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On continuous conditional Gaussian

martingales and stable convergence in law

Jean Jacod

In this paper, we start with a stochastic basis (5~,,~’, IF = P), the time
interval being [0,1], on which are defined a "basic" continuous local martingale M
and a sequence Zn of martingales or semimartingales, asymptotically "orthogonal to
all martingales orthogonal to M". Our aim is to give some conditions under which
Z’~ converges "stably in law" to some limiting process which is defined on a suitable
extension of (H, F, F, P).

In the first section we study systematically some, more or less known, properties of
extensions of filtered spaces and of F-conditional Gaussian martingales and so-called
M-biased F-conditional Gaussian martingales. Then we explain our limit results:
in Section 2 we give a fairly general result, and in Section 3 we specialize to the
case when zn is some "discrete-time" process adapted to the discretized filtration

where ~ _ Finally, Section 4 is devoted to studying the
limit of a sequence of M-biased F-conditional Gaussian martingales.

1 Extension of filtered spaces and conditionally
Gaussian martingales

We begin with some general conventions. Our filtrations will always be assumed to
be right-continuous. All local martingales below are supposed to be 0 at time 0,
and we write (M, N) for the predictable quadratic variation between M and N if
these are locally square-integrable martingales. When M and N are respectively d-
and r-dimensional, then (M, N*) is the d x r dimensional process with components
(M, = (Mt, N~) (N* stands for the transpose of lV).

In all these notes, we have a basic filtered probability space (S~, ,~’,1F, P).

1-1. Let us start with some definitions. We call extension of (SI,,~’,1F, P) another
filtered probability space (SI, ~, ~*, P) constructed as follows: starting with an aux-
iliary filtered space ~’’ = such that each u-field .~’t_ is separable,
and a transition probability from (~, F) into (S~’, F’), we set

S~ = ~’t = = 

(1.1)
According to ([3], Lemma 2.17), the extension is called very good if all martingales
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on the space P) are also martingales on (, , , ), or equivalently, if

w  Q03C9(A’) is Ft-measurable whenever A’ E F’t.
A process Z on the extension is called an F-conditional martingale (resp. F-

Gaussian process) if for P-almost all 03C9 the process Z(w, .) is a martingale (resp. a

centered Gaussian process) on the space (S~’,,~’’, Qw).
Let us finally denote by Mb the set of all bounded martingales on (~,,~’, F, P). .

Proposition 1-1 : Let Z be a continuous adapted q-dimensional process on the very
good extension IF, P), with Zo = 0. The following statements are equivalent:

(i) Z is a local martingale on the extension, orthogonal to all elements of and

the bracket (Z, Z*) is (0t)-adapted.

(ii) Z is an 0-conditional Gaussian martingale.

In this case, the J’-conditional law of Z is characterized by the process (Z, Z*) (i.e.,
for P-almost all w, the law of Z(w, .) under QW depends only on the function t ~~

(Z, Z*)t(w)).

Proof, a) We first prove that, if each Zt is P-integrable, then Z is an ,~’-conditional
martingale iff it is an .IF-martingale orthogonal to all bounded F-martingales. For

this, we can and will assume that Z is 1-dimensional.

Let t  s and let U, [J’ be bounded measurable function on (~, and (S~’, ~ )
respectively. Let also M E Mb. We have

E(UU’MsZ9) - (1.2)

E(UU’MtZtj = (1.3)

Assume first that Z is an J’-conditional martingale. Then for P-almost all w we
have

- 

and the latter is J’t-measurable as a function of w because the extension is very good.
Since M is an F-martingale, we deduce that (1.2) and (1.3) are equal: thus MZ is a
martingale on the extension: then Z is a martingale (take M = 1), orthogonal to all
bounded F-martingales.

