SÉminaire de probabilités (Strasbourg)

JEAN JACOD

On continuous conditional gaussian martingales and stable convergence in law

Séminaire de probabilités (Strasbourg), tome 31 (1997), p. 232-246
http://www.numdam.org/item?id=SPS_1997__31_232_0
© Springer-Verlag, Berlin Heidelberg New York, 1997, tous droits réservés.
L'accès aux archives du séminaire de probabilités (Strasbourg) (http://portail. mathdoc.fr/SemProba/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Numdam

Article numérisé dans le cadre du programme

On continuous conditional Gaussian martingales and stable convergence in law

Jean Jacod

In this paper, we start with a stochastic basis $\left(\Omega, \mathcal{F}, \boldsymbol{F}=\left(\mathcal{F}_{t}\right)_{t \in[0,1]}, P\right)$, the time interval being $[0,1]$, on which are defined a "basic" continuous local martingale M and a sequence Z^{n} of martingales or semimartingales, asymptotically "orthogonal to all martingales orthogonal to M ". Our aim is to give some conditions under which Z^{n} converges "stably in law" to some limiting process which is defined on a suitable extension of ($\Omega, \mathcal{F}, \mathcal{F}, P$).

In the first section we study systematically some, more or less known, properties of extensions of filtered spaces and of \mathcal{F}-conditional Gaussian martingales and so-called M-biased \mathcal{F}-conditional Gaussian martingales. 'Then we explain our limit results: in Section 2 we give a fairly general result, and in Section 3 we specialize to the case when Z^{n} is some "discrete-time" process adapted to the discretized filtration $\mathbb{F}^{n}=\left(\mathcal{F}_{t}^{n}\right)_{t \in[0,1]}$, where $\mathcal{F}_{t}^{n}=\mathcal{F}_{[n t] / n}$. Finally, Section 4 is devoted to studying the limit of a sequence of M-biased \mathcal{F}-conditional Gaussian martingales.

1 Extension of filtered spaces and conditionally Gaussian martingales

We begin with some general conventions. Our filtrations will always be assumed to be right-continuous. All local martingales below are supposed to be 0 at time 0 , and we write $\langle M, N\rangle$ for the predictable quadratic variation between M and N if these are locally square-integrable martingales. When M and N are respectively d and r-dimensional, then $\left\langle M, N^{*}\right\rangle$ is the $d \times r$ dimensional process with components $\left\langle M, N^{*}\right\rangle^{i, j}=\left\langle M^{i}, N^{j}\right\rangle\left(N^{*}\right.$ stands for the transpose of $\left.N\right)$.

In all these notes, we have a basic filtered probability space $(\Omega, \mathcal{F}, \mathbb{F}, P)$.
1-1. Let us start with some definitions. We call extension of $(\Omega, \mathcal{F}, \boldsymbol{F}, P)$ another filtered probability space $(\tilde{\Omega}, \tilde{\mathcal{F}}, \tilde{\mathcal{F}}, \tilde{P})$ constructed as follows: starting with an auxiliary filtered space $\left(\Omega, \mathcal{F}^{\prime}, \mathbb{F}^{\prime}=\left(\mathcal{F}_{t}^{\prime}\right)_{t \in[0,1]}\right)$ such that each σ-field $\mathcal{F}_{t-}^{\prime}$ is separable, and a transition probability $Q_{\omega}\left(d \omega^{\prime}\right)$ from (Ω, \mathcal{F}) into $\left(\Omega^{\prime}, \mathcal{F}^{\prime}\right)$, we set

$$
\begin{equation*}
\tilde{\Omega}=\Omega \times \Omega^{\prime}, \quad \tilde{\mathcal{F}}=\mathcal{F} \otimes \mathcal{F}^{\prime}, \quad \tilde{\mathcal{F}}_{t}=\cap_{s>t} \mathcal{F}_{s} \otimes \mathcal{F}_{s}^{\prime}, \quad \tilde{P}\left(d \omega, d \omega^{\prime}\right)=P(d \omega) Q_{\omega}\left(d \omega^{\prime}\right) . \tag{1.1}
\end{equation*}
$$

According to ([3], Lemma 2.17), the extension is called very good if all martingales
on the space $(\Omega, \mathcal{F}, \mathbb{F}, P)$ are also martingales on $(\tilde{\Omega}, \tilde{\mathcal{F}}, \tilde{F}, \tilde{P})$, or equivalently, if $\omega \leadsto Q_{\omega}\left(A^{\prime}\right)$ is \mathcal{F}_{t}-measurable whenever $A^{\prime} \in \mathcal{F}_{t}^{\prime}$.

A process Z on the extension is called an \mathcal{F}-conditional martingale (resp. \mathcal{F} Gaussian process) if for P-almost all ω the process $Z(\omega$, .) is a martingale (resp. a centered Gaussian process) on the space $\left(\Omega^{\prime}, \mathcal{F}^{\prime},\left(\mathcal{F}_{t}^{\prime}\right)_{t \in[0,1]}, Q_{\omega}\right)$.

Let us finally denote by \mathcal{M}_{b} the set of all bounded martingales on $(\Omega, \mathcal{F}, \mathbb{F}, P)$.
Proposition 1-1: Let Z be a continuous adapted q-dimensional process on the very good extension $(\tilde{\Omega}, \tilde{\mathcal{F}}, \tilde{\mathcal{F}}, \tilde{P})$, with $Z_{0}=0$. The following statements are equivalent:
(i) Z is a local martingale on the extension, orthogonal to all elements of \mathcal{M}_{b}, and the bracket $\left\langle Z, Z^{*}\right\rangle$ is $\left(\mathcal{F}_{t}\right)$-adapted.
(ii) Z is an \mathcal{F}-conditional Gaussian martingale.

In this case, the \mathcal{F}-conditional law of Z is characterized by the process $\left\langle Z, Z^{*}\right\rangle$ (i.e., for P-almost all ω, the law of $Z\left(\omega\right.$, .) under Q_{ω} depends only on the function $t \leadsto$ $\left.\left\langle Z, Z^{*}\right\rangle_{t}(\omega)\right)$.

Proof. a) We first prove that, if each Z_{t} is \tilde{P}-integrable, then Z is an \mathcal{F}-conditional martingale iff it is an $\tilde{\mathbb{F}}$-martingale orthogonal to all bounded \boldsymbol{F}-martingales. For this, we can and will assume that Z is 1 -dimensional.

Let $t \leq s$ and let U, U^{\prime} be bounded measurable function on $\left(\Omega, \mathcal{F}_{t}\right)$ and $\left(\Omega^{\prime}, \mathcal{F}_{t}^{\prime}\right)$ respectively. Let also $M \in \mathcal{M}_{b}$. We have

$$
\begin{align*}
& \tilde{E}\left(U U^{\prime} M_{s} Z_{s}\right)=\int P(d \omega) U(\omega) M_{s}(\omega) \int Q_{\omega}\left(d \omega^{\prime}\right) U^{\prime}\left(\omega^{\prime}\right) Z_{s}\left(\omega, \omega^{\prime}\right) \tag{1.2}\\
& \tilde{E}\left(U U^{\prime} M_{t} Z_{t}\right)=\int P(d \omega) U(\omega) M_{t}(\omega) \int Q_{\omega}\left(d \omega^{\prime}\right) U^{\prime}\left(\omega^{\prime}\right) Z_{t}\left(\omega, \omega^{\prime}\right) \tag{1.3}
\end{align*}
$$

Assume first that Z is an \mathcal{F}-conditional martingale. Then for P-almost all ω we have

$$
\int Q_{\omega}\left(d \omega^{\prime}\right) U^{\prime}\left(\omega^{\prime}\right) Z_{s}\left(\omega, \omega^{\prime}\right)=\int Q_{\omega}\left(d \omega^{\prime}\right) U^{\prime}\left(\omega^{\prime}\right) Z_{t}\left(\omega, \omega^{\prime}\right)
$$

and the latter is \mathcal{F}_{t}-measurable as a function of ω because the extension is very good. Since M is an \boldsymbol{F}-martingale, we deduce that (1.2) and (1.3) are equal: thus $M Z$ is a martingale on the extension: then Z is a martingale (take $M \equiv 1$), orthogonal to all bounded \boldsymbol{F}-martingales.

