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Abstract. In this report, certain properties of context-free (CF or type 2) grammars are
investigated, like that of Chomsky. In particular, questions regarding structure, possible am-
biguity and relationship to finite automata are considered. The following results are presented:

(a) The language generated by a context-free grammar is linear in a sense that is defined
precisely.

(b) The requirement of unambiguity—that every sentence has a unique phrase structure—
weakens the grammar in the sense that there exists a CI langnage that cannot be generated
unambiguously by a CF grammar.

(¢) The result that not every CF language is a finite automaton (FA) language is improved
in the following way. There exists a CF language L such that for any L’ ¢ L,if L' is FA, an
L" G L can be found such that L” is also FA, L’ C L” and L” contains infinitely many
sentences not in L',

(d) A type of grammar is defined that is intermediate between type 1 and type 2 grammars,
It is shown that this type of grammar is essentially stronger than type 2 grammars and has
the advantage over type 1 grammars that the phrase structure of a grammatical sentence is
unique, once the derivation is given.

1. Preliminaries

Definition 1. By a phrase-structure grammar G is meant a set V of symbols
and a set R of rules B; of the form R; : w; — 4;, where w; and %, are strings (pos-
sibly null) composed of members of V.

Definition 2. The grammar G will be said to be of type 1 (a context grammar)
if all the rules are of the type: R: = @id; — o, where A; are individual
symbols of V; ¢;, w;, ¥ are some strings on V; and w, are not null. It will also be
assumed that S = A, for at least one 1.

Definition 3. A type 1 grammar G will be said to be of type 2 or context free
(CF) if all the ¢, , ¥; as given in the foregoing are null.

Definition 4. If G is a type 1 grammar, then by Vy is meant the subset {4}
of V. By Vzis meant V—Vy (T means terminal; N means nonterminal).

Convention 1. Hereafter, when talking about type 1 grammars we will use the
following convention. Capital letters denote strings on Vy, lower-case letters
denote strings on Vi, and Greek letters denote strings on V. Early letters of the
alphabet denote individual symbols; late letters denote arbitrary (possibly empty)
strings. The boundary symbol #% will always belong to V1 (although it does not
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belong to the slphabet). In discussions of type 2 grammars, this symbol will often
be omiited,

Seversl resulis from papers by Chomsky and others [2-4] will be wse
this report does not presuppose aoquaintanes with those papers, they
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ringgs will be the set of ¥ 8 & -generable strings. A member of
il generable.

1"10 set of ;g»m %ﬁmi
this set will
Definttion 6. The language L

be ealle

generated by G will be the set of those strings on
V' that are generable strings will be referred 1o as sentences of G or L. Thus
8 sentence 18 & gene string which contains no nonterminal symbels, A laoguage
pe X

58 otherwise speci-

Note. Heveafter, all gravamars will be type 1 grammars unl
fed, For example, the 4., w, of Definition 7 refer to j)i’f‘il‘iiﬁi(m

Definition 7. {R;, 7) will be said to be » p-derivation of ¢ ii v = g abing
this 4, is the jth svmbol of ¢, and ¢ = e . The members of w; in @ will be
aaid 1o be descendents of 4, Chere A, refers not only 1o the pariieudar member of
Vo but alse 1o the partioular ocourrencs of it in ») with vespect to (K, 7). The
members of g, 2., ¥, 7 in ¢ will be said to be deseendenia of their counterparts
of ¢ with r i (K, 7).

i)e‘*ﬁm’lmﬁ B0 s (B, did, o0, (B, Juy will be said 10 be o pederivation
of ¥ if there exists o sQuUenct ¢ = wo, ©1, "7, e = ¢ siech that (B, ,Je) 8 a
e devivation of ¢, . 8 in ¢ will be gaid 10 be a descendent of a in o with respect
to 12 there exist o = oy, -0+, me = B such that o 8 o deseendent of wu. with
respect 1o { K., , J1).