Next we prove the sufficient condition. Take V bounded and J’s-measurable, and
consider the martingale Mr = With the notation above we have equality
between (1.2) and (1.3), and further in (1.3) we can replace Mt(w) by = V(w)
because the last integral is Ft-measurable in w. Then taking U = 1 we get

= P(dW)V(W) 
Hence for P-almost w, QW(U’Zs(w, .)) = QW(U’Zt(w, .)). Using the separability of
the a-field ~_ and the continuity of Z, we have this relation P-almost surely in
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w, simultaneously for all t  s and all F’t--measurable variable U’: this gives the
,~’-conditional martingality for Z.

b) Assume that (i) holds. If Y = (Z, Z*), a simple application of Ito’s formula and
the fact that Z is continuous show that, since Z is orthogonal to all M E Mb, the
same holds for Y. Each Tn = inf(t : ~(Z, Z*)tl > n) is an F-stopping time, and oo

as n - oo. Then Z(n)t = and Y(n)t = are continuous -martingale,
orthogonal to all M E and obviously and are integrable: by (a),
and by letting n i oo, we deduce that for P-almost all w, under Qw the process
Z(n)(w, .) is a continous martingale with deterministic bracket (Z, Z*~(w), hence it
is an J’-Gaussian martingale, so we have (ii). Furthermore, it is well-known that the
law of Z(w) under Qc..; is then entirely determined by (Z; Z*)(w).

c) Assume now (ii). There is a P-full set A E ,~’ such that for all w E A, under
the process Z(w, .) is both centered Gaussian and an F’-martingale. Therefore

if Ft(w) = f QW(dw’)Zt(w, w’), the process (ZZ*)(w, .) - F(w) is an F’-martingale
under Qc..; for w E A: that is, ZZ* - F is an J’-conditional martingale. By localizing
at the F-stopping times Tn = inf(t : > n) and by (a), we deduce that Z and
ZZ* - F are local martingales on the extension, orthogonal to all M E Mb. Since
F is continuous, IF-adapted, and of bounded variation (since it is non-decreasing for
the strong order in the set of nonnegative symmetric matrices), it follows that it is a
version of (Z, Z*), hence we have (i). D

1-2. Let now M be a continous d-dimensional local martingale, and be the

class of all elements of Mb which are orthogonal to M (i.e., to all components of M).
A q-dimensional process Z on the extension is called an M-biased ,~’-conditional

Gaussian martingale if it can be written as

Zt = Z’t + t0usdMs, (1.4)
JO

where Z’ is an J’-conditional Gaussian martingale and u is a predictable IRq 0 on

(S~, P).

Proposition 1-2: Let Z be a continuous adapted q-dimensional process on the very
good extension iF, P), with Zo = 0. The following statements are equivalent:

(i) Z is a local martingale on the extension, orthogonal to all elements 
and the brackets (Z, Z*) and (Z, M*) are F-adapted.

(ii) Z is an M-biased .~’-conditional Gaussian martingale.

In this case, the F-conditional law of Z is characterized by the processes M, (Z, Z*)
and (Z, M*).

Proof. Under either (i) or (ii), Z and Mare continous local martingales (use the
fact that the extension is very good, and use (1.4) under (ii)). We write F = (Z, Z*),
G = (Z, M*) and H = (M, M*).
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If (ii) holds, (1.4) and Proposition 1-1 yield for all N E Mb:

(1.5)
Then (i) readily follows. Further, (1.5) implies that u and (Z’, Z’*) are determined by
F, G and H. Since fo usdMs is F-measurable, the last claim follows from (1.4) and
Proposition 1-1 again.

Assume conversely (i). There are a continuous increasing process A and predictable
processes f, g, h with values in IRq 0 IRQ 0 IRd and IRd 0IRd respectively, such
that Ft = fo fsdAs, Gt = fo gsdAs and Ht = fo hsdAs.