Next we prove the sufficient condition. Take V bounded and \mathcal{F}_{s}-measurable, and consider the martingale $M_{r}=E\left(V \mid \mathcal{F}_{r}\right)$. With the notation above we have equality between (1.2) and (1.3), and further in (1.3) we can replace $M_{t}(\omega)$ by $M_{s}(\omega)=V(\omega)$ because the last integral is \mathcal{F}_{t}-measurable in ω. Then taking $U=1$ we get
$\int P(d \omega) V(\omega) \int Q_{\omega}\left(d \omega^{\prime}\right) U^{\prime}\left(\omega^{\prime}\right) Z_{s}\left(\omega, \omega^{\prime}\right)=\int P(d \omega) V(\omega) \int Q_{\omega}\left(d \omega^{\prime}\right) U^{\prime}\left(\omega^{\prime}\right) Z_{t}\left(\omega, \omega^{\prime}\right)$.
Hence for P-almost $\omega, Q_{\omega}\left(U^{\prime} Z_{s}(\omega,).\right)=Q_{\omega}\left(U^{\prime} Z_{t}(\omega,).\right)$. Using the separability of the σ-field $\mathcal{F}_{t-}^{\prime}$ and the continuity of Z, we have this relation P-almost surely in
ω, simultaneously for all $t \leq s$ and all $\mathcal{F}_{t-}^{\prime}$-measurable variable U^{\prime} : this gives the \mathcal{F}-conditional martingality for Z.
b) Assume that (i) holds. If $Y=\left\langle Z, Z^{*}\right\rangle$, a simple application of Ito's formula and the fact that Z is continuous show that, since Z is orthogonal to all $M \in \mathcal{M}_{b}$, the same holds for Y. Each $T_{n}=\inf \left(t:\left|\left\langle Z, Z^{*}\right\rangle_{t}\right|>n\right)$ is an \mathbb{F}-stopping time, and $T_{n} \uparrow \infty$ as $n \rightarrow \infty$. Then $Z(n)_{t}=Z_{t} \wedge T_{n}$ and $Y(n)_{t}=Y_{t} \wedge T_{n}$ are continuous $\tilde{\mathbb{F}}$-martingale, orthogonal to all $M \in \mathcal{M}_{b}$, and obviously $\left|Z(n)_{t}\right|$ and $\left|Y(n)_{t}\right|$ are integrable: by (a), and by letting $n \uparrow \infty$, we deduce that for P-almost all ω, under Q_{ω} the process $Z(n)(\omega,$.$) is a continous martingale with deterministic bracket \left\langle Z, Z^{*}\right\rangle(\omega)$, hence it is an \mathcal{F}-Gaussian martingale, so we have (ii). Furthermore, it is well-known that the law of $Z(\omega)$ under Q_{ω} is then entirely determined by $\left\langle Z, Z^{*}\right\rangle(\omega)$.
c) Assume now (ii). There is a P-full set $A \in \mathcal{F}$ such that for all $\omega \in A$, under Q_{ω}, the process $Z(\omega,$.$) is both centered Gaussian and an \mathbb{F}^{\prime}$-martingale. Therefore if $F_{t}(\omega)=\int Q_{\omega}\left(d \omega^{\prime}\right) Z_{t}\left(\omega, \omega^{\prime}\right)$, the process $\left(Z Z^{*}\right)(\omega,)-.F(\omega)$ is an \mathbb{F}^{\prime}-martingale under Q_{ω} for $\omega \in A$: that is, $Z Z^{*}-F$ is an \mathcal{F}-conditional martingale. By localizing at the \mathbb{F}-stopping times $T_{n}=\inf \left(t:\left|F_{t}\right|>n\right)$ and by (a), we deduce that Z and $Z Z^{*}-F$ are local martingales on the extension, orthogonal to all $M \in \mathcal{M}_{b}$. Since F is continuous, \boldsymbol{F}-adapted, and of bounded variation (since it is non-decreasing for the strong order in the set of nonnegative symmetric matrices), it follows that it is a version of $\left\langle Z, Z^{*}\right\rangle$, hence we have (i).

1-2. Let now M be a continous d-dimensional local martingale, and $\mathcal{M}_{b}\left(M^{\perp}\right)$ be the class of all elements of \mathcal{M}_{b} which are orthogonal to M (i.e., to all components of M).

A q-dimensional process Z on the extension is called an M-biased \mathcal{F}-conditional Gaussian martingale if it can be written as

$$
\begin{equation*}
Z_{t}=Z_{t}^{\prime}+\int_{0}^{t} u_{s} d M_{s} \tag{1.4}
\end{equation*}
$$

where Z^{\prime} is an \mathcal{F}-conditional Gaussian martingale and u is a predictable $\mathbb{R}^{q} \otimes \mathbb{R}^{d}$ on $(\Omega, \mathcal{F}, \boldsymbol{F}, P)$.

Proposition 1-2: Let Z be a continuous adapted q-dimensional process on the very good extension $(\tilde{\Omega}, \tilde{\mathcal{F}}, \tilde{\mathbb{F}}, \tilde{P})$, with $Z_{0}=0$. The following statements are equivalent:
(i) Z is a local martingale on the extension, orthogonal to all elements of $\mathcal{M}_{b}\left(M^{\perp}\right)$, and the brackets $\left\langle Z, Z^{*}\right\rangle$ and $\left\langle Z, M^{*}\right\rangle$ are \mathbb{F}-adapted.
(ii) Z is an M-biased \mathcal{F}-conditional Gaussian martingale.

In this case, the \mathcal{F}-conditional law of Z is characterized by the processes $M,\left\langle Z, Z^{*}\right\rangle$ and $\left\langle Z, M^{*}\right\rangle$.

Proof. Under either (i) or (ii), Z and M are continous local martingales (use the fact that the extension is very good, and use (1.4) under (ii)). We write $F=\left\langle Z, Z^{*}\right\rangle$, $G=\left\langle Z, M^{*}\right\rangle$ and $H=\left\langle M, M^{*}\right\rangle$.

If (ii) holds, (1.4) and Proposition 1-1 yield for all $N \in \mathcal{M}_{b}$:

$$
\begin{equation*}
G_{t}=\int_{0}^{t} u_{s}^{*} d H_{s}, \quad F_{t}=\left\langle Z^{\prime}, Z^{\prime *}\right\rangle_{t}+\int_{0}^{t} u_{s}^{*} d H_{s} u_{s}^{*}, \quad\langle Z, N\rangle_{t}=\int_{0}^{t} u_{s}^{*} d\langle M, N\rangle_{s} . \tag{1.5}
\end{equation*}
$$

Then (i) readily follows. Further, (1.5) implies that u and $\left\langle Z^{\prime}, Z^{\prime *}\right\rangle$ are determined by F, G and H. Since $\int_{0} u_{s} d M_{s}$ is \mathcal{F}-measurable, the last claim follows from (1.4) and Proposition 1-1 again.

Assume conversely (i). There are a continuous increasing process A and predictable processes f, g, h with values in $\mathbb{R}^{q} \otimes \mathbb{R}^{q}, \mathbb{R}^{q} \otimes \mathbb{R}^{d}$ and $\mathbb{R}^{d} \otimes \mathbb{R}^{d}$ respectively, such that $F_{t}=\int_{0}^{t} f_{s} d A_{s}, G_{t}=\int_{0}^{t} g_{s} d A_{s}$ and $H_{t}=\int_{0}^{t} h_{s} d A_{s}$.

The process (M, Z) is a continuous local martingale on the extension, with bracket $K_{t}=\int_{0}^{t} k_{s} d A_{s}$, where $k=\left(\begin{array}{cc}h & g^{*} \\ g & f\end{array}\right)$. By triangularization we may write $k=z z^{*}$, where

$$
z=\left(\begin{array}{cc}
v & 0 \tag{1.6}\\
u v & w
\end{array}\right)
$$

so that $h=v v^{*}, g=u v v^{*}$ and $f=u v v^{*} u^{*}+w w^{*}$. Let us put $Y_{t}=\int_{0}^{t} u_{s} d M_{s}$ and $Z^{\prime}=Z-Y$. Then since the extension is very good, Z^{\prime} is a local martingale on the extension, and $\left\langle Z^{\prime}, Z^{* *}\right\rangle_{t}=\int_{0}^{t} w_{s} w_{s}^{*} d A_{s}$ is \mathbb{F}-adapted. Further, $\left\langle Z^{\prime}, N\right\rangle_{t}=$ $\langle Z, N\rangle_{t}-\int_{0}^{t} u_{s} d\langle M, N\rangle_{s}:$ first this implies that $\left\langle Z^{\prime}, N\right\rangle=0$ if $N \in \mathcal{M}_{b}\left(M^{\perp}\right)$ (since then $\langle Z, N\rangle=0$ by hypothesis), second this implies that when $N_{t}=\int_{0}^{t} \alpha_{s} d M_{s}$ we have $\left\langle Z^{\prime}, N\right\rangle_{t}=\int_{0}^{t}\left(g_{s} \alpha_{s}^{*}-u_{s} v_{s} v_{s}^{*} \alpha_{s}\right) d A_{s}=0$. Thus Z^{\prime} is orthogonal to all $N \in \mathcal{M}_{b}$, and it is an \mathcal{F}-conditional Gaussian martingale by Proposition 1-1.