Definttion 9. Let ¢ be s generable string and ot ¢y be o substring of ¢ Then ¢
will be said to be a phrese of ¢ of type 4 with respet 1o D, where [ =
(R d1h, -, (B, s Ju), i there exisia n corresponding sequence of strings #85§ =
W, w1, 7, ws = @ bl an ocourrence 4, of 4 in some W such that o1 s the set
of all descendanis in ¢ of this 4, in o with respect to the derivation D' (Iz?mn ,
Fest) s o (Ry, Ja). We will say “g is a phrase of ¢ of type 47 if i;h-ﬁ,m exists o
D as in the foregoing,

Rmmwig If two oeourrences & and § of symbols in a string » belong 1o the same
phrase, then so do al! the ccourrences between thess two.

Digfinttion 10, A gramumsr (J will be said 1o have unsmbiguous phrase aﬁ;mmtum
if, gwe*u two derivations D, D" from #8# of a member z of L, md # substring o’
of z, # is a phrase of z of type A with respect to D' if and only if z' is n phrase of z
of type A with respect to D

Definition 11. A gramrase hos unigue phrase structure i, given any two phrases
in a sentence, either they are disicint or one is a part of the other.

Teeonem 1. If a grammar has unambiguous phrase struchure, 4t hos wndque
phrase structure.

Proor. Let z and z be two subphrases of s sentence (that is, a generable
string on Vr) z, and say o, 2, are of types Ay and A, with respect to derivations
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D, D' of z. Now by unambiguity it may be assumed that D = D', If z,, z, are
disjoint there is nothing to prove. So pick o in both z, and z.. (Coution: o refers
not only to a member of ¥V, but to a particular cecurrence of this member.) Now
a is descended from an oceurrence o of Ay, and a is descended from an oceurrence
B of Ay, It is easy to see now that either g is descended from o, or « is descended
from 8, or @ = B. Hence either 21 € 2y, or 2 C 21, or & = 2. Q.E.D.

Remark. TLater an example will be given of a CF language that has no CF
grammar with unique phrase structure, It follows that in that case ambiguity is
unavoidable,

2. Principal Results

Lemma 1. Every CF-language L has ¢ CF grammar G such that <f 4 <V, and
A # 8 then there exist terminal strings x, v and z, T not null, end at most one of y and
z null, such that A — x and A — yAz are rules of G. Moreover, of L has a CF gram-
mar with unique phrase structure, then G can be assumed to have unique phrase struc-
ture.

Proowr. If for some nonterminal 4 there is a terminal z such that A = x, then
one adds the rule A — 2. If there is no such z, one eliminates 4 and every rule in
which A occurs. This does not reduce the generable V; strings because if any rule
with A on the right-hand side is used, then the result cannot lead to a V' string.
However, some nonterminal symbols may become terminal. Then one eliminates
these also. This process must have an end because each time one eliminates at least
one symbol. Finally, for every 4 € Vy except S onehasarule A —z, withx terminal.
Now if there exists an 4 for which there is no rule 4 — ¢ de: with at least one of
w1, ¢z not null, then one eliminates 4 and for every rule of the form B — ¢1d s and
for every rule A — ¢ one replaces these two by the rule B — oibws (@1, @2 may also
contain A, in which case one repeats this process with B — gwben), and finally one
only has symbols 4 such that there exist z, ¢1, @2 with A — 2 and 4 — g1 Ag, as
rules and at least one of ¢, ¢o not null. But then one must also have terminal y, 2
80 that g1 = ¥, @9 => 2z and not both y and 2 are null. So one adds the rule 4 — ydz.
This does not change the membership of L. In this entire process, a rule was never
added that was not equivalent to a derivation. Hence, no new phrases were created
and the new grammar must have unique pbrase structure if the old one did. (If
Z1, 3 are phrases by the new grammar, then also by the old grammar they are
phrases and then they must be disjoint or one is a part of the other.) Q.E.D.

Lemma 2. If @ language 1 has a CF grammar, then it has a CF grammar in which
A = B is never true for A, Bin Vy.

