ON CONTINUOUS RINGS AND SELF
INJECTIVE RINGS()

BY
YUZO UTUMI

0. Throughout this paper we assume that every ring has a unit element.

A module is called injective if it is a direct summand of every extension module.
A ring is said to be left self injective if it is injective as the left module over itself.

The main results we shall show in the present paper are the following:

Let S be a left self injective ring. Then S| N(S) is also left self injective, where
N(S) denotes the Jacobson radical of S. Any system of orthogonal idempotents
of S| N(S) can be lifted to a system of orthogonal idempotents of S.

This theorem about orthogonal idempotents can be proved under a somewhat
weaker assumption than the left self injectivity of S. In fact, it is enough to suppose
that S is a ring satisfying the following two conditions:

0.1. ConpDITION. For any left ideal A4 there is an idempotent e such that Seis an
essential extension of A.

0.2. ConpiTION. If Sf, f=f2, isisomorphic to a left ideal B, then B also is
generated by an idempotent.

We call a ring S which satisfies the above two conditions left continuous.

Then, if S is left continuous, S/N(S) is a (von Neumann) regular ring which

is left continuous in the sense that the lattice of principal left ideals of S is upper
continuous.

We shall also show some sufficient conditions for a left continuous ring to be
left self injective.
1. Conditions 1.3, 1.4.

1.1. LeMMA. Let S be a ring with Condition 0.2, and A a left ideal. Let e and
[ be idempotents such that Se N S(1— f)=0. If Se is an essential extension of A,
then Sef is generated by an idempotent, and is an essential extension of Af.

Proof. Since Se N S(1— f) =0, the right multiplication of f gives an isomor-
phism of Se onto Sef. Hence Sef is an essential extension of Af. By Condition 0.2
Sef is generated by an idempotent.

1.2. THEOREM. Any left continuous ring satisfies the following two conditions:

1.3. CONDITION. For any idempotent e, and for any left ideal A contained
in Se, there exists an idempotent f € Se such that Sf is an essential extension of A.
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1.4. ConDITION. If Sg N Sh = 0 for idempotents g and h, Sg+ Sh is generated
by an idempotent.

Proof. By Condition 0.1, A has an essential extension Sp, p= p>. Since
Ac Se, ANS(1 —¢e) =0, and hence Sp N S(1 —e¢)=0. By Lemma 1.1, it
follows that Spe is generated by an idempotent f, and is an essential extension
of A (= Ae).

Next, let Sg N Sh=0,g=g?and h = h?. Then S(1 — g) contains an isomorphic
image B of Sh. Condition 0.2 assures that B is generated by an idempotent q.
Thus, Sg + B is generated by the idempotent g + g — gq, whence Sg + Sh also
is generated by an idempotent since it is isomorphic to Sg + B, completing the
proof.

Proofs of the following two lemmas are straightforward, and will be omitted.

1.5. LEMMA. Let v be a homomorphism of a ring S into a ring T, and suppose
that the kernel of v contains no nonzero idempotent. Let e and f be idempotents
of S. If Sec Sf and v(Se) =v(Sf), then Se= Sf.

1.6. LemMA. Let S be a ring, and e an idempotent. Then Se = Sf and f = f?
if and only if f=e+ (1 — e)xe for some xe8S.

The following is a direct consequence of the above known Lemma 1.6.

1.7. LeMMA. Let v be a homomorphism of a ring S onto a ring T. Let e and
v(x) be idempotents of S and T respectively. If v(Se) = Tv(x), there is an idem-
potent f of S such that Se = Sf and v(f) = v(x).

Proof. Since Tu(e) = Tv(x),
v(x) =v(e} + (v(1)—v(e))v(y)v(e) for some y.
Set f=e + (1 — e)ye. Then Se = Sf, f = f2, and evidently v(f ) = v(x), as desired.

2. Under Condition 1.3. If a module M is an essential extension of a submodule
N, we say that M is essential over N, and that N is essential in M. Let w be a
homomorphism of a module M, into a module M,. If N is essential in M,, then
w~!(N) is essential in M. (See [4].) A left ideal of a ring S is called essential if it
is essential in S as a left S-module.

We denote the left annihilator of a subset A of a ring by I(A4). Similarly, r(A)
is the right annihilator of A. Following R. E. Johnson we call an element x left
singular if I(x) is an essential left ideal. The set of left singular elements of a ring S
forms an ideal of S, which is called the left singular ideal of S. Notation: Z(S).

As is easily seen, Z(S) contains no nonzero idempotents. The right singular ideal
is defined in the obvious way. (See [4].)

2.1. LeMMA. Let S be a ring satisfying Condition 1.3, and e an idempotent.
Let A be a left ideal contained in Se. Then Se is essential over A if and only if for
any x € Se there exists an essential left ideal X such that Xx = A.
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Proof. The right multiplication of x gives a homomorphism of S into Se.
If A is essential in Se, the inverse image X of A4 is essential in S. Since Xx c A,
this proves the only if part. If part: By Condition 1.3, Se contains an idempotent
f such that Sf is essential over A. Let Se = Sf @ B, B being a left ideal. Then B is
generated by an idempotent g. By assumption Gg = 4 for some essential left
ideal G. Ggc ANSgcSfNB=0. Hence geZ(S), and g=0. Therefore
Se = Sf, and hence Se is essential over A4, as desired.

This lemma has the following consequence.

2.2. LeMMA. Let S be a ring with Condition 1.3. Let A be an essential
left ideal, and e an idempotent. Then Se is an essential extension of Ae.