The process (M, Z) is a continuous local martingale on the extension, with bracket

Kt = t0ksdAs, where k = h g * By triangularization we may write k = zz*,
where

z = (), (1.6)

so that h = vv*, g = uvv* and f = uvv*u* + ww*. Let us put % = fo usdMs
and Z’ = Z - Y. Then since the extension is very good, Z’ is a local martingale
on the extension, and (Z’, Z’*)t = fo 03C9s03C9*sdAs is F-adapted. Further, (Z’, N)t =

(Z, N)t - fo usd(M, N)s: first this implies that (Z’, N) = 0 if N E (since
then (Z, N) = 0 by hypothesis), second this implies that when Nt = fo 03B1sdMs we
have (Z’, N)t = - usvsv*s03B1s)dAs = 0. Thus Z’ is orthogonal to all N E 
and it is an ,~’-conditional Gaussian martingale by Proposition 1-1. D

1-3. Let us denote by Sr the set of all symmetric nonnegative r x r-matrices. In

Proposition 1.1, the process (Z, Z* ) is a continuous adapted non-decreasing Sq-valued
process, null at 0. In Proposition 1-2, the bracket of (M, Z) is a continuous adapted
non-decreasing Sd+q-valued process, null at 0. Conversely we have:

Proposition 1-3: a ) Let F be a continuous adapted nondecreasing Sq-valued process,
with Fo = 0, on the basis (S~, P). There exists a continuous 0-conditional
Gaussian martingale Z on a very good extension, such that (Z, Z*) = F.

b) Let K be a continuous adapted nondecreasing Sd+q-valued process, with h’o = 0,
and M be a continuous d-dimensional local martingale with (NI=, M~~ = K’~ for 1 
i, j  d, on the basis (5~,,~’,1F’, P). There exists a continuous M-biased .~’-conditional
Gaussian martingale Z on a very good extension, such that (ZE, M~~ = for
1  i  q, 1  j  d, and (Z’, Z~) = for 1  i, j _ q

Of course (a) is a particular case of (b) (take M = 0), but in the proof below (b)
is obtained as a consequence of (a).

Proof, a) Take (03A9’,F’, IF’) to be the canonical space of all Rd-valued continuous
functions on [0,1], with the usual filtration and the canonical process Zt(w’) = w’(t).
For each w, denote by the unique probability measure on (Q’, J") under which Z
is a centered Gaussian process with covariance f = F’ n This structure
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of the covariance implies that Z has independent increments and thus is a martingale
under each QW: Defining ,~, iF, P) by ( 1.1 ) gives the result.

b) As in the previous proof, we can write Kt = ~o ksdAs for a continuous adapted
increasing process A and a predictable process k = zz* with z as in (1.6). By (a) we
have a continuous .~ conditional Gaussian martingale Z’ on a very good extension,
with (Z’, Z’*)t wsw;dAs. We can set Zt = Zt+ fp usdMs, and some computations
yileds that Z satisfies our requirements. 0

We even have a more "concrete" way of constructing Z above, when K is absolutely
continuous w.r.t. Lebesgue measure on [0,1]. Let ) be the q-

dimensional Wiener space with the canonical Wiener process W. Then F, IF, P)
defined by

 = F ~ FW, fit = ~s>tFs ® , P = P ® . (1.7)

is a very good extension of (S~, P), called the canonical q-dimensional Wiener
extension of (fZ,,~’, F, P). Note that W is also a Wiener process on the extension.

Proposition 1-4: Let K and M be as in Proposition 1-3(b), and assume that Kt =

fo ksds with k predictable Sd+q- valued. Then we can choose a version of k of the

form k = zz* with z = 
v ~ 

, 
and on the canonical q-dimensional Wienerf /

extension of (03A9, F, IF, P) the process

Zt = t0usdMs + t0 03C9sdWs (1.8)

is a continuous M-biased F-conditional Gaussian martingale, such that Mj~ =
for 1  i  q and 1  j  d, and (Zi, Z~~ = for 1 ~ i, j _ q.

