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Abstract—In this paper, the use of continuous-time implemen-
tation in extended-range (ER) incremental sigma-delta analog-
to-digital converters is analyzed in order to explore a possible
solution to low-power multichannel applications. The operation
principle, possible loop filter topologies, and critical issues are
considered using a general approach. It is demonstrated that, in
order to fully benefit from ER, careful attention has to be paid
to the analog–digital transfer function mismatches. A third-order
single-bit topology validates the theoretical analysis. Its perfor-
mance is evaluated while the impact of key circuit nonidealities is
quantified through behavioral-level simulations. It is shown that,
by applying analog-digital mismatch compensation in the digital
domain, it is possible to relax the amplifiers’ finite gain–bandwidth
product and finite dc gain requirements, thus allowing a power-
conscious alternative.

Index Terms—A/D conversion, continuous time (CT), extended
range (ER), incremental sigma-delta (ΣΔ) (IΣΔ) analog-to-
digital converter (ADC).

I. INTRODUCTION

THE DEMAND for the integration of analog-to-digital
converters (ADCs) into low-power multichannel sensor

applications, such as neuropotential recording devices [1] and
portable laboratory equipment [2], has grown during the last
years. The resolution requirements of these applications can
vary from approximately 6–8 b up to 14 b, with bandwidths
generally from kilohertz to megahertz range. While successive-
approximation-register (SAR) ADCs successfully cover reso-
lutions up to approximately 8–10 b, incremental sigma-delta
(ΣΔ) (IΣΔ) ADCs are particularly well suited to address
requirements of more than 10 b [3]–[6]. Similar to their tra-
ditional counterparts, they benefit from a relax matching in
the analog components through the use of oversampling–noise-
shaping techniques, at the cost of increased digital complexity.
However, they differ from traditional ΣΔ ADCs in that they
are able to process time multiplexed signals, acting as a high-
resolution Nyquist ADC. In particular, high-order single-loop
(SL) discrete-time (DT) topologies have been implemented [4]–
[6], with the aim of reducing the required number of cycles
per conversion N . This allows either to increase the ADC’s
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bandwidth or to reduce the modulator’s sampling frequency,
which, in turn, reduces the power dissipation. The number
of required cycles per conversion has been further reduced
with the introduction of high-order extended-range (ER) IΣΔ
ADCs, which combines an IΣΔ ADC together with a low-
power Nyquist ADC [2]. Up to now, the design of high-order SL
ER IΣΔ ADCs has only been focused on DT implementations.
In this work, the use of continuous-time (CT) implementation
in high-order SL ER IΣΔ ADCs is explored as an alternative
approach for low-power multichannel applications. Although
a sampling occurs at the output of the multiplexor (MUX)
which precedes a multichannel ADC, the advantage in a CT
implementation stems from the absence of switches in the loop
filter which relaxes the settling and bandwidth requirements
of the active blocks, thus leading to a reduction in the power
consumption. Moreover, this work analyzes the impact of CT
circuit nonidealities and the resulting analog-digital transfer
function mismatches, highlighting key aspects so as to fully
benefit from the advantages of the ER approach in a CT
implementation.

The rest of this paper is organized as follows. Section II
introduces the operation of SL CT ERIΣΔ ADCs along with
the noise cancellation filter design. The influence of the loop
filter topology is investigated in Section III. Section IV presents
the qualitative analysis of circuit-level nonidealities and analog-
digital transfer function mismatches. The theoretical results
are validated, through behavioral-level simulations, by using a
third-order single-bit CT ER IΣΔ ADC in Section V. Finally,
Section VI concludes this paper.

II. CT ERIΣΔ ADC OPERATION

IΣΔ ADCs are a subclass of ΣΔ ADCs that run continuously
in transient mode and feature, as a consequence, a one-to-
one mapping between input and output [7]. This characteris-
tic makes them suitable for multichannel applications. Unlike
conventional ΣΔ ADCs, the quantization error of IΣΔ ADCs
can be made available at the output of the last integrator by
using a specific type of digital filter. A second ADC can then
capture this output to further reduce the quantization error and
“extend the range” of the IΣΔ ADC. This combination of an
IΣΔ ADC plus a second ADC for quantization error refinement
forms an ERIΣΔ ADC [7]. Fig. 1 shows a general ER IΣΔ
ADC block diagram with the channel MUX and the necessary
sample-and-hold (SH) circuits. The MUX, together with the
input SH, samples each of the input channels and holds the
signal U(z) for a period equal to N/fS . This signal is then
processed by the CT ΣΔ modulator and the noise cancellation
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Fig. 1. Multichannel SL ERIΣΔ ADC block diagram.

Fig. 2. (a) Linearized block diagram of a CT ΣΔ modulator used in the
ERIΣΔ ADC and (b) linearized block diagram to derive the CT-DT equivalent
output of the last integrator.

filter HNC(z), which form the incremental portion of the ADC,
i.e., ADCI, running at a frequency fS . After N cycles have
passed, a valid result from ADCI is combined with the output
of the ER ADC, i.e., ADCER, and sampled by the output SH.
The ΣΔ modulator, as well as the noise cancellation filter,
is then reset and ready to accept the next sample. The block
diagram includes also the gain G relating the held analog input
U with the valid digital output of the ADCERI w(N) at the
instants N · TS .