Proof. Let xeS. The right multiplication of x is an endomorphism of the
left S-module S. Since A4 is essential, the inverse image B of A is also essential.
Bx < A, and hence B(xe) = Ae. Thus, Se is essential over 4e by Lemma 2.1, as
desired.

We denote by A the image of a subset A of a ring S under the canonical mapping
of S onto S/Z(S).

2.3. LeMMA. Let S be a ring with Condition 1.3, and let e and f be idem-
potents. Then Sé= Sf if and only if Se is essential over Se N Sf.

Proof. Sé¢ = Sfif and only if &/ =é. By the definition of Z(S), éf=¢é if and
only if A(ef— e) = O for some essential left ideal A. Also A(ef—e)=0 if and only if
Aec Sf. Suppose first that Ae < Sf. Then Ae <= Se NSfcSe. Since Se is essential
over Ae by Lemma 2.2, Se is an essential extension of Se N Sf. Conversely, if
Se N Sf is essential in Se, there is an essential left ideal A such that Ae =« Se N Sf
by Lemma 2.1. Thus Ae = Sf, as desired.

3. Under Conditions 1.3, 1.4. As is easily verified Condition 1.4 is equivalent
to the following: If Se N Sf =0, e = e* and f = f2, there is an idempotent g such
that Se = Sg and Sf< S(1 — g).

3.1. LemMmA. Let S be a ring with Conditions 1.3 and 1.4. Let e be an idem-
potent, and x an element such that X = 3. If %é = X, there exists an idempotent f
such that fe=f and f= %.

Proof. Since the intersection of two essential left ideals is again essential, we
can find an essential left ideal A with the properties that A(xe — x) =0 and
A(x — x?) = 0. Hence Ax = Se and Ax N A(1 — x) = 0. By Condition 1.3 there are
idempotents f and g such that (i) Ax < Sf < Se and A(1 — x) <= Sg, (i) Sf and Sg
are essential over Ax and A(1 — x) respectively. Then Sf N Sg = 0. By Condition
1.4 we may suppose that Sg = S(1 — f). Since Ax = Sf, A(xf — x) =0. On the
other hand, since A(1 — x) = Sg =S(1 — f), we have A(f— xf) =0. Therefore
A(f—x)=0, and f= %, as desired.
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Since we have assumed that S has a unit element, the following is a direct
consequence of Lemma 3.1.

3.2. COROLLARY. Let S be a ring with Conditions1.3,1.4. If £ =%, £ =& for
some idempotent e of S.

The following is slightly different from Lemma 3.1.

3.3. LeMMA. Let S be a ring satisfying Conditions 1.3 and 1.4. Let e and f
be idempotents such that éf = é. Then there is an idempotent g with the properties
that gf =g and S=Sg® S(1 —e).

Proof. Since éf=¢é, Ae = Sf for some essential left ideal A. By Condition 1.3,
Sf contains an idempotent g such that Sg is essential over Ae. Since
AenS(1 —e)=0, we have SgNS(1—e)=0. Now Ae is essential in Se by
Lemma 2.2, and hence Ae@® S(1—e) is essential (in Se @ S(1—¢) = S). Thus
Sg ® S(1 — e) is also essential. However, it is a direct summand of S by Condition
1.4. 1t follows therefore that S = Sg @ S(1—e). Moreover gf = g since Sg = Sf.
as desired. ‘

3.4. LeMMA. Let S be a ring with Condition 1.3, and suppose that S/Z(S)
satisfies Condition 1.4, Let e and f be idempotents of S. If SeNSf=0, then
SenSf=0.

Proof. By Condition 1.4 for S/Z(S) there is an idempotent x of S such that
Sé = Sz and §f < S(I — %). By Lemma 1.7 we can find an idempotent g of S such
that Se = Sg and § = %. Since f¥ =0, f¢ =0, and so Afg=0 for some essential
left ideal 4. Hence Af N Sg = 0, and Af N Se = 0. Af is essential in Sf by Lemma
2.2. Therefore Se NSf=0, as desired.

We need the following in the proof of Lemma 3.6.

3.5. LEMMA. Let S be a ring with Conditions 1.3, 1.4, and suppose that
S| Z(S) fulfills Condition 1.4. Let e, f, g be idempotentsof S. If Se ® Sf = Sg and
Se + Sf < Sg, then Se® Sf = Sg.

Proof. Se N Sf=0 by Lemma 3.4. Hence Se @ Sf= Sh, h =h* by Condition
1.4, Then Sh= Sg and Sh = Sg. By Lemma 1.5, Sh = Sg, as desired.

3.6. LEMMA. Let S be a ring satisfying Conditions 1.3 and 1.4. Suppose
that S | Z(S) satisfies Condition 1.4. Let e and f be idempotents such that éf = fe.
Then there is an idempotent g with the properties that § = f and eg = ge.

Proof. Since &f (=¢é,), é0—-F) (=¢,), (1-é)f ( =é3)and (1-&) (1)
( = é,) are orthogonal idempotents, by Lemma 3.1 we may suppose that each e,
is an idempotent such that e,, e, € Se, e3, e, € S(1 — e). Then Se = Se; @ Se,
and S(1 — e) = Se; @ Se, by Lemma 3.5. Let e = x,e, + x,e, and 1 — e = x3e;

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



162 YUZO UTUMI [June

+ x4e,, and set x;e; =f; for i =1,2,3,4. Then (f;)is a system of orthogonal
idempotents. Set g = f; + f;. Evidently g = g% and eg = ge. Now Sg = Sf; + Sfs
= §é, + 8¢, = 8f, and similarly S(1 — g) = S(I — f). Therefore g = f, as desired.