Proof. The first claim has already been proved. (1.8) defines a continuous q-

dimensional local martingale on the canonical Wiener extension and a simple compu-
tation shows that it has the required brackets. 0

2 Stable convergence to conditionally Gaussian

martingales

2-1. First we recall some facts about stable convergence. Let Xn be a sequence
of random variables with values in a metric space E, all defined on (5~,,~’, P). Let

~, P) be an extension of (Q, ~", P) (as in Section 1, except that there is no filtration
here), and let X be an E-valued variable on the extension. Let finally g be a sub

afield of ,~. We say that Xn g-stably converges in law to X, and write Xn --~~-’~ X,
if

E(Y f(Xn)) --~ E(Y.f(X)) (2.1)
for all f : E -~ If~ bounded continuous and all bounded variable Y on (S~, g). This
property, introduced by Renyi (6] and studied by Aldous and Eagleson [I], is (slightly)
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stronger than the mere convergence in law. It applies in particular when Xn, X are
1Rq-valued cadlag processes, with E = l~,1R9) the Skorokhod space.

If X~ are some other E-valued variables, then (with 6 denoting a distance on E):

0, Xn --~G-~ X ~ Xn X. (2.2)

Also, if lJn , U are on (5~,,~’), with values in another metric space E’, then

ir, X. ~~ ~c X =~ --~~ ~ (U, x). (2.3)

When ~ _ .~’ we simply say that Xn stably converges in law to X, and we write
v

2-2. Now we describe a rather general setting for our convergence results. We start
with a continuous d-dimensional local martingale M on the basis (~,,~’, ~’, P): this
will be our "reference" process. The set Mb is as in Section 1.

Next, for each integer n we are given a filtration iFn = on (5~,,~’) with
the following property:

Property (F) : We have a d-dimensional square-integrable IFn-martingale M(n) and,
for each N E Mb, a bounded lFn-martingale N(n), such that

sup  oo, (2.4)
n,t,w

(M(n,), 1 -iP (M, M*)t, dt E ~0,1~, (2.5)

(the bracket above in the predictable quadratic variation relative to IFn) and that,
for any finite family (l~ll, .., l~r’~) in Mb,

(M(r~), N1(n), .., l’V~(n)) -~ (M, Nl, .., N’~) in (2.6)

In practice we encounter two situations: first, ~ _ for which (F) is obvious
with M( n) = M and N( 71.) = N. Second, .~’’ = a situation which will be
examined in Section 3.

2-3. For stating our main result we need some more notation. We are interested in
the behaviour of a sequence (zn) of q-dimensional processes, each Zn being an lFn-
semimartingale, and we denote by (Bn, its characteristics, relative to a given
continuous truncation function h9 on 1Rq (i.e. a continuous function hq : 1Rq --~ IRg
with compact support and hq(x) = x for Ixl small enough): see [5]. If =

x - hq(r), we can write 

Zt = B~ + Xt + ~ ) (2.7)
~t

where ,~f n is an (~)-local martingale with bounded jumps, and ~Y = Y - Y_.
Here is the main result:
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Theorem 2-1: Assume Property (F). Assume also that there are two continuous pro-
cesses F and G and a continuous process B of bounded variation on (S~,,F, F, P) such
that (the brackets below being the predictable quadratic variations relative to the filtra-
tion 

sup - Bt~ -~p 0, (2.8)
t

Ft := --~P Ft, Vt E ~0, 1 , (2.9)

Gt := -ip Gt, Vt E [0,1], (2.10)

:= x {~ : > ~~) ) -~p 0, dE > 0, (2.11)
:= (Xn, N(n))t -~p 0, Vt E ~0,1~, dN E (2.12)

Then

(i~ There is a very good extension of (5~,,~’, F, P) and an M-biased continuous

J’-conditional Gaussian martingale Z’ on this extension with

(Z’, Z’*) = F, (Z’,M*) = G, (2.13)

such that Zn Z := B + Z’.

(ii) Assuming further that « dt and dFiit « dt, there are predictable
processes u, v, w with values in IRq ~ 1Rd ~ and 1Rq ~ IRq respectively,
such that

and the limit of Zn can be realized on the canonical q-dimensional Wiener e,~-
tension of (S2, F,IF, P), with the canonical Wiener process W, as

Zt = Bt + t0usdMs + t003C9sdWs. (2.15)

The proof will be divided in a number of steps.

Step 1. Let H’~ = (M(n), M(n)*) and H = (M, M*). Consider the following
processes with values in the set of symmetric (d + q) x (d + q) matrices:

Kn = (

Hn Gn Gn*Fn), 
K =(

).