Proor. Let us define 4 = Bif A = B and B = A. Replacing all the congruence
classes by one element each, one gets a grammar G’ in which A = B is a partial
ordering of Vy . Now, for every minimal B in this ordering and every rule A — B,
one eliminates the rule 4 — B and replaces it by the rules A — @ whenever B — w
is a rule. This would not create any more rules of the form 4 — C, since by mini-
mality of B, B = C (and hence B — () is impossible. Now one has reduced the
number of rules of the form ¢ — D without changing L. One continues until all
such rules are eliminated. Now, every rule that does not increase length will replace
a nonterminal symbol by a terminal one and A =» B is impossible. Q. E.D.

Remark. The constructions of Lemmas 1 and 2 can be applied successively to
obtain a grammar satisfying all the conditions stated in these lemmas.
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2.1 CommuraTive IMaces oF CF LANGUAGES

Definition 12. Let J denote the nonneg@hve integers. Let J™ denote the direct
product of J taken n times. Then J* is a commutative associative semigroup with
identity, under componentwise addition. (For example, in J*: (2, 3) + (5,0) =
(7, 3), ete.)

A subset Q of J* will be said to be linear if there exist members «, 8, - - - , B
of J» such that

Q=1l{zlz=a+ b+ + %, n € J}.

Q will be said to be semilinear if Q is the union of a finite number of linear sets.
Definition 13. Let L be any CF language on the terminal symbols a; « -+ @, , ¥.
Define ® from L into J" as follows:

Pla,) = -0,0,0)
P(ay) = (0 1 0, - 0)
®(an) = 0 --- 0,' 1)
S(%) = (0---0,---0)

®(zy) = 2(2) + 2(y).

Then ®(x) is called the commutative image of z and ®(L) the commutative map
of L. (Note that ® depends on the order of the a; ; however, this fact will be ignored.)

Tuworem 2. Let G be a CF grammar generating the language L. Let ®(L) be the
comanutative map of L. Then ®(L) is a semilinear subset Q of J* for the proper n.
Moreover, a canonzcal description of Q in the form

Q=Q1UQ2U"' UQm
where
{z|z = aj + mBj + 1By + -+ 4 MyBis; , i € J}

can be found eﬁectwely from G.

Proor. Let V' be a subset of V. Consider the set L of all members z of L such
that in some derivation D of z, the members of V' are prec1sely the symbols that
are used. It is enough to ﬁnd a canonical descrlptlon for L', since L is a finite union
of such L. Obviously, L' is empty unless V' contains 8. Since no rule involving
some symbol outside ¥’ can be used in such a D, it can be assumed without loss of

generality that VisV.

At this point, the notion of a tree is introduced by means of an illustration. Sup-
pose one has the rules § — ABC, A — a4, A — ag, B —ba, C — ABA. Then one
could have the derivation 8 — 4 BC — aaBC — aabaC — aabaA BA — aabacaBA —
aabaaabaA — aabaasbaaA. This could be written diagrammatically as follows:

S

\\\p
/1

/\ \ A /\ ay

(The different occwrrences of a, b, ¢, ete., are numbered for convenience.) The
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rved but pothing e

order in which the rules are applied is not pr
{1t is possible to define & tree a8 an equivalence ¢
intuitively obvious facts would have to be prove
such a formal and more rigorous approsch is possible
here,

SAwm, SEy are chaing; SAb s not; ay is descended from Ay and 5 but not from
By s Agis descended from A, henee A is descended from itself,

3

(528

is a subtree and 50 18

bt

i not. The string asboasbasd is the product of the tree

Now, for gvery a in Ve we define two sels B, and 7, . » is sald w be in B,
(1) ¢ contains a and « is the only nonterminal symbol in ¢; and (b) there is a tree
with « at the vertex such that ¢ is the product of the tree and no symbol oocurs
more than » times in any chain of the tree, where 2 is the number of elements in V,

T is defined analogously except that condition (s} is replased by the condition
that ¢ be terminal, It is also required that every symbol of V appear in the tree of
condition (b},

We claim that there is only a finite number of trees satisfying condition (b},
gince in any such tree the length of any chain cannot be greater thap the square of
the number of symbols in V. Henee R, and 7, are finite and ean be found effec-
tively from (.