4. Left continuous rings. Recall the definition of left continuous rings:
A ring S is left continuous if it satisfies Conditions 0.1 and (.2.

Thus, in this case S is a ring with Conditions 1.3 and 1.4 by Theorem 1.2. That
S/ Z(S) also satisfies Condition 1.4 is a consequence of the following. We denote
the Jacobson radical of a ring S by N(S).

4.1. LeMMA. If S is a left continuous ring, Z(S) = N(S), and S/N(S) is
regular (in the sense of von Neumann).

Proof. First we shall show that Z(S) = N(S). Let x e Z(S). Then Ax =0 for
some essential left ideal 4. Hence I(1 + x) N A =0, and I(1 + x) = 0. This implies
that the right multiplication of 1 + x is a monomorphism of § into itself. Since
S(1 + x) is generated by an idempotent by Condition 0.2, the inverse mapping of
the monomorphism is given by the right multiplication of an element 1 + y.
Then (1 + x) (1+ y)=1, that is, x is right quasi-regular. Thus, every element of
the ideal Z(S) is right quasi-regular, and hence is quasi-regular, which shows that
Z(S) = N(S).

Next, we shall prove that S/Z(S) is regular. Let ze S, and let B be a maximal
left ideal disjoint to /(z). Then it is easy to see that B @ I(z) is essential. By Condition
0.1, B has an essential extension which is generated by an idempotent. Hence B
itself is generated by an idempotent because of the maximality of B. Since the
right multiplication of z gives an isomorphism of B onto Bz, Bz also is generated by
an idempotent in view of Condition 0.2. Thus the inverse mapping of Bz onto B is
given by the right multiplication of an element ¢. Then (B® I(z))(z — ztz) =0,
and so z — ztz € Z(S), which means that S/Z(S) is a regular ring.

Since every regular ring is semisimple, it follows by the above argument that
Z(S) = N(S), completing the proof.

4.2. COROLLARY. A leftcontinuous ring is regular if (and only if) it is semi-
simple.

A right continuous ring is defined in the obvious way. A ring which is both
left and right continuous is called continuous. The right-left symmetry of Lemma
4.1 assures that the right singular ideal of a right ¢ontinuous ring coincides with
the Jacobson radical. Thus we obtain the following.

4.3, CorROLLARY. The left singularideal of a continuous ring coincides with
the right singular ideal.

4.4, LeMMA. Let S be a left continuous ring, and let (e,) be a set of idempo-
tents of S. If the sum of Se, is direct, so is the sum of Se,.
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Proof. It is enough to show the lemma in the case (e,) is finite. Suppose that
we have seen that X 7_1 Se, is direct. Then X~ Se, = Sf, f = f? by Condition
1.4. §fNSé,=0 by assumption. Thus SfNSe,=0 by Lemma 3.4 since §
satisfies Condition 1.4 by Lemma 4.1. Therefore 2" ,Se, is direct, which comp-
letes the proof by induction.

4.5. LEMMA, Let S be a left continuous ring. Let (e,) be a set of idempotents
of S such that the sum of Se, is direct. If Se, e = 2, is essential over 2. Se,, then
Sé is essential over . Se,.

Proof. Let % be an idempotent of § such that §% < §¢ and S N X Sé, = 0.
By Lemma 3.1 we may suppose that x is an idempotent in Se. In view of Lemma 4.4
the sum Sx + X Se, is direct. Since Se is essential over X Se,, x =0, and so
% =0. It follows from this that Sé is an essential extension of X Sé,, since S is
regular by Lemma 4.1. This completes the proof.

In [7] we called a regular ring left continuous if the lattice of principal left
ideals was upper continuous. By [8, Theorem 2] a regular ring S is left continuous
in this sense if and only if it satisfies Condition 0.1. Thus, the definition of left
continuity in this paper is consistent with the definition in [7].

4.6. THEOREM. If S is left continuous, then S| N(S) is left continuous regular.

Proof. S/N(S) (= S) is regular by Lemma 4.1. Let 4 be a left ideal of S.
We shall show the existence of an idempotent € of S such that Sé is essential over A.
By Zorn’slemma we can find a direct sum 2 S%, of principal left ideals such that 4 is
an essential extension of X S%,. Since S is regular, we may suppose that each %, is an
idempotent of S. Furthermore we may assume that every x, is an idempotent by
Corollary 3.2. Let Se, e = e?, be an essential extension of 2 Sx,. Then Sé is
essential over X S%, by Lemma 4.5. Let % € A. Since A4 is essential over 2 S%,, S%
is essential over SxN X S%,. Hence S¥ is essential over S% N Sé too, and therefore
S% = 8% N Sé, whence S% < Sé. This implies that X S%, < A < Sé. Since we
have seen that Sé is essential over X SX,, Sé is essential over A, completing the
proof.

Next we shall show that a similar theorem (Theorem 4.8) holds for left self
injective rings too.

4.7. THEOREM. Any left self injective ring is left continuous.
This is evident by [1, Theorem 57.13].
4.8. THEOREM. If S is left self injective, so is S[N(S).