A. DT Transformations

As the quantization error of the IΣΔ ADC should be made
available at the output of the last integrator, the output of the
modulator and the output of the last integrator are needed to
compute HNC(z) and evaluate the output of the ERIΣΔ ADC.
To achieve this, impulse-invariant transformation (IIT) with a
normalized sampling rate of one (TS = 1) is used for perform-
ing CT to DT (CT–DT) transformations wherever needed.

Fig. 2(a) shows the block diagram for a general low-pass SL
CT ΣΔ modulator, where any type of loop filter, quantizer’s

levels, and digital-to-analog converter (DAC) coding scheme
can be considered. Its output V (z) can be expressed as

V (z) =U(z)STF (z) + EQ(z)NTF (z)

=VU (z) + VE(z) (1)

where NTF (z) is the CT-DT noise transfer function (NTF)
given by

NTF (z) =
V (z)

EQ(z)

∣∣∣∣
U=0

=
1

1 + kqLF (z)
(2)

where kq is the quantizer gain and LF (z) is the CT–DT equiv-
alent loop filter given by the sum of the feedback branches.
Unlike traditional CT implementations, IIT can be used in
IΣΔ ADCs for multichannel applications to calculate the sig-
nal transfer function (STF). This is due to the input channel
SH which has a similar transfer function as nonreturn-to-zero
(NRZ) DACs. Taking this into account, the CT-DT equivalent
STF can be expressed as

STF (z) =
V (z)

U(z)

∣∣∣∣
EQ=0

=
kqFF (z)

1 + kqLF (z)
(3)

where FF (z) is the CT-DT equivalent feedforward transfer
function given by the sum of the feedforward branches. V (z)
can also be expressed as a sum of two terms VU (z) and VE(z),
depending on U(z) and EQ(z), respectively, and given by

VU (z) =V (z)|EQ=0 = U(z)STF (z) (4)

VE(z) =V (z)|U=0 = EQ(z)NTF (z). (5)

As shown in Fig. 2(b), the same methodology can be employed
to obtain the CT-DT equivalent output of the last integrator
XL(z), which, at sampling times equal to 1/fS , is given by

XL(z) =U(z)FFXL
(z)− V (z)FBXL

(z)

=XLU (z) +XLE(z) (6)

where FFXL
(z) is the feedforward CT-DT transfer function,

from the input SH to the last integrator output, given by

FFXL
(z) =

k∑
i=1

FFXLi
(z) (7)

where k is the number of feedforward branches and FFXLi
(z)

is the CT-DT equivalent transfer function of each individual
feedforward branch. Similarly, FBXL

(z) is the feedback CT-
DT transfer function, from the feedback DACs to the last
integrator output, given by

FBXL
(z) =

k∑
i=1

FBXLi
(z) (8)

where k is the number of feedback branches and FBXLi
(z)

is the CT-DT equivalent transfer function of each individual
feedback branch. XL(z) can also be expressed as the sum of the
terms XLU (z) and XLE(z) which depend on U(z) and EQ(z),
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Fig. 3. Linearized block diagram of the ERIΣΔ ADC.

respectively. These terms can be obtained by replacing (1), (4),
and (5) into (6) and are given by

XLU (z) =XL(z)|EQ=0

=U(z) (FFXL
(z)− STF (z)FBXL

(z)) (9)
XLE(z) =XL(z)|U=0

= − EQ(z)NTF (z)FBXL
(z). (10)

Based on the DT equivalents of the modulator’s and last inte-
grator’s outputs, given in (1) and (6), respectively, it is possible
to obtain the noise cancellation filter transfer function HNC(z),
as shown in the following section.

B. Noise Cancellation Filter

The purpose of the noise cancellation filter HNC(z) is to can-
cel the noise contribution of the modulator’s quantizer EQ(z).
HNC(z) can be designed, as in [8], by assuming a sampling
rate of XL(z) equal to the output rate of HNC(z). Fig. 3 shows
a linearized model of the ERIΣΔ ADC, together with a scaling
coefficient G that relates the ADC’s output value W (z) to the
input U(z). The output of the ADCERI W (z) at sampling times
equal to 1/fS is given by

W (z) =WI(z) +WER(z)
=V (z)HNC(z) +XL(z)kER + EER(z) (11)

where WI(z) and WER(z) are the outputs of ADCI and
ADCER, respectively, EER(z) is the quantization noise of
ADCER, and kER is the ADCER gain.