1-3. Let us denote by \mathcal{S}_{r} the set of all symmetric nonnegative $r \times r$-matrices. In Proposition 1.1, the process $\left\langle Z, Z^{*}\right\rangle$ is a continuous adapted non-decreasing \mathcal{S}_{q}-valued process, null at 0. In Proposition 1-2, the bracket of (M, Z) is a continuous adapted non-decreasing \mathcal{S}_{d+q}-valued process, null at 0 . Conversely we have:

Proposition 1-3: a) Let F be a continuous adapted nondecreasing \mathcal{S}_{q}-valued process, with $F_{0}=0$, on the basis $(\Omega, \mathcal{F}, \mathbb{F}, P)$. There exists a continuous \mathcal{F}-conditional Gaussian martingale Z on a very good extension, such that $\left\langle Z, Z^{*}\right\rangle=F$.
b) Let K be a continuous adapted nondecreasing \mathcal{S}_{d+q}-valued process, with $K_{0}=0$, and M be a continuous d-dimensional local martingale with $\left\langle M^{i}, M^{j}\right\rangle=K^{i j}$ for $1 \leq$ $i, j \leq d$, on the basis $(\Omega, \mathcal{F}, \mathbb{F}, P)$. There exists a continuous M-biased \mathcal{F}-conditional Gaussian martingale Z on a very good extension, such that $\left\langle Z^{i}, M^{j}\right\rangle=K^{d+i, j}$ for $1 \leq i \leq q, 1 \leq j \leq d$, and $\left\langle Z^{i}, Z^{j}\right\rangle=K^{d+i, d+j}$ for $1 \leq i, j \leq q$.

Of course (a) is a particular case of (b) (take $M=0$), but in the proof below (b) is obtained as a consequence of (a).

Proof. a) Take $\left(\boldsymbol{\Omega}^{\prime}, \mathcal{F}^{\prime}, \boldsymbol{F}^{\prime}\right)$ to be the canonical space of all \mathbb{R}^{d}-valued continuous functions on $[0,1]$, with the usual filtration and the canonical process $Z_{t}\left(\omega^{\prime}\right)=\omega^{\prime}(t)$. For each ω, denote by Q_{ω} the unique probability measure on ($\Omega^{\prime}, \mathcal{F}^{\prime}$) under which Z is a centered Gaussian process with covariance $\int Z_{t} Z_{s}^{*} d Q_{\omega}=F_{s} \wedge_{t}(\omega)$. This structure
of the covariance implies that Z has independent increments and thus is a martingale under each Q_{ω} : Defining $(\tilde{\Omega}, \tilde{\mathcal{F}}, \tilde{F}, \tilde{P})$ by (1.1) gives the result.
b) As in the previous proof, we can write $K_{t}=\int_{0}^{t} k_{s} d A_{s}$ for a continuous adapted increasing process A and a predictable process $k=z z^{*}$ with z as in (1.6). By (a) we have a continuous \mathcal{F}-conditional Gaussian martingale Z^{\prime} on a very good extension, with $\left\langle Z^{\prime}, Z^{\prime *}\right\rangle_{t}=\int_{0}^{t} w_{s} w_{s}^{*} d A_{s}$. We can set $Z_{t}=Z_{t}^{\prime}+\int_{0}^{t} u_{s} d M_{s}$, and some computations yileds that Z satisfies our requirements.

We even have a more "concrete" way of constructing Z above, when K is absolutely continuous w.r.t. Lebesgue measure on $[0,1]$. Let $\left(\Omega^{W}, \mathcal{F}^{W}, \mathbb{F}^{W}, P^{W}\right)$ be the q^{-} dimensional Wiener space with the canonical Wiener process W. Then $(\tilde{\Omega}, \tilde{\mathcal{F}}, \tilde{F}, \tilde{P})$ defined by

$$
\begin{equation*}
\tilde{\Omega}=\Omega \times \Omega^{W}, \quad \tilde{\mathcal{F}}=\mathcal{F} \otimes \mathcal{F}^{W}, \quad \tilde{\mathcal{F}}_{t}=\cap_{s>t} \mathcal{F}_{s} \otimes \mathcal{F}_{s}^{W}, \quad \tilde{P}=P \otimes P^{W} \tag{1.7}
\end{equation*}
$$

is a very good extension of $(\Omega, \mathcal{F}, \mathbb{F}, P)$, called the canonical q-dimensional Wiener extension of $(\Omega, \mathcal{F}, \mathbb{F}, P)$. Note that W is also a Wiener process on the extension.

Proposition 1-4: Let K and M be as in Proposition 1-3(b), and assume that $K_{t}=$ $\int_{0}^{t} k_{s} d s$ with k predictable $\mathcal{S}_{d+q^{-}}$valued. Then we can choose a version of k of the form $k=z z^{*}$ with $z=\left(\begin{array}{cc}v & 0 \\ u v & w\end{array}\right)$, and on the canonical q-dimensional Wiener extension of $(\Omega, \mathcal{F}, \mathcal{F}, P)$ the process

$$
\begin{equation*}
Z_{t}=\int_{0}^{t} u_{s} d M_{s}+\int_{0}^{t} w_{s} d W_{s} \tag{1.8}
\end{equation*}
$$

is a continuous M-biased \mathcal{F}-conditional Gaussian martingale, such that $\left\langle Z^{i}, M^{j}\right\rangle=$ $K^{d+i, j}$ for $1 \leq i \leq q$ and $1 \leq j \leq d$, and $\left\langle Z^{i}, Z^{j}\right\rangle=K^{d+i, d+j}$ for $1 \leq i, j \leq q$.

Proof. The first claim has already been proved. (1.8) defines a continuous q dimensional local martingale on the canonical Wiener extension and a simple computation shows that it has the required brackets.

2 Stable convergence to conditionally Gaussian martingales

2-1. First we recall some facts about stable convergence. Let X_{n} be a sequence of random variables with values in a metric space E, all defined on (Ω, \mathcal{F}, P). Let $(\tilde{\Omega}, \tilde{\mathcal{F}}, \tilde{P})$ be an extension of (Ω, \mathcal{F}, P) (as in Section 1 , except that there is no filtration here), and let X be an E-valued variable on the extension. Let finally \mathcal{G} be a sub σ-field of \mathcal{F}. We say that $X_{n} \mathcal{G}$-stably converges in law to X, and write $X_{n} \rightarrow \mathcal{G}-\mathcal{L} X$, if

$$
\begin{equation*}
E\left(Y f\left(X_{n}\right)\right) \rightarrow \tilde{E}(Y f(X)) \tag{2.1}
\end{equation*}
$$

for all $f: E \rightarrow \mathbb{R}$ bounded continuous and all bounded variable Y on (Ω, \mathcal{G}). This property, introduced by Renyi [6] and studied by Aldous and Eagleson [1], is (slightly)
stronger than the mere convergence in law. It applies in particular when X_{n}, X are \mathbb{R}^{q}-valued càdlàg processes, with $E=\mathbb{D}\left([0,1], \mathbb{R}^{q}\right)$ the Skorokhod space.

If X_{n}^{\prime} are some other E-valued variables, then (with δ denoting a distance on E):

$$
\begin{equation*}
\delta\left(X_{n}^{\prime}, X_{n}\right) \rightarrow{ }^{P} 0, \quad X_{n} \rightarrow \mathcal{G}-\mathcal{L} X \quad \Rightarrow \quad X_{n}^{\prime} \rightarrow{ }^{\mathcal{G}}-\mathcal{L} X . \tag{2.2}
\end{equation*}
$$

Also, if U_{n}, U are on (Ω, \mathcal{F}), with values in another metric space E^{\prime}, then

$$
\begin{equation*}
U_{n} \rightarrow^{P} U, \quad X_{n} \rightarrow \rightarrow^{\mathcal{G}-\mathcal{L}} X \Rightarrow\left(U_{n}, X_{n}\right) \rightarrow \mathcal{G}-\mathcal{L}(U, X) . \tag{2.3}
\end{equation*}
$$

When $\mathcal{G}=\mathcal{F}$ we simply say that X_{n} stably converges in law to X, and we write $X_{n} \rightarrow{ }^{s-\mathcal{L}} X$.

2-2. Now we describe a rather general setting for our convergence results. We start with a continuous d-dimensional local martingale M on the basis $(\Omega, \mathcal{F}, \boldsymbol{F}, P)$: this will be our "reference" process. The set \mathcal{M}_{b} is as in Section 1.