Proof. By [1, Theorem 57.14] it is enough to see that any left S-homomorphism
v of a left ideal A of Sinto S is given by the right multiplication of an element of S.
Since S is left continuous, as in the proof of Theorem 4.6 we can find a system (x,)
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of idempotents of S such that the direct sum X SX, is essential in A. The sum
X Sx, is also direct by Lemma 4.4. For each ¢ the restriction of v on S¥, is given
by the right multiplication of an element j,. The right multiplication of y, gives
a homomorphism of Sx, into S. Combining these homomorphisms for all ¢, we
obtain a homomorphism of X Sx, into S, which is given by the right multiplication
of an element y since S is left self injective. Then x,y,=xy, and so
v(%) = %, = X,y for each t. Denote by w the difference of » and the right
multiplication of 7 on A. Since A4 is essential over X S%,, it is easy to see, by Lemma
2.1, that for any de A there is an essential left ideal P of S such that Pd = X S¥,.
Now w( X Sx)=0. Hence Pw(d) < w( X 8%)=0, and therefore w(4) < Z(S).
Thus w(A4) does not contain any nonzero idempotent, which means that w(4)=0
since § is regular. This implies that v is a restriction of the right multiplication
of 7, completing the proof.

In the following we shall use the fact that in a regular ring a left ideal has at
most one principal essential extension.

4.9. THEOREM. Let S be a left continuous ring, and e an idempotent. Let
(é) be a system of orthogonal idempotents of S|N(S), and suppose that Sé is
essential over X Sé,. Then there is a system (f,) of orthogonal idempotents of S
such that &, = f, for every t, and that Se is an essential extension of X Sf,.

Proof. By Lemma 3.1 we may assume that each ¢, is an idempotent of S
contained in Se. Let Sp, p = p?, be an essential extension of X Se, such that
Sp = Se. By Lemma 4.5, Sp is essential over 2. S¢,. Since S is regular, it follows
that Sp = Se. Hence Sp = Se by Lemma 1.5. Thus Se is essential over X Se,.
By Condition 1.3, Se contains an idempotent g, for each t such that X, . ,Se, is
essential in Sg,. Sg, is essential over 2 ,.,Sé, by Lemma 4.5. By the regularity
of S, then S¢ = 5¢, ® Sg,. Since Se > Se, + Sg,, Se = Se, ® Sg, by Lemma 3.5.
Now X,..86,c8(1-¢), and so 83 81 ~¢). Let S1 - ¢é) =S5z @ Sh,,
h, = h?. We may suppose that h, = h2 Since § = S¢,® S(1 — ¢) = S5¢,®55,®Sh,
= Sé @ Sh,, it follows that S = Se @ Sh, by Lemma 3.5. Thus, S = Se,®Sg,®Sh,,
whence we can find an idempotent f, such that Se, = Sf, and Sg, ® Sh, = S(1 — f).
Then Se, = 8f, and S(1 — &) = Sg, ® Sh, = S(1 — £,). Therefore é, = f,. We have
already seen that Se is essential over X Se,, and hence it is so over X Sf,. If
t#u,f.f,€Sf.f,= Se.f, = Sg.f, = S(1 — f,)f. = 0. Thus (f,) is a system of orthogonal
idempotents, which completes the proof.

As a direct consequence of this we have

4.10. COROLLARY. Let S be a left continuous ring, and (€,) a system of orthogonal

idempotents of S| N(S). Then there exists a system (f,) of orthogonal idempotents
of S such that é,= f, for every t.

Proof. Let Sé be the essential extension of 2 Sé,, where & = &2. We may suppose
that eis an idempotent by Corollary 3.2. Thus the corollary follows by Theorem 4.9.
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4.11. CorROLLARY. In Theorem 4.9 if we assume moreover that éé,=é, for
each t, then we can find a system (g,) of orthogonal idempotents of S such that Se
is essential over X Sg,, and é = g, and eg, = g, for each t.

Proof. Sct g, = ef,, where f, is the idempotent in Theorem 4.9. Then Sg, = Sf,,
and the corollary follows immediately from Theorem 4.9.

4.12. CoroLLARY. Let S be a left continuousring, and e an idempotent. Let
(&) be a finite system of orthogonal idempotents of S|N(S) such that é = Ye.
Then we can choose a system (g;) of orthogonal idempotents of S in such a way
that é = g, for every i and e= X g,.

Proof. Let (g,) be the system in Corollary 4.11, and set g = X g;. Since Se is
essential over X, Sg, = Sg, Se = Sg, and so eg = e. Since moreover eg =g by
Corollary 4.11, we have e = g, as desired.

5. Continuous rings.
5.1. THEOREM. Let S be a continuous ring. Then S satisfies the following.

5.2. CoNDITION. xy = 1 implies yx = 1, that is, any one-sided inverse element
is two-sided.
This theorem is a consequence of the following.

5.3. LemMmA. If a ring S fulfills Condition 0.1 and its right-left symmetry,
then S satisfies Condition 5.2.

Proof. Suppose that xy == 1 and yx # 1 for some x,y e S. Then S contains a
system (e;;; i, j = 1, 2, --+) of matrix units of countably infinite degree by a theorem
of Jacobson. (See [2].) Let Se, e = ¢, be an essential extension of Y Se;. We may
suppose that ee;; = e;; for every i, j taking ee;; instead of e;; if necessary. Let IS
be an essential extension of X j>1(es; +¢;))S, f being an idempotent.

First assume that e # fe. Then 0 # (1 — f)e e Se, and hence there is x such that
0+# x(1 —flee X7_,Se; for some finite n. Then x(1 —f)ee,.1,,+1 =0 by the
orthogonality of (e;). On the other hand, (1 — f)(ey; +e¢;;) = O for each j >1 by
the definition of f. Hence

x(1 _f)el,n+l = x(1 _f)(el,n+1 +en+l,n+1) - x(1 _f)een+l,n+l = 0.

Thus, x(1 —f)e; ,+1 =0, and so x(1 —f)e; ;=0 for every i. In particular,
x(1 —f)e;, =0. For any j > 1 we have

x(1 = fej; =x(1 = f)(ey; + e;;) — x(1 — f)ey;=0.