By replacing (1) and (6) into (11), it can be observed that the
cancellation of EQ(z) can be obtained by solving

0 = VE(z)HNC(z) +XLE(z)kER (12)

from where the value of HNC(z) is found equal to

HNC(z) = −XLE(z)kER

VE(z)
= FBXL

(z)kER. (13)

The output of the ADCERI W (z) when using the noise cancel-
lation filter HNC(z), given by (13), will then be

W (z) = U(z)FFXL
(z)kER + EER(z). (14)

The main advantage of (13) and (14) is that they are valid
for any type of loop filter, allowing a rapid identification of
the noise cancellation filter HNC(z). Moreover, these equations
provide the groundwork from where the ADC output can be cal-
culated, and as it will be addressed in the subsequent sections,
the influence of the loop filter topology and the sensitivity to
key CT nonidealities can be analyzed.

C. ADC Output Estimation

As explained in Section II-B, the calculation of HNC(z) was
performed assuming that every block in the ADC operates at
the modulator’s sampling rate, while from Fig. 1, it can be seen
that the ADC produces a valid output only every N cycles.
Accordingly, the valid ADC’s output, as well as the scaling
coefficient G, can be obtained by evaluating (14) at sampling
times n = N , as follows.

Considering that FFXL
(z) is a causal linear-time-invariant

system and that U(z) is a causal sequence (u(n) = 0 for n <
0), the ADCERI output given in (14), at sampling times equal
to 1/fS , can be expressed in the time domain as

w(n) =

n∑
k=0

u(n)h(n− k) + eER(n) (15)

where h(n) is the impulse response of FFXL
(z) multiplied by

the ADCER gain given by

h(n) = Z−1 {FFXL
(z)} kER. (16)

Furthermore, by recalling that the ADCERI output is only valid
after N cycles and that the input U(z) is held, thus constant,
over N cycles, the output of the ADCERI, at sampling times
equal to N/fS , can be expressed as

w(N) = U

(
n∑

k=0

h(n− k)

)∣∣∣∣∣
n=N

+ eER(N) (17)

where U is the value of the held input. The scaled output of the
ADCERI can then be directly obtained from (17) as

d(N) = w(N)G = U + eER(N)G (18)

where G is the scaling coefficient given by

G =
1

(
∑n

k=0 h(n− k)) |n=N
. (19)

The second term of (18) represents the ADCERI quantization
error and can be used to estimate the achievable signal-to-
quantization-noise ratio (SQNR). Assuming a sinusoidal input
signal with a full-scale input value equal to UFS, the general
SQNR expression for the ADCERI is

SQNRERI = 20 log

(
UFS

2
√
2

eER,RMSG

)
(20)

where eER,RMS is the root-mean-square (RMS) value of
eER(N). Note that a general expression is given here, with
respect to the ADCERI SQNR, in order to preserve a general
approach that could be applied for any type of loop filter.
Further considerations will be made in Section III when the
influence of the loop filter will be taken into account.

D. Incremental Versus ER Performance

As stated in Section II-B, the objective of HNC(z) is to
cancel the noise contribution of the modulator’s quantizer.
Looking from the perspective of two separate systems ADCER
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and ADCI, HNC(z) is forcing the quantization error of the
unscaled ADCI output WI(z) to be equal in magnitude to
XL(z), so it can be refined by ADCER. This type of filter
[HNC(z) = FBXL

(z)] has been used not only for ER [2]
but also for several incremental implementations [5], [7]–[10],
where HNC(z) has been obtained by setting an upper limit of
the ADCI quantization error based on the bounded output of the
last integrator [11].

The performance improvement of ER implementations with
respect to such IΣΔ ADCs can be verified by calculating the
SQNR of the ADCI and relating it to (20). The unscaled output
of ADCI WI(z) can be obtained from Fig. 3 and is given by

WI(z) = V (z)HNC(z) = V (z)FBXL
(z)kER. (21)

Moreover, by substituting (21) into (6) and evaluating it at
sampling times equal to N/fS , it is possible to derive the
unscaled value of the incremental quantization error as

xL(N) =
U

GkER
− wI(N)

kER
(22)

from where the scaled quantization error can be expressed as

eI(N) = dI(N)− U = −xL(N)GkER (23)

where dI(N) is the scaled ADCI output given by

dI(N) = wI(N)G. (24)

Assuming a sinusoidal input signal with a full-scale input value
equal to UFS, the SQNR of the ADCI is thus

SQNRI = 20 log

(
UFS

2
√
2

xL,RMSGkER

)
(25)

where xL,RMS is the RMS value of xL(N). Considering (25),
the SQNRERI in (20) can be expressed as

SQNRERI =20 log

(
UFS

2
√
2

xL,RMSGkER
· xL,RMSGkER

eER,RMSG

)

=SQNRI + SQNRER (26)

where SQNRER is the SQNR of the ADCER given by

SQNRER =
xL,RMSkER

eER,RMS
. (27)

Similar with (20), no further assumptions are made on the sta-
tistical properties of the ADCI and ADCER quantization errors.
According to (26), the SQNR performance of the incremental
section ADC is directly, and linearly, improved by the SQNR
of the ADCER. The selection of an appropriate loop filter
topology, as demonstrated hereinafter, will be critical in order
to fully benefit from such improvement.