Next, for each integer n we are given a filtration $\mathbb{F}^{n}=\left(\mathcal{F}_{t}^{n}\right)_{t \in[0,1]}$ on (Ω, \mathcal{F}) with the following property:

Property (F): We have a d-dimensional square-integrable \mathbb{F}^{n}-martingale $M(n)$ and, for each $N \in \mathcal{M}_{b}$, a bounded \mathbb{F}^{n}-martingale $N(n)$, such that

$$
\begin{gather*}
\sup _{n, t, \omega}\left|N(n)_{t}(\omega)\right|<\infty, \tag{2.4}\\
\left\langle M(n), M(n)^{*}\right\rangle_{t} \rightarrow^{P}\left\langle M, M^{*}\right\rangle_{t}, \quad \forall t \in[0,1], \tag{2.5}
\end{gather*}
$$

(the bracket above in the predictable quadratic variation relative to \mathbb{F}^{n}) and that, for any finite family (N^{1}, \ldots, N^{m}) in \mathcal{M}_{b},

$$
\begin{equation*}
\left(M(n), N^{1}(n), \ldots, N^{m}(n)\right) \rightarrow^{P}\left(M, N^{1}, \ldots, N^{m}\right) \text { in } \mathbb{D}\left([0,1], \mathbb{R}^{d+m}\right) . \square \tag{2.6}
\end{equation*}
$$

In practice we encounter two situations: first, $\mathcal{F}_{t}^{n}=\mathcal{F}_{t}$, for which (F) is obvious with $M(n)=M$ and $N(n)=N$. Second, $\mathcal{F}_{t}^{n}=\mathcal{F}_{[n t] / n}$, a situation which will be examined in Section 3.

2-3. For stating our main result we need some more notation. We are interested in the behaviour of a sequence (Z^{n}) of q-dimensional processes, each Z^{n} being an \mathbb{F}^{n} semimartingale, and we denote by (B^{n}, C^{n}, ν^{n}) its characteristics, relative to a given continuous truncation function h_{q} on \mathbb{R}^{q} (i.e. a continuous function $h_{q}: \mathbb{R}^{q} \rightarrow \mathbb{R}^{q}$ with compact support and $h_{q}(x)=x$ for $|x|$ small enough): see [5]. If $h_{q}^{\prime}(x)=$ $x-h_{q}(x)$, we can write

$$
\begin{equation*}
Z_{t}^{n}=B_{t}^{n}+X_{t}^{n}+\sum_{s \leq t} h_{q}^{\prime}\left(\Delta Z_{s}^{n}\right) \tag{2.7}
\end{equation*}
$$

where X^{n} is an $\left(\mathcal{F}_{t}^{n}\right)$-local martingale with bounded jumps, and $\Delta Y_{t}=Y_{t}-Y_{t-}$.
Here is the main result:

Theorem 2-1: Assume Property (F). Assume also that there are two continuous processes F and G and a continuous process B of bounded variation on $(\Omega, \mathcal{F}, \mathbb{F}, P)$ such that (the brackets below being the predictable quadratic variations relative to the filtration \mathbb{F}^{n}):

$$
\begin{gather*}
\sup _{t}\left|B_{t}^{n}-B_{t}\right| \rightarrow^{P} 0, \tag{2.8}\\
F_{t}^{n}:=\left\langle X^{n}, X^{n *}\right\rangle_{t} \rightarrow^{P} F_{t}, \quad \forall t \in[0,1], \tag{2.9}\\
G_{t}^{n}:=\left\langle X^{n}, M(n)^{*}\right\rangle_{t} \rightarrow^{P} G_{t}, \quad \forall t \in[0,1], \tag{2.10}\\
U(\varepsilon)^{n}:=\nu^{n}([0,1] \times\{x:|x|>\varepsilon\}) \rightarrow^{P} \quad 0, \quad \forall \varepsilon>0, \tag{2.11}\\
V(N)_{t}^{n}:=\left\langle X^{n}, N(n)\right\rangle_{t} \rightarrow{ }^{P} 0, \quad \forall t \in[0,1], \quad \forall N \in \mathcal{M}_{b}\left(M^{\perp}\right) . \tag{2.12}
\end{gather*}
$$

Then
(i) There is a very good extension of $(\Omega, \mathcal{F}, \mathbb{F}, P)$ and an M-biased continuous \mathcal{F}-conditional Gaussian martingale Z^{\prime} on this extension with

$$
\begin{equation*}
\left\langle Z^{\prime}, Z^{\prime *}\right\rangle=F, \quad\left\langle Z^{\prime}, M^{*}\right\rangle=G \tag{2.13}
\end{equation*}
$$

such that $Z^{n} \rightarrow^{s-\mathcal{L}} Z:=B+Z^{\prime}$.
(ii) Assuming further that $d\left(M^{i}, M^{i}\right\rangle_{t} \ll d t$ and $d F_{t}^{i i} \ll d t$, there are predictable processes u, v, w with values in $\mathbb{R}^{q} \otimes \mathbb{R}^{d}, \mathbb{R}^{d} \otimes \mathbb{R}^{d}$ and $\mathbb{R}^{q} \otimes \mathbb{R}^{q}$ respectively, such that

$$
\left.\begin{array}{l}
\left\langle M, M^{*}\right\rangle_{t}=\int_{0}^{t} u_{s} u_{s}^{*} d s, \quad G_{t}=\int_{0}^{t} u_{s} v_{s} v_{s}^{*} d s \tag{2.14}\\
F_{t}=\int_{0}^{t}\left(u_{s} v_{s} v_{s}^{*} u_{s}^{*}+w_{s} w_{s}^{*} d s\right.
\end{array}\right\}
$$

and the limit of Z^{n} can be realized on the canonical q-dimensional Wiener extension of $(\Omega, \mathcal{F}, \boldsymbol{F}, P)$, with the canonical Wiener process W, as

$$
\begin{equation*}
Z_{t}=B_{t}+\int_{0}^{t} u_{s} d M_{s}+\int_{0}^{t} w_{s} d W_{s} \tag{2.15}
\end{equation*}
$$

The proof will be divided in a number of steps.
Step 1. Let $H^{n}=\left\langle M(n), M(n)^{*}\right\rangle$ and $H=\left\langle M, M^{*}\right\rangle$. Consider the following processes with values in the set of symmetric $(d+q) \times(d+q)$ matrices:

$$
K^{n}=\left(\begin{array}{cc}
H^{n} & G^{n *} \\
G^{n} & F^{n}
\end{array}\right), \quad K=\left(\begin{array}{cc}
H & G^{*} \\
G & F
\end{array}\right)
$$

By (2.9), (2.10) and (F), we have $K_{t}^{n} \rightarrow^{P} \quad K_{t}$ for all t, while K^{n} is a nondecreasing process with values in \mathcal{S}_{d+q}. So there is a version of K which is also a nondecreasing \mathcal{S}_{d+q}-valued process. Further K is continuous in time, so by a classical result we even have

$$
\begin{equation*}
\sup _{i}\left|K_{t}^{n}-K_{t}\right| \rightarrow^{P} 0 . \tag{2.16}
\end{equation*}
$$

Further we can write $K_{t}=\int_{0}^{t} k_{s} d A_{s}$ for some continuous adapted increasing process A and some predictable \mathcal{S}_{d+q}-valued process k, and as seen in the proof of Proposition $1-2$ we have $k=z z^{*}$ with z given by (1.6): under the additional assumption of (ii), we can take $A_{t}=t$, so we have (2.14), and the last claim of (ii) will follow from (i) and from Proposition 1-4.

Step 2. In this step we prove (2.12) can be strenghtened as such:

$$
\begin{equation*}
\sup _{t}\left|V(N)_{t}^{n}\right| \rightarrow^{P} 0 . \tag{2.17}
\end{equation*}
$$

In view of (2.12) it suffices to prove that

$$
\begin{equation*}
\forall \varepsilon, \eta>0, \exists \theta>0, \exists n_{0} \in \mathbb{N}^{*}, \forall n \geq n_{0} \quad \Rightarrow \quad P\left(w^{n}(\theta)>\eta\right) \leq \varepsilon, \tag{2.18}
\end{equation*}
$$

where $w^{n}(\theta)=\sup _{0<s<\theta, 0<t<1-\theta}\left|V(N)_{t+s}^{n}-V(N)_{t}^{n}\right|$ is the θ-modulus of continuity of $V(N)^{n}$. Denoting by $\bar{w}^{\prime n}(\theta)$ the θ-modulus of continuity of $F^{n},(2.16)$ and the continuity of K yield

$$
\begin{equation*}
\forall \varepsilon, \eta>0, \exists \theta>0, \exists n_{0} \in N^{*}, \forall n \geq n_{0} \quad \Rightarrow \quad P\left(w^{\prime n}(\theta)>\eta\right) \leq \varepsilon . \tag{2.19}
\end{equation*}
$$

On the other hand, a classical inequality on quadratic covariations yields that for all $u>0$ we have $2\left|V(N)_{t}^{n}-V(N)_{s}^{n}\right| \leq\left|F_{t}^{n}-F_{s}^{n}\right| / u+u\left(\langle N, N\rangle_{t}-\langle N, N\rangle_{s}\right)$ if $s<t$, so that $2 w^{n}(\theta) \leq w^{\prime n}(\theta) / u+\langle N, N\rangle_{1}$, hence

$$
P\left(w^{n}(\theta)>\eta\right) \leq P\left(w^{\prime n}(\theta)>u \eta\right)+\frac{u}{\eta} E\left(N(n)_{\mathbf{1}}^{2}\right) .
$$

Then (2.18) readily follows from (2.19), $\sup _{n} E\left(N(n)_{1}^{2}\right)<\infty$ and from the arbitraryness of $u>0$.