Therefore x(1 — f)e; = 0 for every i. Now denote by A the set of elements y in Se
such that ye; = O for every i. Then x(1 — f)e€ A. A is a left ideal contained in Se,
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and is disjoint to X Se;,. Since Se is essential over X, Se;, it follows that 4 =0,
whence x(1 — f)e =0, a contradiction.

Next, suppose that e = fe. Then ey, = ee;; = fee;;€fS. Hence
Ostez€ E,-> 1(eg;+e;;)S for some z. Let ¢,z = E','-'=2(e1,- + e;;)z,. Since the
sum X ;S is direct, we have e;,z — L7 ,e,,;z; = Oand ¢;;z; =0forj =2,--,m,
and therefore e,z =0, a contradiction. This completes the proof.

The following is almost obvious.

54. LeMMA. Let S be a ring with Condition 5.2. Let e, f be idempotents
such that Se ¢ Sf and Se ~ Sf. Then Se = Sf.

Proof. Set g=1—f+ fe. Then g= g*, and Sg = Se® S(1 - f) ~ S. Hence
I =xy and yx = g for some x,y. Thus g =1, and Se = Sf, as desired.

As is known the lattice of principal left ideals of a left continuous regular ring is
complete, and hence any annihilator left ideal is generated by an idempotent.
(See [7, Lemma 17.) If a principal left ideal of a regular ring is an ideal, then it
is generated by a central idempotent. (See [5, Lemma 2.6, II].)

We shall use the following in the proof of Theorem 5.6.

5.5. LeMMA. Let S be a left continuous ring, and e, f idempotemts. Suppose
that Sg 4 Sh for any nonzero idempotents g and h such that g = ge and h = hf.
Then there exist idempotents p, q, s and t with the following properties:
(1) Sp®SUA —e)=S and Sq®SA —f)=S; (2) ps=p and qt=gq; (3) st
=ts=0; (4) 5§ and T are central in S.

Proof. Let %€ é&Sf. Then the right multiplication of £ gives a homomorphism
v of §é into Sf. The kernel K of v is generated by an idempotent. Let
Sé = K@® Sg, § = 2. We may suppose that g = g?e Se. The image of v is also
generated by an idempotent . We assume that h= h*e Sf. Evidently Sg ~ Sh.
Since N(S) is the Jacobson radical of S, it follows that Sg =~ Sh. Hence h = 0 by
assumption. Thus, v =0, and % = 0, whence &5f= 0.

Let 85=I(r(éS)) and iS = r(I(Sf)), § and 7 being idempotents. Then §, ¢ are
central and orthogonal, proving (4). By Lemma 3.6 we may assume that s, ¢ are
idempotents of S such that st = ts. Thus, st = (st)? € N(S), and so st = 0, proving
(3). By Lemma 3.3, since §é = §§, we can find an idempotent p such that ps=p
and S = Sp@® S(1 — e). Similarly we have an idempotent g such that gt = g and
S =8q®S(1—f), proving (1) and (2). This completes the proof of the lemma.

5.6. THEOREM. Let S be a left self injective ring satisfying Condition 5.2.
Then any isomorphism between two left ideals of S can be extended to an auto-
morphism of the left S-module S.

Proof. By Zorn’s lemma there is a maximal isomorphism v between left
ideals A and B of S which contains the given isomorphism in the sense of graph.
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Let S(1 —e), e = €2, and S(1 — f), f =f2, be essential over A and B respectively.
Then by [1, Theorem 57.13] v can be extended to an isomorphism of S(1 — e)
and S(1 —f). Thus, A = S(1 —e) and B = S(1 — f) by the maximality of v. Se
and Sf do not contain any mutually isomorphic left ideals. Hence, by Lemma
5.5 we have idempotents p, g, s and t with the properties (1), (2), (3) and (4) in
Lemma 5.5. Ss NSt =0 by (3), and so Sp NSt =0 by (2). In view of (1) this
means that S(1 — e) contains an isomorphic image of St. Since S(1 —e) ~ S(1—f),
S(1 — f) also contains an isomorphic image Su of St. By Condition 0.2 we may
suppose that u = u®. Hence S7~ Si. Now S7 is an ideal by (4). Thus, S7 > Si.
Since S satisfies Condition 5.2, so does S = S/ N(S). Therefore S§7 = Siz by Lemma
5.4. By Lemma 2.3, St is an essential extension of St N Su. However, Sq < St
by (2), and also SgNSucSgNSA—-f)=0 by (1). Thus, Sg=0, and so
S(1 — f) =S by (1), whence S ~ S(1 — ¢). By Lemma 5.4, S = S(1 — ¢). Therefore
v is an automorphism of the left S-module S, completing the proof.

6. Join of orthogonal idempotents. Let (e) be a system of orthogonal
idempotents of a ring S. We call an idempotent e a join of (e,) if Se and eS are
essential over X Se, and X eS respectively.

6.1. THEOREM. If an idempotent e is a join of a system of orthogonal idem po-
tents (e) of a ring S, we have S(1 — ¢) = l((e,)) and (1 —e)S=1r((e)). e is the
only join of (e,).

Proof. Since ¢,S < eS for every t, I((e,)) > S(1 — ¢). Now I((e,)) N X Se,=0,
and hence I((e,)) N Se =0. Thus I{((e,)) = S(1 — ¢). Similarly r((e,)) = (1— e)S.
In case f is also a join of (e,), then S(1 —e¢)=S(1 —f) and (1 —e)S=(1 —f)S.
It follows from these that e = f, as desired.