For each a, let 1 " -, »,* be the vectors obtaived by removing o from a
member ¢ of B, snd then teking the iroage under $. (See Definition 13.) Let
U, ++ -, U be the images under ® of the members of Ts . Set

#
Q= {z]2 = w4+ + b+ b e

’ - » Jr——
iy M, o £, w g £ Vil

Then ®(L') = ¢ UQU ... Ug,.

For, certainly, if some string y is in L' and « € vy, then a must ocour somewhere
in a tree for y. Then in the place where o oceurs one could imbed (for any v, that
one pleases) a tree with n product string ¢, ¢ € . and #{¢ — «) = »". Hence
B(y) + v is also in (L),

On the other hand, if a string has & tree with more than n a's in a chain then,
for some f#, one can find n -+ 1 s in a descending sequence 8, -+, Bap such
that all of them oceur in a chain which, moreover, has the property that there is no
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3 s from V., How
art from 8, there must ?mf ) i*h@iw ol i, 1 € ¢ % n
the new tree cont 1 the members of V1 the old eoe did. This pros
Houed unnl oue hes o tree in which any <%mw has, ab most, B osourm
. and s produet mast be s member of Ty . QLB
werse of Theorem 2 13 easy 1o verify, me;ma% 12 and 4, bave the stated
form, let u,, ;. -+, Yo, be strings whose nages under € are a;, By, - .

B, The

sy bl

ol

=3

genemate o bogusge L such that $(L) = . These rules in fact constitule » finite-

giate {type 3) grammar, in the sense defined in what follows. Thus one has:
Corovvany 1. Every OF lunguage 1s equivolent lo o finile-siale language modulo

permaiclions.
{‘Ii’wa:w LAK

Agy 855 m 154957,

{1 s’f wid owly

W

oW, Ay, e m &Mz mgxg gf #woom, Bk
{mwﬁ m ) for some i,

Paoor, It s easy 1o wee that H(L) will be s semilinesr subsel of the integers,
Let Ay, oL 4, A, oo-, 4, be inenr sete whose union B s Hore we as-
sune that Ay - 4, are finlie snd A, -+ 4, have sk o ssllost veotor & # U
sach that if 2 € 4y, then z -+ 5 € A, . Here & s, of course, an integer. Take m to
be bigger than sll the @i@vmum of the findte seta Ay, -, A, soal the fiest clements
m’ lmx e Ay ’i %M m: {0 ?}@* the product of oll the 8, nod »y, - 0y, the
s appenring among A, 0, Ay

g:j T u Py

#3 03

A vt

Ixmmnesre Ammiouiry
anonsst 3. There epists o OF Donguage L such il wo OF grommer for 1 hos

wmagus phrose srusiinre

in onler to prove T hmm,szz B, we show, firel, that the longuags

L= lxlz = ab"d"b" or z = a"b"a"b™, somen, n',m, m € J — (0]}
s OUF, For, congider the rules;
S AlE A gba, A -saBy, Hesb, B bR,
Hon s 50b, s B, Do g, [h e gl

The terminal descendants of 8 have the lTorn 8%, 5 > 0. The tesminal deseendanis
of 1 have the form o', n > 0. Hence the terminal descendants of 4 must be o”be™;
the terminal {Ewwmﬁzmm of C must be b™a™b™. It is easy 10 see that these rules
generale L,

Suppose that L has o grammar with upigus phrase strocture. By Lemma 1 i
may be assumed that for every 4 in Vi there exist rules 4 — 2, 4 - ydz with
x, ¥, z terminal, 2 ot erpby wod, ab roost, one of ¥ and 2 oot smpty. 16 may also
be assumed that every 4 in Vi s desconded from. 8 beesuse the others cannot eon-
tribute to L,

The miuitive z»s;im behind the proof is as follows. L contadns precissly the 5&?&:%3
of the form a'd'a"b’ with either i = k or § = I, or both, Now the strings a'b'a’’ will
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have subphrases of the form a'b’a’, while the strings a’b’a"b’ will have subphrases of
the form b’a*b’. Hence the strings a’b’a’b’ must contain both and will therefore have
overlapping phrases. This is the essence of the proof. The details follow.