Step 3. Here we prove that, instead of proving $Z^{n} \rightarrow^{s-\mathcal{L}} Z$ with $Z=B+Z^{\prime}$ as in (i), it is enough to prove that

$$
\begin{equation*}
X^{n} \rightarrow^{s-\mathcal{L}} Z^{\prime} \tag{2.20}
\end{equation*}
$$

Indeed, set $Z_{t}^{\prime \prime n}=\sum_{s \leq t} h_{q}^{\prime}\left(\Delta Z_{s}^{n}\right)$. By ([5], VI-4.22), (2.11) implies $\sup _{t}\left|\Delta Z_{t}^{n}\right| \rightarrow^{P} 0$; since $h_{q}^{\prime}(x)=0$ for $|x|$ small enough, we have $\sup _{t}\left|Z_{t}^{\prime \prime n}\right| \rightarrow^{P} \quad 0$. On the other hand $\Delta B_{t}^{n}=\int h_{q}(x) \nu^{n}(\{t\}, d x)$, so (2.11) again yields $\sup _{t}\left|\Delta B_{t}^{n}\right| \rightarrow^{P} \quad 0$, hence B is continuous by (2.8). Hence the claim follows from (2.3).

Step 4. Here we prove (2.20) under the additional assumption that \mathcal{F} is separable.
a) There is a sequence of bounded variables $\left(Y_{m}\right)_{m \in \boldsymbol{N}}$ which is dense in $\boldsymbol{L}^{1}(\Omega, \mathcal{F}, P)$. We set $N_{t}^{m}=E\left(Y_{m} \mid \mathcal{F}_{t}\right)$, so $N^{m} \in \mathcal{M}_{b}$, and we have two important properties:
(A) Every bounded martingale is the limit in \mathbb{L}^{2}, uniformly in time, of a sequence of sums of stochastic integrals w.r.t. a finite number of N^{m} 's: see (4.15) of [2].
(B) $\left(\mathcal{F}_{t}\right)$ is the smallest filtration, up to P-null sets, w.r.t. which all N^{m} 's are adapted: indeed let $\left(\mathcal{G}_{t}\right)$ be the above-described filtration, and $A \in \mathcal{F}_{t}$; there is a sequence $Y_{m(n)} \rightarrow 1_{A}$ in \mathbb{L}^{1}, so $N_{t}^{m(n)}=E\left(Y_{m(n)} \mid \mathcal{F}_{t}\right)$ is \mathcal{G}_{t}-measurable and converges in \mathbb{L}^{1} to $E\left(1_{A} \mid \mathcal{F}_{t}\right)=1_{A}$.
b) Introduce some more notation. First $\mathcal{N}=\left(N^{m}\right)_{m \in \boldsymbol{N}}$ and $\mathcal{N}(n)=\left(N^{m}(n)\right)_{m \in \boldsymbol{N}}$ (recall Property (F)) can be considered as processes with paths in $\mathbb{D}\left([0,1], \mathbb{R}^{\boldsymbol{N}}\right)$. Then (2.6) and (2.16) yield

$$
\begin{equation*}
\left(M(n), \mathcal{N}(n), K^{n}\right) \rightarrow^{P}(M, \mathcal{N}, K) \text { in } \mathbb{D}\left([0,1], \mathbb{R}^{d} \times \mathbb{R}^{\boldsymbol{N}} \times \mathbb{R}^{(d+q)^{2}}\right) \tag{2.21}
\end{equation*}
$$

On the other hand, VI-4.18 and VI-4.22 in [5] and (2.11) and (2.16) imply that the sequence (X^{n}) is C-tight. It follows from (2.21) that the sequence ($\left.X^{n}, M(n), \mathcal{N}(n)\right)$ is tight and that any limiting process $(\hat{X}, \hat{M}, \hat{\mathcal{N}})$ has $\mathcal{L}(\hat{M}, \hat{\mathcal{N}})=\mathcal{L}(M, \mathcal{N})$.
c) Choose now any subsequence, indexed by n^{\prime}, such that ($\left.X^{n^{\prime}}, M\left(n^{\prime}\right), \mathcal{N}\left(n^{\prime}\right)\right)$ converges in law. From what precedes one can realize the limit as such: consider the canonical space $\left(\Omega^{\prime}, \mathcal{F}^{\prime}, \mathbb{F}^{\prime}\right)$ of all continuous functions from $[0,1]$ into \mathbb{R}^{q}, with the canonical process Z^{\prime}, and define $\left(\tilde{\Omega}, \tilde{\mathcal{F}},\left(\tilde{\mathcal{F}}_{t}\right)_{t \in[0,1]}\right)$ by (1.1); since $\mathcal{F}=\sigma\left(Y_{m}: m \in N\right)$ up to P-null sets, there is a probability measure \tilde{P} on $(\tilde{\Omega}, \tilde{\mathcal{F}})$ whose Ω-marginal is P, and such that the laws of $\left(X^{n^{\prime}}, M\left(n^{\prime}\right), \mathcal{N}\left(n^{\prime}\right)\right)$ converge to the law of (X, M, \mathcal{N}) under \tilde{P}.

Therefore we have an extension $(\tilde{\Omega}, \tilde{\mathcal{F}}, \tilde{\mathscr{F}}, \tilde{P})$ of $(\Omega, \mathcal{F}, \mathbb{F}, P)$ (the existence of a disintegration of \tilde{P} as in (1.1) is obvious, due to the definition of $\left(\Omega^{\prime}, \mathcal{F}^{\prime}\right)$), and up to \tilde{P}-null sets the filtrations \boldsymbol{F} and \tilde{F} are generated by (M, \mathcal{N}) and $\left(Z^{\prime}, M, \mathcal{N}\right)$ respectively (use Property (B) of (a)).

Set $Y^{n}=\left(M(n), X^{n}\right)$ and $Y=\left(M, Z^{\prime}\right)$. By contruction, all components of Y^{n}, $\mathcal{N}(n), Y^{n} Y^{n *}-K^{n}$ are \mathbb{F}^{n}-local martingales with uniformly bounded jumps. Then IX-1.17 of [5] (applied to processes with countably many components, which does not change the proof) yields that all components of Y, \mathcal{N} and $Y Y^{*}-K$ are $\tilde{\mathbb{F}}$-local martingales under \tilde{P}. This implies first that on our extension we have

$$
\begin{equation*}
F=\left\langle Z^{\prime}, Z^{\prime *}\right\rangle, \quad G=\left\langle Z^{\prime}, M^{*}\right\rangle \tag{2.22}
\end{equation*}
$$

(since K is continuous increasing in \mathcal{S}_{d+q}), and second that all N^{m} are \tilde{F}-martingales. Then by (9.21) of [2] any stochastic integral $\int_{0} a_{s} d N_{s}^{m}$ with a \mathbb{F}-predictable is also an ($\tilde{\boldsymbol{F}}$-martingale: Property (A) of (a) yields that all elements of \mathcal{M}_{b} are $\tilde{\boldsymbol{F}}$-martingales, hence our extension is very good.
d) Let now $N \in \mathcal{M}_{b}\left(M^{\perp}\right)$. We could have included N in the sequence (N^{m}): what precedes remains valid, with the same limit, for a suitable subsequence ($n^{\prime \prime}$) of (n^{\prime}). Moreover $X^{n} N(n)-V(N)^{n}$ is an \mathbb{F}^{n}-local martingale with bounded jumps, while by (2.17) the sequence $\left(X^{n^{\prime \prime}}, \mathcal{N}\left(n^{\prime \prime}\right),\left(n^{\prime \prime}\right), V(N)^{n^{\prime \prime}}\right)$ converges in law to $\left(Z^{\prime}, \mathcal{N}, N, 0\right)$. The same argument as above yields that $Z^{\prime} N$ is a local martingale on the extension, so Z^{\prime} is othogonal to all elements of $\mathcal{M}_{b}\left(M^{\perp}\right)$.

Therefore Z^{\prime} satisfies (i) of Proposition 1-2: hence Z^{\prime} is an M-biased continuous \mathcal{F}-conditional Gaussian martingale, whose law under Q_{ω}, which is Q_{ω} itself, is determined by the processes M, F, G, and in particular it does not depend on the subsequence (n^{\prime}) chosen above.