By (2.9), (2.10) and (F), we have h’t -~p h’t for all t, while is a nondecreasing
process with values in Sd+q. So there is a version of K which is also a nondecreasing
Sd+q-valued process. Further]( is continuous in time, so by a classical result we even
have

sup ~l~t - ~p 0. (2.16)
t
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Further we can write lit ksdAs for some continuous adapted increasing process
A and some predictable Sd+q-valued process k, and as seen in the proof of Proposition
1-2 we have k = zz* with z given by (1.6): under the additional assumption of (ii),
we can take At = t, so we have (2.14), and the last claim of (ii) will follow from (i)
and from Proposition 1-4.

Step 2. In this step we prove (2.12) can be strenghtened as such:

sup I -~P 0. (2.17)
t

In view of (2.12) it suffices to prove that

r~ > 0, ~8 > 0, ~no E no ~ P(w~’(~) > r~) ~ ~, (2.18)

where = ~ is the 0-modulus of continuity
of V(N)n. Denoting by the 9-modulus of continuity of (2.16) and the
continuity of Ii yield

r~ > 0, ~e > 0, ~no E no ~ P(w n(9) > r~)  E. (2.19)

On the other hand, a classical inequality on quadratic covariations yields that for all
u > 0 we have 2~V (N)t - ~  IFtn - + u( (N, N)t - (N, if s  t, so
that  + (N, N)1, hence

P(03C9n(03B8) > ~) ~ P(w’n(03B8) > u~) +  ~E(N)(n)21).

Then (2.18) readily follows from (2.19), supn E(N(n)21)  ~ and from the arbitrary-
ness of u > 0.

Step 3. Here we prove that, instead of proving Zn -~s-’~ Z with Z = B + Z’ as in
(i), it is enough to prove that

S-~ z~ (2.20)
Indeed, set Zt’" _ By ([5], VI-4.22), (2.11) implies supt |0394Znt| ~P 0;
since h’q(x) = 0 for |x| small enough, we have supt|Z"nt | -;p 0. On the other hand

AB? so (2.11) again yields supt ~ -3P 0, hence B is
continuous by (2.8). Hence the claim follows from (2.3).

Step 4. Here we prove (2.20) under the additional assumption that F is separable.

a) There is a sequence of bounded variables which is dense in F, P).
Ve set N~ = so N~ E Mb, and we have two important properties:

(A) Every bounded martingale is the limit in IL2, uniformly in time, of a sequence of
sums of stochastic integrals w.r.t. a finite number of Nm’s: see (4.15) of [2].

(B ) is the smallest filtration, up to P-null sets, w.r.t. which all Nm’s are adapted:
indeed let be the above-described filtration, and A there is a sequence

Ym(n) ~ lA in ILl, so = is Gt-measurable and converges in IG1 to
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b) Introduce some more notation. First = and ~~r(n) = 
(recall Property (F)) can be considered as processes with paths in 1], IRN).
Then (2.6) and (2.16) yield

(M(n),,~r(r~), -~P (M,N, Ii ) in ~(~0,1~, IRd X IRN x (2.21)

On the other hand, VI-4.18 and VI-4.22 in [5] and (2.11) and (2.16) imply that the
sequence is C-tight. It follows from (2.21) that the sequence M(n), ~’~(n))
is tight and that any limiting process (,if, .~I, JU) has ,C(M, = ,C(1’YI, ~’V ).

c) Choose now any subsequence, indexed by n’, such that 
converges in law. From what precedes one can realize the limit as such: consider the
canonical space (S~‘, ,~"’, F’) of all continuous functions from [0, 1] into with the

canonical process Z’, and define by (l.l); since F = m E W)
up to P-null sets, there is a probability measure P on (fZ,,~’) whose O-marginal is P,
and such that the laws of M(n’),r’~~(n’)) converge to the law of under

P.