We claim that there are only eight types of nonterminal symbols A which can
oceur in V:

la. There exist x and y such that 4 — zdy isarule andz = ¢”, y = ¢, and
no b’s are ever descended from A.

1b. Same as 1a except that there are b’s descended from 4 and m = m  in at
least one pair 2, y. However, there is an integer [, such that in any string descended
from A there are less than I, b’s.

2a. Same as la with ¢ and b interchanged.

2b. Same as 1b with ¢ and b interchanged.

3a. Whenever A — 2zdy is a rule, * = y = o™ for some m. There are b’s de-
scended from A, but the number of b’s in a string from A is bounded by I, .

3b. Whenever A4 — zAy is a rule x = y = o™ for some m. There are integers
la, ga = ¢, f4+ = f such that A — a‘Aa’ is a rule; some string descended from A
has 1, b’s; and if by is a terminal string descended from A with at least [, b’s, then
zbb’y is also descended from A.

4o, Same as 3a with ¢ and b reversed.

4b. Same as 3b with a and b reversed.

Proor or Cramm. First, it is easy to see that for every A either A = zdy im-
plies = a”, y = a™ for some m, m" > 0; or A = zAy implies z = b™, y = b™
for some m, m > 0.

Anything else would contradict one of two requirements:

(a) Every sentence has exactly two groups of a’s and two groups of b’s.

(b) Either the groups of a’s are identical, or else the groups of b’s are.

Now, if A — zAy with z = o™, y = a™ with m » m/, then 4 can only occur in
the derivation of a string a'b’a*b’. Now the number of b’s generated by 4 must be
fixed. Otherwise one could not have matching of the groups of b’s. Hence A is of
type 1a or 1b. Now let us assume that 4 — xAy with z and y powers of a, and 4
is not of type 1a, 1b or 3a. It will be shown that it must belong to type 3b. It is
already known that if 4 — xAy, then © = y must be true. Also, all strings gene-
rated from A must have the form a™b*a™ where m—m’ is constant,

Consider » string u descended from A which has more b’s than the largest number
occurring on the right-hand side of any rule. Then at the time in the derivation of u
when the first b is generated, there must be a nonterminal symbol B left over. Now
that string has the form a'wbnBéa’ or a'wBnbda'. (The existence of the @' at the two
sides can be assumed because we could always have used the rule A — a'Aa’ before
starting.) It is easy to see that if B — xBy is a rule, then z and y must be powers
of b. Let zy = b'®. Let such an f» be chosen for each B with a rule B — zBy at-
tached to it and z and y powers of b. Now, in the string a‘wbnB6a' or a'wBybba’, no
a’s could possibly come from . Hence if » has the form zbz" one can also get the
string 2bb’42" from A, where f, is the product of all the fs taken above. Hence A
is of type 3b.

Types 2, 4 are handled in a similar manner. The claim is proved.

Proor or THEOREM 3. Let p be a positive number divisible by all the f., ga
described in types 3b and 4b. Let n/2 be larger than all the I, described in the fore-
going. Consider the string z, = """ 775" .
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Now no derivable string can contain more than three symbols of type 1b or 2b.
The string z. cannot have contained in its derivation any symbols of types 1a, 1b,
3a or 4b. On the other hand, not enough a’s could come from type 2b or 4a. Hence
there must have been an occurrence of a symbol 4 of type 3b, whose descendant is
a phrase of the form 2b"2’. If one applies the rule A — .4y enough extra times, one
can get another string in which the phrase coming from 4 is of the form a’zb"a’a”.
This ean be changed, as before, to a’zb”b""2'a’. Thus one gets the string 2, =
o g T with the A-phrase containing at least a”b""*a”, and bounded
on both sides by &’s. Similarly, by duality between a and b, there is a phrase of z;
containing at least b0 **7b”, and bounded on both sides by b’s. But these phrases
overlap, and yet one cannot include the other.