In other words all convergent subsequence of $\left(X^{n}, \mathcal{N}(n)\right)$ have the same limit $\left(Z^{\prime}, \mathcal{N}\right)$ in law, with the same measure \tilde{P}, and thus the original sequence $\left(X^{n}, \mathcal{N}(n)\right)$ converges in law to $\left(Z^{\prime}, \mathcal{N}\right)$. In particular if f is a bounded continuous function on
$\mathbb{D}\left([0,1], \mathbb{R}^{q}\right)$ and since $N(n)^{m}$ is a component of $\mathcal{N}(n)$ bounded uniformly in n, we get

$$
E\left(f\left(X^{n}\right) N(n)_{1}^{m}\right) \rightarrow \dot{E}\left(f\left(Z^{\prime}\right) N_{1}^{m}\right)
$$

Now (2.4) and (2.6) yield that $N(n)_{1}^{m} \rightarrow N_{1}^{m}$ in \mathbb{L}^{1}, hence

$$
E\left(f\left(X^{n}\right) N_{1}^{m}\right) \rightarrow \tilde{E}\left(f\left(Z^{\prime}\right) N_{1}^{m}\right)
$$

Since $\tilde{E}\left(U N_{\mathbf{1}}^{m}\right)=\tilde{E}\left(U Y_{m}\right)$ for any bounded $\tilde{\mathcal{F}}$-measurable variable U, we deduce

$$
E\left(f\left(X^{n}\right) Y_{m}\right) \rightarrow \tilde{E}\left(f\left(Z^{\prime}\right) Y_{m}\right) .
$$

Finally any bounded \mathcal{F}-measurable variable Y is the \mathbb{L}^{1}-limit of a subsequence of (Y_{m}), hence one readily deduces that

$$
\begin{equation*}
E\left(f\left(X^{n}\right) Y\right) \rightarrow \tilde{E}\left(f\left(Z^{\prime}\right) Y\right) \tag{2.23}
\end{equation*}
$$

which is (2.20).
Step 5. It remains to remove the separability assumption on \mathcal{F}. Denote by \mathcal{H} the σ-field generated by the random variables ($M_{t}, K_{t}, B_{t}, X_{i}^{n}: t \in[0,1], n \geq 1$), and let \mathcal{G} be any separable σ-field containing \mathcal{H}. Let $\left(Y_{m}\right)_{m \in N}$ be a dense sequence of bounded variables in $\mathbb{L}^{1}(\Omega, \mathcal{G}, P)$, and $N_{t}^{m}=E\left(Y_{m} \mid \mathcal{F}_{t}\right)$, and set $\mathbb{G}=\left(\mathcal{G}_{t}\right)_{y \in[0,1]}$ for the filtration generated by the processes $\left(N^{m}\right)_{m \in \boldsymbol{N}}$.

We have $E\left(Y_{m} \mid \mathcal{F}_{t}\right)=E\left(Y_{m} \mid \mathcal{G}_{t}\right)$ for all m, so by a density argument $E\left(Y \mid \mathcal{F}_{t}\right)=$ $E\left(Y \mid \mathcal{G}_{t}\right)$ for all $Y \in \mathbb{L}^{1}(\Omega, \mathcal{G}, P)$: this implies that any \mathbb{G}-martingale is an \mathbb{F} martingale, and in particular each N^{m} is in \mathcal{M}_{b}, and also that every \mathbb{F}-adapted and \mathcal{G}-measurable process (like K, B and M) is \mathbb{G}-adapted. Thus M is a \mathbb{G}-local martingale. Finally, any bounded \mathbb{G}-martingale which is orthogonal w.r.t. \mathbb{G} to M is also orthogonal to M w.r.t. \mathbb{F}.

In other words, Property (F) is satisfied by \mathbb{G} and the same filtration \mathbb{F}^{n} and processes $M(n), N(n)$, and (2.8)-(2.12) are satisfied as well with \mathscr{G} instead of \mathbb{F}. We can thus apply Step 4 with the same space $\left(\Omega^{\prime}, \mathcal{F}^{\prime}, \mathbb{F}^{\prime}\right)$ and process Z^{\prime}, and $\tilde{\Omega}=\Omega \times \Omega^{\prime}$, $\check{\mathcal{G}}=\mathcal{G} \oslash \mathcal{F}^{\prime}, \tilde{\mathcal{G}}_{t}=\cap_{s>t} \mathcal{G}_{s} \odot \mathcal{F}_{s}^{\prime}$. We have a transition probability $Q_{\mathcal{G}, \omega}\left(d \omega^{\prime}\right)$ from (Ω, \mathcal{G}) into $\left(\Omega^{\prime}, \mathcal{F}^{\prime}\right)$, such that if $\tilde{P}_{\mathcal{G}}\left(d \omega, d \omega^{\prime}\right)=P_{\mathcal{G}}(d \omega) Q_{\mathcal{G}, \omega}\left(d \omega^{\prime}\right)$ (where $P_{\mathcal{G}}$ is the restriction of P to \mathcal{G}), then

$$
\begin{equation*}
E_{\mathcal{G}}\left(f\left(X^{n}\right) Y\right) \rightarrow \tilde{E}_{\mathcal{G}}\left(f\left(Z^{\prime}\right) Y\right) \tag{2.24}
\end{equation*}
$$

for all bounded continuous function f on $\mathbb{D}\left([0,1], \mathbb{R}^{q}\right)$ and all bounded \mathcal{G}-measurable variable Y.

Further, $Q_{\mathcal{G}, \omega}$ only depends on M, F, G and so is indeed a transition from (Ω, \mathcal{H}) into ($\Omega^{\prime}, \mathcal{F}^{\prime}$) not depending on \mathcal{G} and written Q_{ω}.

It remains to define $(\tilde{\Omega}, \tilde{\mathcal{F}}, \tilde{F}, \tilde{P})$ by (1.1): since $\omega \leadsto Q_{\omega}(A)$ is \mathcal{F}_{t}-measurable for $A \in \mathcal{F}_{t}^{\prime}$ it is a very good extension of $(\Omega, \mathcal{F}, \mathbb{F}, P)$. Furthermore $E_{\mathcal{G}}\left(f\left(X^{n}\right) Y\right)=$ $E\left(f\left(X^{n}\right) Y\right)$ and $\dot{E}_{\mathcal{G}}\left(f\left(Z^{\prime}\right) Y\right)=\tilde{E}\left(f\left(Z^{\prime}\right) Y\right)$ for all bounded \mathcal{G}-measurable Y : hence (2.24) yields (2.23) for all such Y. Since any \mathcal{F}-measurable variable Y is also \mathcal{G} measurable for some separable σ-field \mathcal{G} containing \mathcal{H}, we deduce that (2.23) holds for all bounded \mathcal{F}-measurable Y, and we are finished.

2-4. When each Z^{n} is \mathbb{F}^{n}-locally square integrable, i.e. when we can write

$$
\begin{equation*}
Z^{n}=B^{n}+X^{n}, \tag{2.25}
\end{equation*}
$$

with B^{n} a \mathbb{F}^{n}-predictable with finite variation and X^{n} a \mathbb{F}^{n}-locally square-integrable martingale, we have another version, involving a Lindeberg-type condition instead of (2.11), namely:

Theorem 2-2: Assume Property (F). Assume also that Z^{n} is as in (2.25), and that there are two continuous processes F and G and a continuous process B of bounded variation on ($\Omega, \mathcal{F}, \mathbb{F}, P$) satisfying (2.8), (2.9), (2.10), (2.12) and

$$
\begin{equation*}
W(\varepsilon)^{n}:=\int_{|x|>\varepsilon}|x|^{2} \nu^{n}([0,1] \times d x) \rightarrow^{P} 0, \quad \forall \varepsilon>0 \tag{2.26}
\end{equation*}
$$

Then all results of Theorem 2-1 hold true.
Proof. We have (2.25), and also the decomposition (2.7), i.e.:

$$
\begin{equation*}
Z_{t}^{n}=B_{t}^{\prime n}+X_{t}^{\prime n}+\sum_{s \leq t} h_{q}^{\prime}\left(\Delta Z_{s}^{n}\right) \tag{2.27}
\end{equation*}
$$

We will denote by $F_{t}^{\prime n}, G_{t}^{\prime n}$ and $V^{\prime}(N)_{t}^{n}$ the quantities defined in (2.9), (2.10) and (2.12) with $X^{\prime n}$ instead of X^{n}. We will prove that the assumptions of Theorem 2-1 are met, i.e. we have (2.11) and

$$
\begin{gather*}
\sup _{t}\left|B_{t}^{\prime n}-B_{t}\right| \rightarrow^{P} 0, \tag{2.28}\\
F_{t}^{\prime n} \rightarrow^{P} F_{t}, \quad \forall t \in[0,1], \tag{2.29}\\
G_{t}^{\prime n} \rightarrow^{P} G_{t}, \quad \forall t \in[0,1], \tag{2.30}\\
V^{\prime}(N)_{t}^{n} \rightarrow^{P} 0, \quad \forall t \in[0,1] . \quad \forall N \in \mathcal{M}_{b} \text { orthogonal to } M . \tag{2.31}
\end{gather*}
$$

First (2.11) readily follows from (2.26). Next, comparing (2.25) and (2.27), and if μ^{n} denotes the jump measure of Z^{n}, we get

$$
B_{t}^{\prime n}=B_{t}^{n}+\int h_{q}^{\prime}(x) \nu^{n}([0, t] \times d x), \quad X^{\prime \prime n}:=X^{n}-X^{\prime n}=h_{q}^{\prime} \star\left(\mu^{n}-\nu^{n}\right) .
$$