Therefore we have an extension iF, P) ) of (~,,~’, ~’, P) (the existence of
a disintegration of P as in (1.1) is obvious, due to the definition of (S~‘, ,~’’) ), and
up to P-null sets the filtrations ~’ and iF are generated by and 

respectively (use Property (B) of (a)).
Set Y’~ = (l~Vl. (n), and Y = (M, Z’). By contruction, all components of Y’~,

are IFn-local martingales with uniformly bounded jumps. Then
IX-1.17 of (~5~ (applied to processes with countably many components, which does
not change the proof ) yields that all components of Y, N and YY* - K are -local
martingales under P. This implies first that on our extension we have

F = (Z’, Z’*~, G = (Z’, M*) (2.22)

(since K is continuous increasing in Sd+q), and second that all Nm are -martingales.
Then by (9.21) of [2] any stochastic integral asdNms with a F-predictable is also an
(-martingale: Property (A) of (a) yields that all elements of M b are IF-martingales,
hence our extension is very good.

d) Let now N E We could have included l~r in the sequence what

precedes remains valid, with the same limit, for a suitable subsequence (n") of (n’).
Moreover - is an ~’’~-local martingale with bounded jumps, while
by (2.17) the sequence (X ~‘", ~’~(n"), (r~"), ) converges in law to 
The same argument as above yields that Z’lV is a local martingale on the extension,
so Z’ is othogonal to all elements of 

Therefore Z’ satisfies (i) of Proposition 1-2: hence Z’ is an M-biased continu-

ous .~ conditional Gaussian martingale, whose law under Q~, which is Qw itself, is

determined by the processes M, F, G, and in particular it does not depend on the
subsequence (n’) chosen above.

In other words all convergent subsequence of have the same limit

( Z‘, JI~) in law, with the same measure fi, and thus the original sequence )
converges in law to (Z‘,,11~). In particular if f is a bounded continuous function on
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and since is a component of ~’~~(n) bounded uniformly in ~n, we

get 
~ (f(Z’)Nm1).

Now (2.4) and (2.6) yield that ~ Nm1 in hence

) -’ 

Since E ( L’Nl = for any bounded ,~’-measura.ble variable L l, we deduce

-~ E(f {zr)Ym)’

Finally any bounded F-measurable variable Y is the IL1-limit of a subsequence of

(~ m ), hence one readily deduces that

E(.f (Z~)Y), (2.23)

which is (2.20).

Step 5. It remains to remove the separability assumption on ,~". Denote by ?~ the
u-field generated by the random variables E [0, l~, n > 1), and
let 9 be any separable 03C3-field containing H. Let be a dense sequence of

bounded variables in and = and set  = (Gt)y~[0,1] for
the filtration generated by the processes )mEN.

We have = for all m, so by a density argument =

for all Y E G, P): this implies that any G-martingale is an F-

martingale, and in particular each Nm is in ..Mb, and also that every F-adapted
and 9-measurable process (like and AI) ) is G-adapted. Thus M is a -local

martingale. Finally, any bounded -martingale which is orthogonal w.r.t. to Af is

also orthogonal to Af w.r.t. F.

In other words, Property (F) is satisfied by ? and the same filtration and

processes and (2.8)-(2.12) are satisfied as well with(~ instead of l~’. We
can thus apply Step 4 with the same space (~, ~, and process Z’, and f~ = f~ x f~,
~ _ ~ ~.~’, Qt = We have a transition probability from 

into such that if = (where P~ is the restriction
of P to ~C), then

E~(f(Z~)Y’) (2.24)

for all bounded continuous function f on ~((o, l~, and all bounded ~-measurable
variable Y.

Further, only depends on F, G and so is indeed a transition from (S~,?-~)
into (03A9’,F’) not depending on G and written Qw.