Hence G cannot have unique phrase structure. Q.E.D.

Cororrary. L is a CF language for which there ts no CF grammar with unambiguous
phrase structure.

Proor. The proof follows immediately from Theorem 1.

2.3 REerLaTioN TO FA LancUuagEs

Definition 14. A finite-state grammar G consists of a finite set 8 (called the
internal states of (), a finite set W (called the vocabulary of @), two distinguished
elements S; and Sy of S and a subset R of § X § X W’ (called the rules of @),
where W' = W U {A} and A is the empty string.

Remark. Here we depart somewhat from the 1959 Chomsky definition [4] in
that we do not require a symbol to be emitted at every interstate transition. It is
not difficult to show, however, that the difference is unimportant and that the same
class of languages is generated.

Definition 15. Let @ be a finite-state grammar. Then it will be said that the
sentence x is generated by G if there exists a sequence (Sy, Sy, Zo), (81, 82, @1) - -
(S, , S;, x2) of members of R such that = xt; « - - @, . The language generated
by @ is the set of all such sentences x.

TuroreMm. FEvery language generated by a finite-state grammar (FA language)
is CF.

Proor. The proof has been given by Chomsky [4].

TueoreEM 4. There exists a CF language L such that given a grammar G for
an FA language L' with I < L, one can effectively find a grammar G” for an FA
language L” such that L' C L” < L and L” has infinitely many sentences not in L.

Before this theorem is proved, two definitions are given and a lemma is proved.

Definition 16. A finite translator T consists of two finite sets V, 7’ (called the
vocabularies of T), a set S (called the internal states of T') and a certain subset R
(called therules of T) of S X V X S X V7 X {0,1}. Here V” = V' U {A} and A
is the empty string. A member S; of S is distinguished and called the initial state
of T.

Definition 17. Given a finite translator T = {V, V', S, R} and a sentence z =
Z - Tnon V, sentence z will be said to be a translation of z by T, if there exists a

sequence
<SO y Y1, Sl; 21, il)) <Sl » Y2 Sz, 22, 7:2>, T (Sn y Yni1, Sn+1: Znil, in+1>
of members of R such that y; = z1. If y; = z;and 4, = 0, then yu = z; ; other-

wise Yiq1 = Fjq1. Furthermore, Yn41 = @m, toya = 1 and 2z = 21 - -+ 2,1 (Where
B . ry
the z; will, of course, be either A or members of V).
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Lisma 3. Let L be an FA longuage on a vocobulary Vo with grammar G = {V,
S, Ry Let T == (V, V', 8y, Ry) be a finite-state translator. Then the set of all lransio-
tions of members of L by T 1s an FA language L” on V' and a grammar G7 Jor L7
can be found effectively from G and T

Proowr, For the vocabulary of ¢ take the set V. For 87 take a set of ordered
triples (o, b, ¢), wherea € 5,0 € S;and ¢ € Vore = A R” s defined as follows:

(a) Whenever {8y, 8z, zyisaruleof G, 2 € V,and (4, 2, 62, 2, ) s u rule of
T we introduce the ride ({4, 81, 20, {le, 51, z), zy into R”,

(b) Whenever {8y, Sx, z)isnruleof G,z ¢ V,and (b, 2, L, 2, 1) s a rule of
T we introduce the rules (&, 81, z), (s, 82, y), ) into B for every y £ V' or
¥ o= A

(¢) If {8y, Sz, A) is a rule of G, then for every 4 we introduce the rules {{4 ,
Si, AY, {, Se, ), A) forevery y € V ory = A

We also introduce two more states J and F to be the initial and final states of
7, and the rules {/, {to, 8o, ¥), A), where y & Viory = &, and {{, Sy, A), F, A),
where S, 8, are the initial and final states of G, t is any state of T and /5 is the
initial state of 7.