We have $\left|h_{q}^{\prime}(x)\right| \leq C|x| 1_{\{|x|>\theta\}}$ for some constants $\theta>0$ and C. This implies first that (2.28) follows from (2.8) and (2.26). It also implies

$$
\begin{equation*}
\sum_{i=1}^{q}\left\langle X^{m i, n}, X^{\prime \prime, n}\right\rangle_{t} \leq \int\left|h_{q}^{\prime}(x)\right|^{2} \nu^{n}((0, t] \times d x) \leq C^{2} W^{n}(\theta) . \tag{2.32}
\end{equation*}
$$

We have

$$
\left.\left|F_{t}^{n}-F_{t}^{\prime n}\right| \leq\left|\left\langle X^{\prime \prime n}, X^{\prime \prime n *}\right\rangle_{t}\right|+\sqrt{\left|\left\langle X^{n}, X^{n *}\right\rangle_{t}\right| \mid\left\langle X^{\prime \prime n}, X^{\prime \prime n} *\right.}\right\rangle_{t} \mid,
$$

so (2.9), (2.26) and (2.32) yield (2.29). Similarly, (2.30) follows from (2.5), (2.10), (2.26), (2.32) and from the following inequality:

$$
\left|G_{t}^{n}-G_{t}^{\prime n}\right| \leq \sqrt{\left|\left\langle M(n), M(n)^{*}\right\rangle_{t}\right|\left|\left\langle X^{\prime \prime n}, X^{\prime \prime n}\right\rangle_{t}\right|} .
$$

Finally we have

$$
\left|V(N)_{t}^{n}-V^{\prime}(N)_{t}^{n}\right| \leq \sqrt{\langle N(n), N(n)\rangle_{t}\left|\left\langle X^{\prime \prime n}, X^{\prime \prime n *}\right\rangle_{t}\right|}
$$

while $E\left(\langle N(n), N(n)\rangle_{t}^{2}\right) \leq E\left(N(n)_{1}^{2}\right)$, which is bounded by a constant by (2.4): hence (2.31) follows as above.

3 Convergence of discretized processes

In this section we specialize the previous results to the case when the filtration \mathbb{F}^{n} is the "discretized" filtration defined by $\mathcal{F}_{t}^{n}=\mathcal{F}_{[n t] / n}$. For every càdlàg process Y write

$$
\begin{equation*}
Y_{t}^{n}=Y_{[n t] / n}, \quad \Delta_{i}^{n} Y=Y_{i / n}-Y_{(i-1) / n} \tag{3.1}
\end{equation*}
$$

Here again we have a continuous d-dimensional local martingale M on the stochastic basis $(\Omega, \mathcal{F}, \mathbb{F}, P)$. We denote by h_{d} a continuous truncation function on \mathbb{R}^{d}. We also consider for each n an \mathbb{F}^{n}-semimartingale, i.e. a process of the form

$$
\begin{equation*}
Z_{t}^{n}=\sum_{i=1}^{[n t]} x_{i}^{n} \tag{3.2}
\end{equation*}
$$

where each χ_{i}^{n} is $\mathcal{F}_{i / n}$-measurable. We then have:
Theorem 3-1: Assume that there are two continuous processes F and G and a continuous process B of bounded variation on ($\Omega, \mathcal{F}, \mathbb{F}, P$) such that

$$
\begin{gather*}
\sup _{t}\left|\sum_{i=1}^{[n t]} E\left(h_{q}\left(\chi_{i}^{n}\right) \left\lvert\, \mathcal{F}_{\frac{i-1}{n}}\right.\right)-B_{t}\right| \rightarrow^{P} 0 \tag{3.3}\\
\sum_{i=1}^{[n t]}\left(E\left(h_{q}\left(\chi_{i}^{n}\right) h_{q}\left(\chi_{i}^{n}\right)^{*} \left\lvert\, \mathcal{F}_{\frac{i-1}{n}}\right.\right)-E\left(h_{q}\left(\chi_{i}^{n}\right) \left\lvert\, \mathcal{F}_{\frac{i-1}{n}}\right.\right) E\left(h_{q}\left(\chi_{i}^{n}\right)^{*} \left\lvert\, \mathcal{F}_{\frac{1-1}{n}}^{n}\right.\right)\right) \rightarrow^{P} \quad F_{t}, \forall t \in[0,1] \tag{3.4}
\end{gather*}
$$

$$
\begin{align*}
& \sum_{i=1}^{[n t]}\left(E\left(h_{q}\left(\chi_{i}^{n}\right) h_{d}\left(\Delta_{i}^{n} M\right)^{*} \left\lvert\, \mathcal{F}_{\frac{1-1}{n}}\right.\right)-E\left(h_{q}\left(\chi_{i}^{n}\right) \left\lvert\, \mathcal{F}_{\frac{1-1}{n}}\right.\right) E\left(h_{d}\left(\Delta_{i}^{n} M\right)^{*} \left\lvert\, \mathcal{F}_{\frac{1-1}{n}}^{n}\right.\right)\right) \\
& \rightarrow^{P} G_{t}, \quad \forall t \in[0,1] \tag{3.5}\\
& \sum_{i=1}^{n} P\left(\left|\chi_{i}^{n}\right|>\varepsilon \left\lvert\, \mathcal{F}_{\frac{-1}{n}}^{n}\right.\right) \rightarrow^{P} 0, \quad \forall \varepsilon>0, \tag{3.6}\\
& \sum_{i=1}^{[n t]} E\left(h_{q}\left(\chi_{i}^{n}\right) \Delta_{i}^{n} N \left\lvert\, \mathcal{F}_{\frac{1-1}{n}}\right.\right) \rightarrow^{P} \quad 0, \quad \forall t \in[0,1], \quad \forall N \in \mathcal{M}_{b}\left(M^{\perp}\right) . \tag{3.7}
\end{align*}
$$

Then all results of Theorem 2-1 hold true.
Proof. We will prove that the assumptions of Theorem 2-1 are in force.
a) First we check Property (F). We will take $N(n)=N^{n}$, as defined in (3.1), for all $N \in \mathcal{M}_{b}$, so (2.4) is obvious. Note also that that if $N^{1}, . ., N^{m}$ are in \mathcal{M}_{b}, then

$$
\begin{equation*}
\left(M^{n}, N(n)^{1}, . ., N(n)^{m}\right) \rightarrow^{P}\left(M, N^{1}, . ., N^{m}\right) \text { in } \mathbb{D}\left([0,1], \mathbb{R}^{d+m}\right) \tag{3.8}
\end{equation*}
$$

Next, $M(n)$ is:

$$
\begin{equation*}
M(n)_{t}=\sum_{i=1}^{[n t]}\left(h_{d}\left(\Delta_{i}^{n} M\right)-E\left(h_{d}\left(\Delta_{i}^{n} M\right) \left\lvert\, \mathcal{F}_{\frac{i-1}{n}}\right.\right)\right) \tag{3.9}
\end{equation*}
$$

so $M^{n}-M(n)=A^{n}+A^{\prime n}$, where we have put $A_{t}^{n}=\sum_{i=1}^{[n t]} E\left(h_{d}\left(\Delta_{i}^{n} M\right) \left\lvert\, \mathcal{F}_{\frac{i-1}{n}}\right.\right)$ and $A_{t}^{\prime n}=\sum_{i=1}^{[n t]} h_{d}^{\prime}\left(\Delta_{i}^{n} M\right)\left(\right.$ with $\left.h_{d}^{\prime}(x)=x-h_{d}(x)\right)$. Then (2.5) follows from combining the results (1.15) and (2.12) in [4] (since M is continuous). These results also yield $\sup _{t}\left|A_{t}^{n}\right| \rightarrow P$, and for all $\varepsilon>0$:

$$
\sum_{i=1}^{n} P\left(\left|\Delta_{i}^{n} M\right|>\varepsilon \left\lvert\, \mathcal{F}_{\frac{i-1}{n}}\right.\right) \rightarrow^{P} 0
$$

This and VI-4.22 of [5], together with the fact that $h_{d}^{\prime}(x)=0$ for $|x|$ small enough, imply that $\sup _{t}\left|A_{t}^{\prime n}\right| \rightarrow{ }^{P} 0$, so finally $\sup _{t}\left|M_{t}^{n}-M(n)_{t}\right| \rightarrow{ }^{P} \quad 0$ and (2.6) follows from (3.9): we thus have (F).
b) The decomposition (2.7) of Z^{n} has $B_{t}^{n}=\sum_{i=1}^{[n t]} E\left(h_{q}\left(\chi_{i}^{n}\right) \left\lvert\, \mathcal{F}_{\frac{i-1}{n}}\right.\right)$ and $X_{t}^{n}=$ $\sum_{i=1}^{[n t]}\left(h_{q}\left(\chi_{i}^{n}\right)-E\left(h_{q}\left(\chi_{i}^{n}\right) \left\lvert\, \mathcal{F}_{\frac{i-1}{n}}\right.\right)\right)$. Hence (3.3) is (2.8), and the left-hand sides of (3.4), (3.5) and (3.7) are those of (2.9), (2.10) and (2.12). Finally the left-hand sides of (3.6) and of (2.11) are also the same, so we are finished.