III. LOOP FILTER INFLUENCE

From (26), it was observed that the SQNR performance of
the ADCERI can be divided into the respective performances
of its subsystems ADCER and ADCI. As a first-level approx-

Fig. 4. General block diagram of a low-pass SL CT ΣΔ modulator, with all
zeros at dc, used in the ERIΣΔ ADC.

imation and assuming a dynamic range (DR) of the ADCER

equal to its input xL(N), the magnitude of eER,RMS can be
assumed inversely proportional with respect to the number
of ADCER levels. Although no further observations can be
made about xL,RMS and G until a loop filter is selected, it
is already apparent that, in order to maximize the SQNRERI

performance, xL,RMS has to be minimized. The magnitude
of xL,RMS, and its dependence with respect to the loop filter
topology, can be qualitatively analyzed from XL(z) in (6).
Furthermore, this analysis can also be used to establish key
differences between DT and CT incremental implementations
and ER implementations.

As it would be impractical to cover all possible loop
filter topologies, this work will concentrate on previous
structures used in incremental and ER implementations.
Several topologies have been used in such implementations,
with FBXL

(z) as digital filters, including cascade-of-
integrators-in-feedback (CIFB) configuration [9], cascade-
of-integrators-in-feedforward (CIFF) configuration [10], and
cascade-of-integrators-in-feedforward-with-input-feedforward
(CIFF+IFF) configuration [2], [5], [7], [8]. These topologies
can be studied with the aid of a block diagram for a general low-
pass SL ΣΔ modulator, as shown in Fig. 4. With respect to DT
incremental ADCs [12], the use of CIFF+IFF (b2, . . . , bL = 0,
bL+1 = 1, and d1, . . . , dL �= 0) topology presents two key
advantages compared to its counterparts: 1) superior immunity
to coefficients’ spread and 2) input signal independence of
XL(z). Moreover, the input signal independence reduces the
magnitude of XL(z), which represents an advantage not only
for incremental but also for ER implementations.

With respect to CT incremental ADCs, the sensitivity to
coefficient deviations can be appreciated by analyzing HNC(z)
from (13) and its dependence on FBXL

(z). Taking (8) into
account, FBXL

(z) can also be expressed as

FBXL
(z) =

L∑
i=1

⎛
⎝IIT

⎛
⎝Ri(s)

L∏
j=i

Ij(s)

⎞
⎠ L∏

j=i

cjai

⎞
⎠ (28)

where cj and ai are the scaling coefficients of the modulator,
Ri(s) is the DAC impulse response of the ith feedback branch,
and Ij(s) is the transfer function of the jth integrator. From
(28), it can be seen that, as there are different sets of scaling
coefficients per branch, the number of feedback branches will
have a strong impact on how the integrator’s mismatches will
affect WI(z). It can be also seen that, when there is only one
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feedback branch, as in CIFF and CIFF+IFF configurations,
the integrators’ coefficients will only act as scaling factors and
their spread will not degrade the resolution of the ADCI output
WI(z). This behavior is similar to that of DT incremental
ADCs and is consistent with the simulations shown in [8] for
a third-order CT IΣΔ ADC with CIFF+IFF topology.

While only feedback paths were considered when designing
HNC(z), both paths have to be taken into account to obtain
XL(z), thus, the noise characteristics of WI(z). The input
signal dependence of XL(z) can be analyzed with (9) from
where relevant observations can be made. Naturally, as in
traditional ΣΔ modulators, the use of CIFB topologies prevents
the input signal independence. Furthermore, assuming a single
feedback path, the dependence of XL(z) on the input signal
will be determined by both the number of feedforward branches
and the DAC coding scheme. In CT implementations with NRZ
DAC, the independence is obtained by using CIFF+IFF which
leads to a unity STF and FFXL

(z) = FBXL
(z). However,

this is not sufficient when using other DAC coding schemes
in high-order modulators. The dependence of XL(z) on U(z)
is caused by the difference in the transfer functions FBXL

(z)
and FFXL

(z) and the deviation of the STF from unity due to
the use of a non-NRZ coding scheme in the feedback DAC.
In order to counteract this issue, the signal independence of
XL(z) can be guaranteed if a CIFF-with-full-input-feedforward
topology (b1, . . . , bL+1 �= 0 and d1, . . . , dL �= 0) is used, in
combination with a multibit implementation (kq = 1). It is
also worth to mention that the input signal independence of
XL(z) (XLU (z) = 0) is not sufficient to assure the uncorre-
lation of the ADC quantization error with respect to the input
signal, as the quantization noise EQ(z) could also be signal
dependent, particularly for dc input signals [13].

When revisiting these features for the ERIΣΔ case, it can
be observed that minimizing the magnitude of XL(z) is still
critical, favoring the use of feedforward topologies. On the
other hand, the effect of the XL(z) input signal correlation will,
most likely, not appear in the ADCERI quantization error, due to
the requantization that occurs in the ADCER. It will, however,
impact the SQNR of the ADCER as it will determine the statis-
tical properties of its input. Although the effect of nonidealities
will be analyzed in Section IV, it is already visible that, as
the quantization error cancellation depends on the matching of
two branches WI(z) and WER(z), any mismatch between these
two branches will degrade the improvement gained by the use
of ER.