Now it is easy to see that G” produces exactly the translations of sentences pro-
duced by . Consider the following cases:

(1) G isinstate 8, moves to state Sy and produces z. The translator T in state
4, tesnslates z as z and the rule used is {6, z, &, 2, 0). Then, eorrespondingly, ¢7
in state (&, Si, z) produces z and moves to state {&, Sy, x). This continues nntil
ease (b) is obtained,

(b) G isin state Sy, moves to state S; and produces . The translator T in state
t, translates ¢ as z and the rule used is (L, #, &, 2, 1). This means, then, that the
translator is finished translating o, Then G in state {4, 81, ) produces z and may
move to {tz, 81, y) for any y. Thus it is ready to translate the next symbol that G
may produce.

(¢) G moves from Sy to S; and produces nothing. Then " moves from Uy, 8, A
to (b, Sy, y) for any y. The translator is unaffected.

Thus the second and third parts of the states of G trace out the states of 7 and
symbols produced by G, while the first part traces out the reaction of 7.

Proor oF Turorem 4. The language L° = {a"b"a" | n, m € J} can be easily
shown to be CF but not FA. (See Chomsky [4].) Consider the language L ==
{A"B™A"}, where ench A has the form cé’c for some k > 0. Bach B has the form
df*d for some k > 0. Cousider the translator T defined by V = la, b}, Vo e, d,
e, 1,8 = (8, Si, 8,y 8y, 8i)y Si = Sy, and the rules

(S{),G, S;,C, 0}; (Slya: SH{?; 0}» (‘g’is‘}; Sﬁ‘-x 610)3 (S‘M iy 'Sﬁwfz iy,
(So,b, Sﬁ)d;())z (S3nb: S3vf; 0)9 {Sﬁvb: S*,fv O}x <S¢,b, ;Sj{;,(i,i\).
The language L is the map of L° under T.

On the other hand, define T" by V = (¢, d, ¢, /i, V' o= 1o, b}, 8§ = {8, 81, 84
and the rules
(SD:C) ‘Sfl)a’) 1 )) (Sx,f?, Slv A, i }: <Siyas Si’: A, 1 }‘
<Sﬁ:d: Sg,b, 1 )y <Slyf: Sl; A, 1 >, {lSl,d, S@, AL
Then L° is the map of L under 7T’
Now consider any FA language I C L. Then T(I) € T(L) = L°. But LY

is TA and L° is not. Hence L° must contain a string x not in T(L"). A grammar for

3
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TETY i Frus g N TSN W T win 7P eersed TE L g
{ (L }, {::’z\n i:;a? ws,zmmd effertively by L@n‘zmﬁ 3, &m&i it i eagy to see how o grammar G°
for TLLy U izl o ly. {L° obviously has o decision procedure

can be found effect
for membership. 8o do FA languages. We take the first 2 in L° — T(L") and con-
struci the grammar, using z and the grammar for T(L))

B but if [, is the language generated by G°, then L” D T(L'). Hence T°(L*)
o T'TLY = L and, in ! %E must contain the mfinitely many sentences obiained
from z which cannot be in L. QE.D.

2.4, Brecian Tyee 1 Laxouanes

Definition 18, A type | gramoar 7 5 sadd to be of bype 1, i there exists o Dane-
tion f from V' into the nonpegative integers such that if pad — e8¢ 18 a rule with
Sin V, then fig) < Hm)h.

Definition 19, A type 1 grammar s sald to be of type 1p i there are no rules of
the form ody — wHd with 4, B € V.

Cononnary. A fype Ly grommar is of type 1,

Proor, Let [ fla) = 1ifa & Vy,

Vfla) = 0ifa € Ve, QED.