6.2. COROLLARY. If (e,) is a system of orthogonal central idempotents, and
if e is its join, then e also is central.

Proof. In this case I((e)) = r((e,)), and hence S(1 — ¢) = (1 — ¢)S by Theorem
6.1. This imp]ies that 1—e, and hence e also is central.

6.3. THEOREM. Let S be a right self injective ring. Let e be the join of a
system (e;) of orthogonal idempotents. Then Se is isomorphic to the complete
directsum D={[x.e,]: x,€ S} of Se, by the correspondencev: x (€ Se)~[xe,] (€ D).

Proof. Itis evident that vis a homomorphism. If xe, = O for every t, xe S(1—e¢)
by Theorem 6.1, and hence x € S(1 — )N Se = 0, which shows that v is a mono-
morphism. Let [x,e,] € D. The left multiplication of x, gives a homomorphism of
e,S into S. Combining these homomorphisms for all ¢ we obtain a homomorphism
of X ¢S into S, which is given by the left multiplication of an element x in view
of the right self injectivity of S. xee, = xe, = x,e, for every t. Hence v(xe) = [xe,],
and therefore v is an isomorphism, as desired.
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6.4. THEOREM. Let S be a continuous ring, and (e,) a system of orthogonal
idempotents. Then there exists the join of ().

Proof. (1) Suppose first that S is continuous regular. Then the lattice of
principal left ideals of S is complete, and the join USe, is essential over X, Se,.
As is easily seen (X Se,) N ([} S(1 — ) = 0, and hence (|_JSe) N([)S(1-¢))
= 0. (Note that the meet nS(l — ¢,) is the set-theoretical intersection of S(1 — ¢,)
since the lattice is complete. See [7, Lemma 1].) Similarly (Ue,S) ﬁ(ﬂ(l —e,)S)
= 0. Taking the left annihilators of both sides of this relation, we have
(S = e)) + (| Se,) = S. Therefore ({_)Se)@([)S(1 —e)) = S, whence there
exists an idempotent e such that Se= USe, and S(1 —e) =ﬂS(1 —e) It
follows from the last relation that eS = Ue,S, where Ue,S is essential over
2 ¢,S by assumption. Thus, e is the join of (e,), as desired.

(2) To see the theorem in the general case, let Se, e = €%, be essential over
2. Se,, and fS, f = f?, essential over X ¢,S. Then $¢ and f$ are essential over
2 5é, and X &S respectively by Lemma 4.5. Let g be the join of (¢,), which
exists by (1). §¢ = §g and fS = g§ by the regularity of S. Hence there are idempo-
tents r and s such that Se = Sr, 7 = g, and fS = sS, § = g by Lemma 1.7. Thus
F=35and 1 —7=1-35 S(1 —s)is essential over S(1 — s) N S(1 — r) by Lemma
2.3, and so S(1 —s) N Sr=0. By Lemma 1.1, Srs is generated by an idempotent,
and moreover Srs is essential over X Se,s. Now X $é5= X 8¢, since &5 = ¢,
= é,. Hence 57§ is essential over 2, $¢, by Lemma 4.5. On the other hand, S5 is
also essential over X S¢, since S5= 8z =S¢ and Sé is essential over X $¢,.
Therefore S7§ = §5. Since we have seen that Srs is generated by an idempotent,
Srs=Ss by Lemma 1.5. Ss=Srs =S(r —r(l —s)) = Sr® S(1 —5), and hence
S=Sr® S(1 — s). There exists an idempotent p such that Sr= Sp and S(1 —s)
= S(1 — p). Then Se = Sr = Sp and fS = sS = pS, whence p is the join of (e),
completing the proof.

6.5. THEOREM. Let S be a continuous ring, and e an idempotent. Let (&)
be a system of orthogonal idempotents of S|N(S), and suppose that é is the
join of (&). Then there is a system (f,) of orthogonal idempotents of S such that
é, = f, for every t, and that e is the join of (e,).

Proof. By Corollary 4.11 we can find a system (f;) of orthogonal idempotents
of S such that Se is essential over X Sf,, and f, = ¢, and ef, = f, for every t. Since
eS > 2 f,S, there is an essential extension fS of X f,S such that eS >fS and
f=f? by Condition 1.3. /S is essential over X £,§ (= X¢,5)by Lemma 4.5.
By assumption &S is also essential over X ¢&,5. Hence fS = éS. Therefore fS = eS
by Lemma 1.5, whence e is the join of (f;), as desired.

7. Sufficient conditions. In this section we shall consider some sufficient
conditions for a left continuous ring to be left self injective.
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7.1. THEOREM. Let S be a left continuous ring, and suppose that the unit
element 1 is a sum of orthogonal idempotents e;, i =1,2,---,n, n being greater
than 1. If each S(1 — e)) contains an isomorphic image of Se;, then S is left self
injective.

To see this we need the following two lemmas.

7.2. LEMMA. Let S be a left continuous ring, and let Se, e =e?, be an
essential extension of a left ideal A. Let v be a homomorphism of A into S.
Suppose that Se N Sf=0 and v(A) < Sf for an idempotent f. Then v can be
extended to a homomorphism of Se into Sf.

