~) > f(¢,)+ He+ice if ~ and 

¢, have  the same ler~gth, e ~ ¢ a~d e =,  ~, t+t~ea f ( e )  > f (~)+ He~iee u~)(~) ¢ @@)+ 

Q,E.D, 
THso+~s,~+ 6. f@e;q] t~fpe 2 ~a.nf~,a~]+, .is a @pe ls  b~+t##~e. 

Puoos+ T h e o ~ m  6 is proved by Lemma 2+ QaE+D. 
THsonmm 7+ +'he+++ a're of  type I s  v+#+icA + e  net  ef  type 2+ 

Pi+OOF: l Coi~ider the rt~tee 

(a) S -'+ c,Xd 

(b) X +~ C X X X X X D  
( X X D X X  -+ X X X E , X X  X X D X d  ...... X X X E X d  

1 { E X X  +,* E X D X  +ENd ++ EXDd 
l + X~+ D +'+ X X X X X D  

e , 

I X X C X X  ++ X X ~ X X X  e,XCXX +.+ c X P X X X  

2 { X X F  ~ X C X F  cXF + + ,  cCXP 

I. C X F X  +,+ C X X X X X  

( t O  -+  +++: 

SeX --+ ++ 
a + eX - ,  + 

There ,+'as an error ir~ the edgi~aI pro.of which was poir~+.ed o+Jt, by severM people+ 
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Now notice that  X can turn terminal only if preceded by c or e; similarly, C a~d 
D can turn terminal only in a very limited way, when they have moved to the 
extreme left or right, respectively, Careful analysis shows that  the rules of group 1 
allow a D to move right over an X only by quintupling it. Similarly, a C can move 
left across X's, quintupling them. But  a D and C cannot cross; hence, given two 
applications of rule b, one of the applications must occur "within" the other, or 
else the C or D will get "stuck" and not lead to a terminal string. I t  follows that  all 
terminal strings have the form 

# e "+le 5~d ~+1 ~ ,  n > _ 0 .  

Furthermore, all of these strings can be generated, if one begins with a derivation of 
/~ c ( C X X ) "  X ( X X D )  ~ d ~ and moves the C's and D's to the ends. 

This language is not CF, by Corollary 2 to Theorem 2. Q.E.D. 

3. A Remark on the Reduction of CF Grammars to a Question Regarding Free Rings 

Let G be a CF grammar with vocabulary V. Consider the free ring R generated 
by V. Define an operator O over R as follows: 

(a) If a E Vr, O ( a )  = a .  

(b) If A E VN and A -~ ¢o~ are the rules associated with A, then 
O(A) = . ~ i .  

(e) 0 ( ~ ' )  = 0(~)0(~' ) .  
(d) 0(~+~')  = 0 ( , )  + 0(~'). 
Then the generable strings are precisely the ones that  appear as terms in some 

expression 0 ~ ( % S ~ ) for some n. 
For example, let V = {/~, a, b, A,  S} ; S --~ A S ,  A -*  ab, A ~ cd, S --~ aAa. 

Then 

O ( S )  = A S  + aAa 

O( A ) = ab + cd 

O ( a )  = a, O ( b )  = b, 0 (  ~ ) = /~. 

Now 

02( $S~/ 

= ~ A S / ~  W ~ a A a ~ ,  

= ~ a b A S #  + ~ c d A S / t  + /~abaAa~ + /~cdaAa$ 

W ~aaba/ /  W ~ a e d a ~ ,  etc., 

and every derivable string will eventually appear on the right-hand side. Every 
sentence will be always on the right-hand side after a certain point. (Note: 0 is a 
homomorphism of R into itself. Moreover, any homemorphism tha t  fixes Vr comes 
from a CF grammar.) 
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