It remains to define (~, ,~’, F, P) by (l.l ): since w M Qw(A) is J’t-measurable
for A E .~t it is a very good extension of (~,.~’,1~,, P). Furthermore E~( f (~~’n)Y) =

E(f(}(n)y) and E~( f (Z’)Y) = E( f (Z’)I~’’) for all bounded ~-measurable Y: hence
(2.24) yields (2.23) for all such K. Since any F-measurable variable V is also g-
measurable for some separable u-field 9 containing H, we deduce that (2.23) holds
for all bounded J’-measurable V, and we are finished. D
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2-4. When each Zn is IFn-locally square integrable, i.e. when we can write

Z = (2.25)

with Bn a IFn-predictable with finite variation and Xn a IFn-locally square-integrable
martingale, we have another version, involving a Lindeberg-type condition instead of
( 2.11 ), namely:

Theorem 2-2: Assume Property (F). Assume also that Zn is as in (~.~5), and that
there are two continuous processes F and G and a continuous process B of bounded
variation on F, P) satisfying (2.8), (2.9), (~.10), (~.1 ~~ and

:= x dx) 0, b’E > 0. (2.26)

Then all results of Theorem hold true.

Proof. We have (2.25), and also the decomposition (2.7), i.e.: :

Zt = + + ~ (2.27)
St

We will denote by and the quantities defined in (2.9), (2.10) and
(2.12) with Xln instead of Xn. We will prove that the assumptions of Theorem 2-1
are met, i.e. we have (2.11) and

sup - Bt~ [ ->p 0, (2.28)
t

->P Ft, Vt E [0,1], (2.29)
~p Gt, Vt E [0,1], (2.30)

-;P 0, Vt E [0,1], , VN E Mb orthogonal to M. (2.31)

First ~2.11) readily follows from (2.26). Next, comparing (2.25) and (2.27), and if
tcn denotes the jump measure of we get

= Bt + t] x dx), - = * Un).

We have  for some constants B > 0 and C. This implies first
that (2.28) follows from (2.8) and (2.26). It also implies

We have

+ ,

so (2.9), (2.26) and (2.32) yield (2.29). Similarly, (2.30) follows from (2.,5), (2.10),
(2.26), (2.32) and from the following inequality:

_ 



243

Finally we have

~v(N)t - ~ _ 

while E((N(n), N(n)~t )  which is bounded by a constant by (2.4): hence
(2.31 ) follows as above. 0

3 Convergence of discretized processes

In this section we specialize the previous results to the case when the filtration ~’~ is
the "discretized" filtration defined by Fnt = For every càdlàg process Y write

- Y/n ~(i-1)In’ ~3.1

Here again we have a continuous d-dimensional local martingale M on the stochas-
tic basis (S~, ,~’, F, P). We denote by hd a continuous truncation function on We

also consider for each n an IFn-semimartingale, i.e. a process of the form

[~tl

~ Xg (3.2)
i=1

where each ~ni is Fi/n-measurable. We then have:

Theorem 3-1: Assume that there are two continuous processes F and G and a con-
tinuous process B of bounded variation on (5~,,~, F, P) ) such that

[ntl

sup | 03A3E(hq(~ni)|Ft-1) - Bt| ~P 0, (3.3)
t 

i=1 
n

[nt~

~ ~P ~t~ dt e 10, il,
i=1

(3.4)

[~tJ

~ 
i=1

- 3p Gt, Vt E [0,1], (3.~5)
n

P(|~ni| > ~|Ft-1 n) ~P 0, ~~ > 0, (3.6)

[nt~

Then all results of Theorem 2-1 hold true.

Proof. We will prove that the assumptions of Theorem 2-1 are in force.
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a) First we check Property (F). We will take N(n) = lvn, as defined in (3.1), for
all N E Mb, so (2.4) is obvious. Note also that that if Nl, .., Nm are in Mb, then

.., 
-jP (M, Nl , ..,1Vm) in . 3.8

Next, M(n) is:

[nt]
= .

i=l

so Mn - M(n) = An + A’n, where we have put At = 03A3[nt]i=1E(hd(0394niM)|Ft-1 n ) and

= (with hd(x) = x - hd(x)). Then (2.5) follows from combining
the results (1.15) and (2.12) in [4] (since M is continuous). These results also yield
supt [ -~ 0, and for all 6 > 0:

n

O.