Note that if @ is of type 1,2 € L, D iz a derivation of 2, 2y i & phrase of x of
type 4 with respert to D and 2, 8 & phrase of x of type B wa%ix respect to 1), then
4 = B Forif 4 # B, then we would have edw = «Bw or alhe = edw for soine
«, w, Bui this is unpossible,

Remark, T4 is not difficult to show that thers wxdst & type 1 grammer O and
%rm;.,@ eA By, oBAY such that ed B == 4 wh situstions sre obviously

“unfortunate” from o grammatical point of view, gmd the {ollowing theorern shows
this does m?z impzwz; in bype 1, grommars,

Turorem 5. Lel L be a type 1, longuoge generoted by o type 1y grommar (. Let
o and ¢ be iam digtinet strings on V such thot ¢ == . Then the commulative images of
o and ¢ are distinel. {See definition 15.)

Proor. BExtend the function j of Definition 18 to all strings oo V' by taking

flom) = flnw) = f{w) + fln). Then f can be thought of as & function on $(L).
}m if ¢ and ¢ have the same length and @ — ¢, then ) o f08). Henee if ¢ and
¥ have the same length, ¢ % ¢ and ¢ = x;“z then flg) > F¢). Henee #(p) 6 d0).
QED.

Tugoney 6. Every type 2 longuage 18 o type 1 language,

Proor. Theorem 6 is proved by Lemms 2. QED.

Tuwsonem 7. There are languages of type 1y which are not of bype 8.

Proor:? Consider the rules

{a) 8§~ cXd
thy X~ CXXXXXD
[XXDXX — XXXEXX  XXDXd-» XXXBXd
14 EBXX - BEXDX BXd - EXDd
] XEXD ~+ XXKXXD
[XXCXX - XXPXXX  eXCXX — cXPXXX
2{ XXF - XCXF EXF o sOXF

(o€~ ge
DEY
%4
3 feX — g

{Dd — dd

{ There was an erroy in the original proof which was pointed out by swveral people,
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Now notice that X can turn terminal only if preceded by ¢ or e; similarly, C and
D can turn terminal only in a very limited way, when they have moved to the
extreme left or right, respectively. Careful analysis shows that the rules of group 1
allow a D to move right over an X only by quintupling it. Similarly, a C can move
left across X’s, quintupling them. But a D and C cannot cross; hence, given two
applications of rule b, one of the applications must occur “within” the other, or
else the C or D will get “stuck” and not lead to a terminal string. It follows that all
terminal strings have the form

PRIV i #, n > 0.

Furthermore, all of these strings can be generated, if one begins with a derivation of
# ¢ (CXX)" X (XXD)"d % and moves the C’s and D’s to the ends.
This language is not CF, by Corollary 2 to Theorem 2. Q. E.D.

3. A Remark on the Reduction of CF Grammars to a Question Regarding Free Rings

Let G be a CF grammar with vocabulary V. Consider the free ring R generated
by V. Define an operator ® over R as follows:

(a)Ifa € Vs, O(a) = a.

(b) If A € Vyand A — «; are the rules associated with 4, then
B(4) = Z w;

(¢) B(ny") = B(n)O ().

(d) B(q+n") = O(n) + O(x).

Then the generable strings are precisely the ones that appear as terms in some
expression O"( % S¥ ) for some n.
- For example, let V = {¥,4a,b,A4,8}; S — A8, A — ab, A —cd, S — ada.
Then

0(8) = AS + ada
O(A) =ab+cd
Oa) =a, OOB) =b,O(K) = ¥.

Now
O(¥8¥) = XKAS¥ + Kada¥,
O (¥ SK) = XabASK + #cdAS# + ¥abada¥ -+ ¥cdada

+ Xoaogba¥ -+ ¥acda¥, etc,

and every derivable string will eventually appear on the right-hand side. Every
sentence will be always on the right-hand side after a certain point. (Note: O is a
homomorphism of R into itself. Moreover, any homomorphism that fixes V; comes
from a CF grammar.)
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