Proof. As Se® Sf is generated by an idempotent, we may suppose that e,
f are orthogonal. Set G={a +v(a):aec A}. Then G < S(e+f), and hence
S(e + f) contains an idempotent g such that Sg is essential over G by Condition
1.3. It is easy to see that G N S(1 —e) =0, whence Sg NS(1 —~ ¢) =0. Since
Ge = A4, it follows by Lemma 1.1 that Sge is essential over A4, and is generated
by an idempotent. Hence Se = Sge. Let e =xge, and set xgf=1t. Then a + at
=aqe + at = axge +axgf =axge Sg for any aeA. On the other hand,
a + v(a)e G < Sg. Therefore at — v(a)e Sg N Sf < Sg N S(1 —e) =0, and hence
v is a restriction of the right multiplication of t. Since Set = Sexgf < Sf, this
completes the proof.

In the next lemma we shall consider the following property of a submodule N
of a module M:

7.3. PROPERTY. Any homomorphism defined on a submodule of N, and having
the values in M can be extended to a homomorphism of N into M.

7.4. LeMMA. Let M be a module, and N, N, be submodules of M such that
N{NN,=0.If both N, and N, have Property 7.3, so does N, + N,.

Proof. Let K be a submodule of N, @ N,, and v a homomorphism of K into
M. By assumption the restriction of v over K N\ N, can be extended to a homo-
morphism p of N, into M. As v and p coincide on K N N,, there is a homomor-
phism g of (K + N,) "N, into M given by q(k + n) = v(k) + p(n) for all
ke K, ne N, with k + ne N,. By assumption g can be extended to a homomor-
phism r of N, into M. Denote by e, and e, the projections of N; @ N, to N, and
N, respectively. Let xe K. Then x =e(x)+ ey(x), and hence e(x)
= x— ey(x)e N; N(K + N,). Thus, re,(x) = ge;(x) = v(x) — pe,(x), and there-
fore v(x) = (re, + pe,)(x), where re, + pe, is a homomorphism of N, @ N,
into M, as desired.

Proof of Theorem 7.1. By virtue of Lemma 7.4 it is enough to show that
any homomorphism w of a left ideal A of S into S can be extended to a homomor-
phism of Se; into S if A = Se;. Let Se, e = e2, be an essential extension of A such
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that Se c Se;, and let e =ee. Then S(1 —¢;) = S(1 — e), and hence S(1 — ¢)
contains an isomorphic image of Se by assumption, which is generated by an
idempotent f by Condition 0.2. There are p, q such that pg=e, p= pf. The
mapping a - w(a)(1 — e) for ae A is a homomorphism of A4 into S(1 — ¢), and
hence is extended to a homomorphism of Se into S(1 — e) by Lemma 7.2. Thus
it is given by the right multiplication of an element x. Similarly the mapping
a—->w(a)p (ae A) is also obtained by the right multiplication of an element y.
Then a(x + yq) = w(a)(1 — e) + w(a)pg = w(a) for any ae 4, as desired.

A ring S is said to be of order n if the unit element is the sum of orthogonal
idempotents e;,i = 1, ---, n, such that Se; ~ Se, for any j, k. (See [5, Chapter 3, II].)

7.5. COROLLARY. A ring of order n,n > 1, is left continuous (if and) only if it
is left self injective.

A ring is called strongly regular if for any element x there is an element y such
that x2y = x. A regular ring is strongly regular if and only if it contains no nonzero
nilpotent element, that is, it is of (nilpotency) index 1.

7.6. THEOREM. Let S be a left continuous ring, and suppose that S|/ N(S)
does not contain any nonzero ideal which is strongly regular as a ring. Then S
is left self injective.

To see this theorem we prepare the following.

7.7. LeMMA. Let S be a left self injective regular ring with no nonzero
strongly regular ideal. Then there is a system of orthogonal idempotents ey,e,, e,
such that (1) 1 =e, + e, + e5, (2) Se;~Se,, and (3) Se,® Se, contains an
isomorphic image of Ses.

Proof. By [7, Lemma 4] S = Se;® Se, ® Se;, where ¢;’s are orthogonal
idempotents such that Se, ~ Se,, and that Se; does not contain any direct sum
of two nonzero mutually isomorphic left ideals. If Se; @ Se, contains noisomor-
phic image of Se;, then Se, contains a nonzero central idempotent z by [7, Lemma
3]. Sz does not contain any direct sum of two mutually isomorphic nonzero left
ideals. Hence Sz contains no nonzero nilpotent element by [7, (S1)]. Thus Sz is
strongly regular, contradicting the assumption. Therefore Se; @ Se, contains
an isomorphic image of Se;, as desired.

7.8. LEMMA. Let S be a left continuous ring, and suppose that S|N(S)
satisfies the assumption of Theorem 7.1. Then S itself also satisfies the assumption.

Proof. 1= X"_,é, where &’s are orthogonal idempotents, and n> 1. By
assumption each S(I — é,) contains an isomorphic image Sf; of Sé,. Since S is
regular by Lemma 4.1 we may suppose that f; is an idempotent for each i. By
Corollary 4.12 we may assume that ¢’s are orthogonal idempotents with
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1= X" ,e. Moreover, by Lemma 3.1 we may assume also that each f; is an
idempotent contained in S(1 — ¢;). Since N(S) is the Jacobson radical of S, the
assumption S¢é; ~ Sf; implies Se; ~ Sf;, completing the proof.

Proof of Theorem 7.6. S/N(S) is left continuous by Theorem 4.6. Hence
S/ N(S) is left self injective by [7, Corollary to Theorem 3]. Thus, S/ N(S) satisfies
the assumption of Theorem 7.1 by Lemma 7.7, whence S also satisfies the assum-
ption by Lemma 7.8. Therefore S is left self injective by Theorem 7.1.