Finally, we could state the "discrete" version of Theorem 2-2. We will rather specialize a little bit more, by supposing that M is square-integrable and that each χ_{i}^{n} is square-integrable. This reads as:

Theorem 3-2: Assume that M is a square-integrable continuous martingale, and that each χ_{i}^{n} is square-integrable. Assume also that there are two continuous processes F and G and a continuous process B of bounded variation on $(\Omega, \mathcal{F}, \mathbb{F}, P)$ such that

$$
\begin{gather*}
\sup _{t}\left|\sum_{i=1}^{[n t]} E\left(\chi_{i}^{n} \left\lvert\, \mathcal{F}_{\frac{1-1}{n}}\right.\right)-B_{t}\right| \rightarrow^{P} \quad 0, \tag{3.10}\\
\sum_{i=1}^{[n t]}\left(E\left(\chi_{i}^{n} \chi_{i}^{n *} \left\lvert\, \mathcal{F}_{\frac{i-1}{n}}\right.\right)-E\left(\chi_{i}^{n} \left\lvert\, \mathcal{F}_{\frac{1-1}{n}}\right.\right) E\left(\chi_{i}^{n *} \left\lvert\, \mathcal{F}_{\frac{1-1}{n}}\right.\right)\right) \rightarrow^{P} \quad F_{t}, \quad \forall t \in[0,1] ; \tag{3.11}\\
\sum_{i=1}^{[n t]} E\left(\chi_{i}^{n} \Delta_{i}^{n} M^{*} \left\lvert\, \mathcal{F}_{\frac{i-1}{n}}\right.\right) \rightarrow^{P} \quad G_{t}, \quad \forall t \in[0,1] ; \tag{3.12}\\
\sum_{i=1}^{n} E\left(\left|\chi_{i}^{n}\right|^{2} \mathbf{1}_{\left\{\left|\chi_{i}^{n}\right|>\varepsilon\right\}} \left\lvert\, \mathcal{F}_{\frac{1-1}{n}}\right.\right) \rightarrow^{P} \quad 0, \quad \forall \varepsilon>0, \tag{3.13}
\end{gather*}
$$

$$
\begin{equation*}
\sum_{i=1}^{[n t]} E\left(\chi_{i}^{n} \Delta_{i}^{n} N \left\lvert\, \mathcal{F}_{\frac{i-1}{n}}\right.\right) \rightarrow^{P} 0, \quad \forall t \in[0,1], \quad \forall N \in \mathcal{M}_{b}\left(M^{\perp}\right) \tag{3.14}
\end{equation*}
$$

Then all results of Theorem 2-1 hold true.
Proof. If we write the decomposition (2.26) for Z^{n}, the left-hand sides of (3.10), (3.11), (3.12), (3.13) and (3.14) are the left-hand sides of (2.8), (2.9), (2.10) with M^{n} instead of $M(n),(2.26)$ and (2.12). By Theorem 2-2 it thus suffices to prove that (F) is satisfied if $N(n)=N^{n}$ and $M(n)=M^{n}$. We have seen (2.4) and (2.6) in the proof of Theorem 3-1, so it remains to prove that $\left\langle M^{n}, M^{n *}\right\rangle_{t} \rightarrow^{P}\left\langle M, M^{*}\right\rangle_{t}$ for all t.

Let us consider $M(n)$ as in (3.9): we have seen that it has (2.5), so it is enough to prove that if $Y^{n}=M^{n}-M(n)$, then

$$
\begin{equation*}
\left\langle Y^{n}, Y^{n *}\right\rangle_{1} \rightarrow{ }^{P} 0 . \tag{3.15}
\end{equation*}
$$

The process $\left\langle Y^{n}, Y^{n *}\right\rangle_{t}$ is L-dominated by $D_{t}^{n}=\sup _{s \leq t}\left|Y_{s}^{n}\right|$, and $W=\sup _{n, t}\left|\Delta D_{t}^{n}\right|$ satisfies $W \leq 2 C+2 \sup _{t}\left|M_{t}\right|$ where $C=\sup \left|h_{d}\right|$: hence $E(W)<\infty$. We have seen in the proof of Theorem 3-1 that $D_{1}^{n} \rightarrow^{P} 0$, so the "optional" Lenglart inequality $\mathrm{I}-3.32$ of [5] yields (3.15), and the proof is finished.

4 Convergence of conditionally Gaussian martingales

Here we still have our basic continuous d-dimensional local martingale M on the basis ($\Omega, \mathcal{F}, \mathbb{F}, P$), and a sequence Z^{n} of M-biased continuous \mathcal{F}-conditional Gaussian martingales: each one is defined on its own very good extension $\left(\tilde{\Omega}^{n}, \tilde{\mathcal{F}}^{n}, \tilde{\boldsymbol{F}}^{n}, \tilde{\boldsymbol{P}}^{n}\right)$. Note that \mathcal{F} can be considered as a sub σ-field of $\tilde{\mathcal{F}}^{n}$ for each n.

Theorem 4-1: Assume that there are two continuous processes F and G on $(\Omega, \mathcal{F}, \mathbb{F}, P)$ such that

$$
\begin{gather*}
F_{t}^{n}:=\left\langle Z^{n}, Z^{n *}\right\rangle_{t} \rightarrow^{P} F_{t}, \quad \forall t \in[0,1], \tag{4.1}\\
G_{t}^{n}:=\left\langle Z^{n}, M(n)^{*}\right\rangle_{t} \rightarrow^{P} G_{t}, \quad \forall t \in[0,1], \tag{4.2}
\end{gather*}
$$

Then there is a very good extension of $(\Omega, \mathcal{F}, \mathbb{F}, P)$ and an M-biased \mathcal{F}-conditional Gaussian martingale Z on this extension with

$$
\begin{equation*}
\left\langle Z, Z^{*}\right\rangle=F, \quad\left\langle Z, M^{*}\right\rangle=G \tag{4.3}
\end{equation*}
$$

such that $Z^{n} \rightarrow \mathcal{F}-\mathcal{L} \quad Z$.
Proof. Set $H^{n}=H=\left\langle M, M^{*}\right\rangle$, and define K^{n} and K as in Step 1 of the proof of Theorem 2-1. (4.1) and (4.2) imply that $K_{t}^{n} \rightarrow^{P} K_{t}$ for all t, and since K^{n} is continuous in time the same holds for K, and we have (2.16). Further, if $V(N)^{n}=$ $\left\langle Z^{n}, N\right\rangle$, by assumption on Z^{n} we know that $V(N)^{n}=0$ for all $N \in \mathcal{M}_{b}\left(M^{\perp}\right)$.

We can then reproduce Step 4 of the proof of Theorem 2-1, with $M(n)=M$ and $N^{m}(n)=N^{m}$ and Z^{n} and Z instead of X^{n} and Z^{\prime}. In place of (2.23), we get

$$
\tilde{E}^{n}\left(f\left(Z^{n}\right) Y\right) \rightarrow \tilde{E}(f(Z) Y)
$$

for all bounded \mathcal{F}-measurable variables Y and all bounded continuous functions f on $\mathbb{D}\left([0,1], \mathbb{R}^{q}\right)$: this is the desired convergence result when \mathcal{F} is separable. Finally, Step 5 of the same proof may be reproduced here, to relax the separability assumption on \mathcal{F}, and the proof is complete.

References

[1] Aldous, D.J. and Eagleson, G.K. (1978): On mixing and stability of limit theorems. Ann. Probab. 6 325-331.
[2] Jacod, J. (1979): Calcul stochastique et problèmes des martingales. Lect. Notes in Math. 714, Springer Verlag: Berlin.
[3] Jacod, J. and Mémin, J. (1981): Weak and strong solutions of stochastic differential equations; existence and stability. In Stochastic Integrals, D. Williams ed., Proc. LMS Symp., Lect. Notes in Math. 851, 169-212, Springer Verlag: Berlin.
[4] Jacod, J. (1984): Une généralisation des semimartingales: les processus admettant un processus à accroissements indépendants tangent. §éminaire Proba. XVIII, Lect. Notes in Math. 1059, 91-118, Springer Verlag: Berlin.
[5] Jacod, J. and Shiryaev, A. (1987): Limit Theorems for Stochastic Processes. Springer-Verlag: Berlin.
[6] Renyi, A. (1963): On stable sequences of events. Sankya Ser. A, 25, 293-302.

Laboratoire de Probabilités (CNRS, URA 224), Université Paris VI, Tour 56, 4, Place Jussieu, 75252 Paris Cedex 05, France.