IV. ERIΣΔ ADC NONIDEAL BEHAVIOR

The purpose of ER is to reduce the power dissipation of
an IΣΔ ADC by using a low-power Nyquist-rate ADC [2]
which refines its quantization error, thus reducing the required
number of cycles N . Accordingly, a low-power ADC, such as
a SAR converter, with a high number of bits could be used
as ADCER. Such strategy is based on the assumption that the
quantization error of the incremental portion is always available
at the output of the last integrator and, thus, can be refined. The
assumption of the ADCERI quantization error availability at the
output of the last integrator is, however, no longer valid when

nonidealities are present and limits, as a consequence, the use of
error refinement. This effect will be first analyzed qualitatively
while a case study will, later on, quantify its impact.

The source of this limitation can be appreciated by express-
ing (11) in terms of (1) and (6) while considering that the
CT-DT transformation of the analog blocks will now depend
on certain nonideal variable m. For simplicity, the ADCER

gain, shown in Fig. 3, is assumed one, as in a multibit case
(kER = 1). The output of ADCER WER(z,m) is given by

WER(z,m) = U(z)FFXL
(z,m)− V (z,m)FBXL

(z,m)
+EER(z). (29)

Similarly, the output of ADCI WI(z,m) is given by

WI(z,m) = V (z,m)FBXL
(z). (30)

Taking these equations into account, the output W (z,m) of the
ADCERI, at sampling times equal to 1/fS , when subjected to
mismatches between the analog and digital transfer functions,
is given by

W (z,m) = U(z)FFXL
(z,m) + EER(z)

+V (z,m) (FBXL
(z)− FBXL

(z,m)) . (31)

Under ideal conditions, FBXL
(z) is equal to FBXL

(z,m),
and (31) reduces to (11). Under mismatches, however, there
will be a “leak” of V (z,m) into the ADCERI quantization error
which will be given by

EERI(z) = EER(z) + EM (z,m) (32)

where EERI(z) is the ADCERI quantization error and
EM (z,m) represents the portion of such quantization error that
is due to mismatches between the analog and digital transfer
functions, given by

EM (z,m) =V (z,m) (FBXL
(z)− FBXL

(z,m))
=V (z,m)ΔM (z,m) (33)

where ΔM (z,m) represents the mismatch between analog and
digital transfer functions. The importance of obtaining a close
matching between the digital and the nonideal analog transfer
functions can be appreciated from (33). As with cascaded mod-
ulators, the noise leakage can be minimized by modifying the
noise cancellation filter HNC(z), so it resembles the nonideal
analog transfer function FBXL

(z,m). From (31), it can be
also seen that, under mismatches, there will be a gain error
when calculating the scaled output of the ADC d(N). This
error will stem from the mismatches between FFXL

(z,m)
and FFXL

(z).
The previous equations can be used to estimate the “leak”

of V (z,m) into the ADCERI and are useful to understand the
origin of the mismatches. However, time-domain simulations
are necessary to fully quantify their effect. Under mismatches,
it is not sufficient to compute ΔM (z,m) for quantifying the
mismatch effect, as EM (z,m) also depends on V (z,m), which
will be also affected by the deviation of FBXL

(z,m). Time-
domain simulations can therefore help in selecting a suitable set
of parameters to obtain a required resolution under mismatches.
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Fig. 5. Block diagram of the third-order single-bit CT IΣΔ modulator em-
ployed in the case study.

TABLE I
COEFFICIENT VALUES OF THE MODULATOR SHOWN IN Fig. 5

V. CASE STUDY: A THIRD-ORDER ERIΣΔ ADC

To illustrate the theoretical analysis made in the previous
sections, a test case based on the designed IΣΔ ADC proposed
in [8] is presented here. The ER IΣΔ ADC’s performance, as
well as its sensitivity to nonidealities and the possibility of ap-
plying digital compensation of the analog-digital mismatches,
has been evaluated through MATLAB/Simulink transient sim-
ulations. The modulator is shown in Fig. 5 and features a
CIFF+IFF loop filter topology to minimize, as explained in
Section III, the signal dependence of the quantization error. Fur-
thermore, a third-order single-bit architecture has been chosen
as it provides a good tradeoff between the number of cycles and
digital filter complexity. A switched-capacitor-resistor (SCR)
coding scheme, with a mean lifetime value τ = 1/10TS , is used
as feedback DAC to reduce the sensitivity to clock jitter.