i=l

This and VI-4.22 of [5], together with the fact that = 0 for ~x) small enough,
imply that supt -~ 0, so finally supt 1M; - -+P 0 and (2.6) follows
from (3.9): we thus have (F).

b) The decomposition (2.7) of Z~‘ has Bt = ~~’~tl and =

- E(hq(Xi )). Hence (3.3) is (2.8), and the left-hand sides of (3.4),
(3.5) and (3.7) are those of (2.9), (2.10) and (2.12). Finally the left-hand sides of (3.6)
and of (2.11 ) are also the same, so we are finished. D

Finally, we could state the "discrete" version of Theorem 2-2. We will rather

specialize a little bit more, by supposing that M is square-integrable and that each

xi is square-integrable. This reads as:

Theorem 3-2: Assume that M is a square-integrable continuous martingale, and that
each xi is square-integrable. Assume also that there are two continuous processes F
and G and a continuous process B of bounded variation on (5~,,~’, F, P) such that

(nt] 
’

’-~p o, (3.10)
t 

i=1 

’ 

n

[nt]

~ -~P Ft, dt E [0,1], (3.11)
i=l 

" " "

M

E(~ni0394niM*|Ft-1 n ~P Gt, ~t ~ [0,1]; (3.12)

n

E(|~ni|21{|~ni|Ft-1 n) ~P 0, ~~ > 0, (3.13)
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M

0, dt e [0,1], , VN E (3.14)
i=l

Then all results of Theorem 2-1 hold true.

Proof. If we write the decomposition (2.26) for Zn, the left-hand sides of (3.10),
(3.11), (3.12), (3.13) and (3.14) are the left-hand sides of (2.8), (2.9), (2.10). with Mn
instead of M(n), (2.26) and (2.12). By Theorem 2-2 it thus suffices to prove that (F)
is satisfied if N(n) = Nn and M(n) = Mn. We have seen (2.4) and (2.6) in the proof
of Theorem 3-1, so it remains to prove that (Mn, -->P (M, M* )t for all t.

Let us consider M(n) as in (3.9): we have seen that it has (2.5), so it is enough
to prove that if Yn = Mn - M(n), then

--~P 0. (3.15)

The process is L-dominated by Dt = sups~t|Yns|, and W = supn,t|0394Dnt |
satisfies W  2C + 2suPt |Mt| where C = sup : hence E(W)  oo. We have seen

in the proof of Theorem 3-1 that Dr -~p 0, so the "optional" Lenglart inequality
1-3.32 of [5] yields (3.15), and the proof is finished. D

4 Convergence of conditionally Gaussian martin-

gales

Here we still have our basic continuous d-dimensional local martingale M on the
basis (Q, ~, F, P), and a sequence Z~ of M-biased continuous ~"-conditional Gaussian
martingales: each one is defined on its own very good extension 
Note that F can be considered as a sub 03C3-field of for each n.

Theorem 4-1: Assume that there are two continuous processes F and G on (n, 0, P)
such that

Ft := -;P Ft, Vt E [0,1], (4.1)

Gt :_ -~p Gt, ’dt E (4.2)
Then there is a very good extension of (03A9,F, F, P) and an M-biased 0-conditional
Gaussian martingale Z on this extension with

(Z,Z*) = F, (Z,M*) = G, (4.3)

such that Zn -->~-’~ Z.

Proof. Set Hn = H = (M, M*), and define h’n and K as in Step 1 of the proof
of Theorem 2-1. (4.1) and (4.2) imply that h’t for all t, and since ~’n is
continuous in time the same holds for K, and we have (2.16). Further, if V(N)n =

by assumption on Zn we know that = 0 for all N E 

We can then reproduce Step 4 of the proof of Theorem 2-1, with M(n) = M and
Nm (n) = N’~ and Zn and Z instead of X n and Z’. In place of (2.23), we get

-~ 
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for all bounded 0-measurable variables Y and all bounded continuous functions f on
~( ~0,1~, this is the desired convergence result when 0 is separable. Finally, Step
5 of the same proof may be reproduced here, to relax the separability assumption on
0, and the proof is complete. 0
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