7.9. THEOREM. A (left or right) primitive ring S is left self injective if (and
only if) it is left continuous.

Proof. S is then semisimple, and hence is regular by Corollary 4.2. If S is
strongly regular, it is a division ring since every idempotent of a strongly regular
ring is central. If S is not strongly regular S does not contain any nonzero strongly
regular ideals by [7, Corollary to Theorem 4]. Thus, it is left self injective by
Theorem 7.6. This completes the proof.

As is known a ring with minimum conditions for left ideals and for right ideals
is left self injective if and only if it is right self injective. In this case the ring is
called a quasi-Frobenius ring. (See |1, Theorem 58.6].)

7.10. THEOREM. A ring S with minimum conditions for left and right ideals
is quasi-Frobenius if (and only if) it is continuous.

Proof. 1If Aisaminimalleft ideal of S, then AS = Y., _ ¢ Ax is a sum of minimal
left ideals isomorphic to A. This fact shows that every minimal ideal of S is con-
tained in the left socle P, and also that any homogeneous component] of P is an
ideal.

Denote by T the sum of minimal ideals, that is, the socle of the (S, S)-module S.
Then P = T as we have seen. We shall show that P =T, Let B be a nonzero ideal
contained in a homogeneous component H of P, and 4, a minimal left ideal
contained in B. Let H=A4,® - ® A,, each A, being a minimal left ideal. By
Condition 0.1, A4; has an essential extension Se;,e;= e?. Se, N Se;= 0 for every
j>1. Now A, is isomorphic to A4;, and the isomorphism can be extended to a
homomorphism of Se; into Se; by Lemma 7.2, and hence is given by the right
multiplication of an element of S. Thus, 4; = 4,S = B for any j > 1, whence
B = H. This shows that each homogeneous component H of P is a minimal ideal.
Therefore T> P, and T= P. Similarly we can show that the right socle Q of S
also coincides with T. Thus, we have P = Q.

Let e be a primitive idempotent. Then by Condition 1.3, Se is essential over
every nonzero left ideal contained in it. Hence Se NP is a minimal left ideal.
Since Qe = Pe= P NSe, Qe is minimal. Right-left symmetrically eP is a minimal
right ideal. Thus S satisfies (ii) of [ 1, Theorem 58.6] by [1, Lemma 58.3]. Therefore
S is quasi-Frobenius, completing the proof.
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7.11. REMARK. There is a left continuous ring which is not left self injective.
See [7, Example 3]. The ring may be commutative, regular, and may have a
minimal ideal.

8. Total matrix rings. Let S be a ring, and denote the total matrix ring of
degree n over S by S,. Let (e;;) be a system of matrix units: S, = ESei,. The
following two properties are well known:

8.1. S, is the endomorphism ring of the left module ¢;S, over e,,S,e;, in the
natural way.

8.2. The lattice L of submodules of the left e;,S,e,;-module e;,S, and the
lattice M of left ideals of S, are isomorphic under the following mutually reciprocal
mappings:

p: A(elL) - S,A (eM).
q: B(eM)— ¢;B (eL).

We shall now show the following.

8.3. THEOREM. A ring S is left self injective if and only if so is the total
matrix ring S,.

Proof. Suppose first that S is left self injective. Let B be a left ideal of S,: Be M.
By assumption e;,S,e;; ( ~ S) is left self injective, and so is the e,,S,e,;-module
¢,1S, by [1, Theorem 57.3]. Hence e, B ( € L) has an essential extension G which
is a direct summand of the module e,,S,. (See [1, Theorem 57.13, 57.9].) By 8.1
there is an idempotent e such that G =e,,S,e. Then S,e (= p(G)) is essential
over B (= pq(B) = p(e,;B)) in view of 8.2. This proves that S, satisfies Condition
0.1.

To see that S, satisfies Condition 0.2 too, suppose that a left ideal C of S, is
isomorphic to S,f, f = f2. Then there is an element x € S, such that S,fx = C and
I(x) N S,f=0. Thus the right multiplication of x gives an isomorphism of e, S, f
onto e, ,C. Since ¢,,S,f is a direct summand of the injective module e,,S,, it is
also injective, and hence e, C too is injective. Therefore e,,C is a direct summand
of e;;S,, whence e;,C = e,,S,g for some idempotent ge S,. It follows then that
C = pq(C) = p(e;,C) = p(e,,S,g) = S,g. This shows that S, fulfills Condition 0.2.
Thus, S, is left continuous. Since S, is of order n, if n > 1, S, is left self injective
by Corollary 7.5.

Suppose next that S, is left self injective, and we shall show that S is left self
injective. Let D be a left ideal of e;,S,e,¢, and v an ¢,,S,e;,-homomorphism of
D into e,,S,e,,. Consider the correspondence

w: Lxd,» Xxud) forxeS,, deD.

If Xxd =0, Zeljx,-eud,- = e;uxd;, =0 for every j, and so
Ozv(zeljxielldi) = Zeljxiellv(di) = eljzxiv(di)’ whence ejjzxiv(di)=0
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for every j. Thus, X x;(d;) =0, which implies that w is a homomorphism. Since
S, is left self injective, w is given by the right multiplication of an element y € S,.
It follows then that the right multiplication of e, ye, is an extension of v, proving
the left self injectivity of e,,S,e;; (=~ S). This completes the proof.

8.4. CoROLLARY. Let S bearing. Then the following conditions are equivalent:
(1) S is left self injective.

(2) The total matrix ring S, of degree n is left continuous for some n > 1.

(3) S, is left continuous for every n.

Proof. (1) implies (3) by Theorems 8.3 and 4.7. If we assume (2), S, for the
n is left self injective by Corollary 7.5, and hence S itself is also left self injective
by Theorem 8.3.
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