Stability considerations are similar as those for DT IΣΔ
ADCs [7]. Accordingly, the NTF has been chosen using [14]
with an out-of-band gain of 1.5 and assuring that the output
of the last integrator x3(n) is bounded between the input full-
scale values ±UFS/2. The maximum input signal Umax has
been set to −3 dBFS, close to the maximum stable amplitude
of the converter, and the modulator’s coefficients, assuming a
normalized sampling rate of one (TS = 1), are listed in Table I.
The noise cancellation filter HNC(z) has been obtained from
(13) and is given by

HNC(z) =

(
α

(z − 1)
+

β

(z − 1)2
+

γ

(z − 1)3

)
k (34)

where

α =
1

8

(
8τ2

(
1− e−

1
2τ

)
− 4τ + 1

)
(35)

β = − 1

2

(
2τ

(
1− e−

1
2τ

)
− 2 + e−

1
2τ

)
(36)

γ =1− e−
1
2τ (37)

k = kERτa1

3∏
j=1

cj . (38)

Similarly, the value of the gain G, scaling the ADCERI output
to the input U , is obtained from (19) and is given by

G =
6

kERN3b1
∏3

j=1 cj
. (39)

Equations (34)–(39) provide the starting point for estimating
the ADC’s performance, evaluating its sensitivity to nonideali-
ties and counteracting analog-digital mismatches.

A. Theoretical Performance

The ADC theoretical performance can be roughly approxi-
mated from (26). Assuming that the output of the last integrator
xL(N), where L = 3, has a uniform distribution with a full-
scale value equal to the full-scale value of the input signal
UFS, the DR of the ADCI DRI , resulted from (25), can be
expressed as

DRI =20 log

(
UFS

2
√
2

UFS√
12
GkER

)

=20 log

(√
3

2

1

GkER

)
. (40)

Therefore, by replacing (39) into (40), it is possible to obtain
the DR of the test case as

DRI = 20 log

(√
3

2

N3b1
∏3

j=1 cj

6

)
. (41)

Similarly, the ADCER DR DRER can be approximated by
assuming that its full-scale input is identical with the output
of the last integrator x3(N) and that its quantization error has
a uniform distribution with a full-scale value also equal to the
full-scale value of x3(N). As x3(N) is also assumed to have
a uniform distribution, the DR of the ADCER DRER, resulted
from (27), will be given by

DRER = 20 log

( x3,FS√
12

x3,FS

2BER
√
12

)
= 6.02BER (42)

where x3,FS is the full-scale value of x3(N) and BER is the
number of bits in the ER ADC, i.e., ADCER. It is worth to
notice that (42) has been derived assuming a multibit case
(kER = 1), which is according with the statistical properties
assumed for the ADCER quantization error.

From (41) and (42), the impact of system-level parameters
on the ADC’s performance can be appreciated as follows.
With respect to the ADCI DR, it can be seen that DRI is
proportional to N3. Generalizing, the DR for a modulator of
order L will be proportional to NL, when CIFF+IFF topology
is used. Furthermore, the use of multibit quantization will
decrease the full-scale value of x3(N), due to a reduction
in the modulator’s quantization error, and will allow a more
aggressive NTF, which, in turn, will increase the value of the
loop filter coefficients. With respect to the ADCER, the effect
of the ADCER bits BER can be easily seen in (42), obtaining a
6.02-dB increment in DR for each bit added.
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Fig. 6. SQNR versus number of cycles N and bits of ER converter BER for
a third-order single-bit CIFF+IFF IΣΔ ADC. (References: (�) N = 61, (©)
N = 48, (+) N = 39, (�) N = 31, and (×−) N = 25).

In order to validate (41) and (42), system-level transient
simulations have been performed on the test case ERIΣΔ
ADC, composed by the IΣΔ modulator in Fig. 5 with a noise
cancellation filter HNC(z), as described in (34). Shown in
Fig. 6, the SQNR for an input signal with a −6-dBFS amplitude
has been computed for a number of cycles N , while sweeping
the number of ADCER bits BER from zero (for the incre-
mental case) to ten. The number of required cycles has been
calculated using (41) in order to achieve, in the incremental
case, an SQNR from 42 to 66 dB in steps of 6 dB, so as
to better appreciate its influence on the ADC’s performance.
As in traditional ΣΔ modulators [15] and pipelined ADCs,
the effective gain of the ADCER kER in Fig. 3 has been
assumed equal to two for the single-bit case and equal to one
for the multibit case. Moreover, the full-scale input of the
ADCER is assumed identical to x3(N). When compared to the
performance of an IΣΔ ADC (BER = 0), Fig. 6 shows that
a similar SQNR could be achieved by using a 5-b ADCER

while decreasing the number of cycle runs by 41%. Assuming
a low-power ADCER, this option could provide a lower power
alternative.

Although the system-level simulations shown in Fig. 6 agree
qualitatively with the approximations made in (41) and (42),
there are some discrepancies worth mentioning. With respect to
the ADCI case (BER = 0), (41) correctly predicts the influence
of N on the ADCI performance, increasing, as calculated, by
approximately 6 dB per case. However, the predicted values
have an offset of approximately 8 dB with respect to the
simulation results. For example, (41) predicts an SQNR of
42 dB, for a −6-dBFS input signal and N = 25, instead of
the 50 dB observed in the simulations, thus underestimating
the ADCI performance by 8 dB. Similar discrepancies are
also found for other values of N . With respect to the ADCER

performance, two different trends can be observed. When using
an ADCER with 3–10-b resolution, its SQNR performance has
a slope corresponding to approximately 6 dB per bit. On the
other hand, the slope is degraded to around 3 dB per bit when
using one or two bits. When compared to (42), this will translate
into an overestimation of the ADCER performance. These
discrepancies can be understood by observing the probability
density estimate (PDE) of the unscaled ADCI quantization error
x3(N), which will influence the performance of both the ADCI

and ADCER. Fig. 7 shows the PDE of x3(N) for the number of

Fig. 7. PDE of x3(N). (References: (�) N = 61, (©) N = 48, (+) N = 3,
(�) N = 31, and (×−) N = 25).

Fig. 8. Linear correlation between input signal and quantization error versus
ADCER bits.

cycles selected previously, where two fundamental differences
can be appreciated with respect to the assumptions made for
such output: 1) Its full-scale value is not equal to the full-scale
input value, and 2) the distribution is not uniform but rather
concentrated between ±0.5 UFS. The reduction in the full-
scale value of x3(N) and its distribution will decrease its RMS
power, thus increasing the ADCI performance with respect to
the value predicted in (41). On the other hand, the distribution
shown in Fig. 7 will negatively affect the SQNR performance
of the ADCER for low number of bits. For the single-bit case,
this could be partially counteracted by empirically modifying
the effective ADCER gain; however, this is not possible for the
multibit case.

Although the first-order approximation made in (41) and (42)
can help to establish the system-level parameters, this section
highlights the importance of system-level simulations in order
to capture the behavior of ERIΣΔ ADCs, where the assump-
tions that are regularly made in traditional ΣΔ modulators are
no longer valid.

B. Quantization Error Signal Dependence

According to Section III, even though the ADCI quantiza-
tion error could be signal dependent, this characteristic would
be minimized when ER is applied. This behavior has been
evaluated by analyzing the correlation coefficient [16] between
the input and the ADCERI quantization noise as a function of
the number of ADCER bits BER, as shown in Fig. 8. As it is
possible to appreciate, the ADCI quantization error (BER = 0)
has a strong correlation with the input signal; however, this
effect is substantially counteracted when applying ER with at
least 1 b.
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C. Sensitivity to Circuit Nonidealities

As mentioned in Sections III and IV, the ADCI quantization
error refinement depends on the matching between the analog
and digital transfer functions. Therefore, any mismatch between
these functions, created by nonidealities, would cause a degra-
dation of the improvement gained by using the ER approach.
The sensitivity to key circuit-level nonidealities has been eval-
uated in MATLAB/Simulink environment with respect to the
ADC’s performance degradation. This has been performed by
applying a −6-dBFS sinusoidal input signal and computing the
signal-to-noise-plus-distortion ratio (SNDR). Fig. 9 shows the
sensitivity to the considered nonidealities, when sweeping
the ADCER bits BER from three to ten. To avoid cluttering,
only the case of N = 25 is presented here.

With respect to the sensitivity to process variations, it is
assumed that the RC products, affecting the gain 1/RC of
each integrator, will suffer the same spread [17] ΔRC . As
shown in Fig. 5, the integrators’ gain is given by the prod-
ucts of (b1 c1) and (a1 c1) for the first integrator and by c2
and c3 for the second and third integrators, respectively. As
the spread will be the same for all RC products, it can be
mapped as a coefficient error (1 + ΔRC) which can be added
before each Ii(s). Furthermore, as the coefficients d1–d3 can
be implemented by ratios of R or C, their effect has been
considered negligible. From Fig. 9(a), the high sensitivity of
the test-case ADC to process variations which highlights the
need of tuning circuitry to fully benefit from the ER approach
can be seen. As shown in Section III, this behavior is in contrast
with respect to incremental counterparts with similar loop filter
topology, where coefficient variations will mainly affect the
ADC’s gain.

Nonidealities in the integrators’ op-amps have been modeled
assuming an op-amp–RC implementation [18]. Accordingly,
the integrator’s transfer function, from the ith input path, is
given by

I(s)i|RC =
kifS

s
(
1 + 1

A(s)

)
+ 1

A(s)

∑L
j=1 kjfS

(43)

where A(s) is the nonideal op-amp transfer function, ki is
the integrator’s scaling coefficient, and L is the number of
input paths in the integrator. When considering the effect of
a frequency-independent finite op-amp gain A(s) = Adc, the
integrator transfer function of (43) can be expressed as

I(s)i|RC−Adc
≈ kifS

s+ 1
Adc

∑L
j=1 kjfS

. (44)

Moreover, the effect of finite amplifier gain-bandwidth product
(GBW) can be studied assuming a single-pole model for the
op-amp transfer function A(s) given by

A(s) =
Adc
s
ωp

+ 1
GBW = Adcωp. (45)

The integrator transfer function of (43), when considering the
effect of finite amplifier GBW and assuming an amplifier

Fig. 9. ADCERI SNDR performance versus (a) integrators’ coefficient devi-
ation, (b) integrators’ finite dc gain, (c) integrators’ finite GBW, (d) DAC ELD,
and (e) jitter standard deviation. (References: ADCER bits of (×−) three,
(�) four, (+) five, (©) six, (�) seven, (×) eight, (�) nine, and (�) ten).

dc gain Adc sufficiently high, is obtained by replacing (45)
in (43)

I(s)i|RC−GBW

Adc�≈ kifS
s

GBW

GBW+
∑L

j=1
|kjfS |

s

GBW+
∑L

j=1
|kjfS |

+ 1
. (46)
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Fig. 9(b) and (c) shows the effects of finite amplifier dc gain
and finite amplifier GBW, respectively, when considering (44)
and (46) in the Simulink model. Contrary to what occurs in
traditional SL ΣΔ ADCs and in line with cascaded modulators,
the use of either low dc gain or low GBW will limit the use of
the ER approach. This represents a severe drawback as it would
affect the power consumption of CT ERIΣΔ ADCs.

The effect of nonidealities in the DAC waveform has been in-
cluded with respect to the sensitivity to excess loop delay (ELD)
and clock jitter, as shown in Fig. 9(d) and (e), respectively. Such
effects have been modeled either by simply delaying the DAC
feedback waveform by a constant time τELD, in the case of
ELD, or by randomly varying the DAC’s clock edges, with a
statistical standard deviation σj , in the case of jitter. Although
the use of SCR coding scheme has attenuated the sensitivity to
jitter, it can be seen, as in the previous cases, that the sensitivity
increases when increasing the number of bits in the ADCER,
imposing tight requirements at a high number of ADCER bits.
On the other hand, while sensitivity to ELD also exhibits a
similar trend, it can be seen that such requirements would not
be as restrictive as for the jitter case. This is due to the use of an
SCR DAC, which will not only decrease the sensitivity to jitter
but also increase the tolerance to ELD.

From Fig. 9, it is also possible to appreciate certain similar-
ities between each case from where some general observations
can be drawn. When looking at the influence of BER, all
previous simulations contain a region, or “envelope,” where
there is no performance gain by the addition of extra ADCER

bits. This is consistent with the qualitative analysis made in
Section IV from where it is possible to realize that, for a
given nonideality value, a mismatch between the digital and
analog transfer functions will occur and certain noise will be
injected; therefore, increasing the number of ADCER bits will
no longer be effective. This effect highlights the need of careful
noise cancellation filter design so as to counteract such negative
effect.

D. Design Centering of Noise Cancellation Filter

As shown in Section IV, one of the main differences between
traditional SL ΣΔ ADCs and ERIΣΔ counterparts is the exis-
tence, as in cascaded ΣΔ ADCs, of a noise cancellation filter
that should match certain analog transfer function in order to
prevent noise leakage. The filter developed in (34) provides a
good system-level approximation and can be used to establish
the theoretical performance of the ADC. However, it does
not take into consideration nonidealities that appear in circuit
implementation which results, as exemplified in Section V-C,
in a suboptimal solution. In principle, it would be possible to
mathematically derive a noise cancellation filter to account for
all introduced nonidealities. This approach, however, becomes
too cumbersome when going from system level to more refined
abstraction levels such as block- or circuit-level implementa-
tion. In this work, optimization tools are employed so as to
account for analog nonidealities in the noise cancellation filter
design and, thus, reduce noise leakage. This approach has the
advantage that can be directly applied, in all design steps, by
simply rerunning the optimization algorithm.

TABLE II
COMPARISON OF TESTED ALGORITHMS

When operating in transient mode, the noise cancellation
filter given in (34) can be treated as an N -length finite impulse
response (FIR) filter with the appropriate coefficients [12]. Fur-
thermore, these coefficients are simply obtained by computing
the N -length impulse response of the transfer function in (34).
In order to minimize the noise leakage, the proposed method
uses a MATLAB optimization algorithm to find the optimum
N coefficients of the FIR filter. The goal of the aforementioned
algorithm is set to maximize the ADCERI SNDR performance,
assuming that a maximum SNDR will correspond to a mini-
mum noise leakage. When computing such performance metric,
the influence of the quantization error EER(z) is minimized
by removing ADCER in Fig. 3, thus letting x3(N) to directly
cancel the ADCI quantization error. Furthermore, this perfor-
mance metric is computed at an input signal amplitude where
harmonics are not present.

One issue with respect to the use of optimization algorithms
is the risk of not finding a global solution, thus leading to a sub-
optimal set of FIR coefficients. Although all solvers included
in the MATLAB Optimization Toolbox[19] generally find a
local optimum, the so-called “global optimization algorithms,”
present in the MATLAB Global Optimization Toolbox [20],
counteract this issue by searching for solutions to problems that
contain multiple maxima. The latter type of solvers, however,
has the disadvantage of being significantly slower than the
former type. Although an exhaustive study of the optimum
solver is out of the scope of this paper, several algorithms have
been tested in order to evaluate their efficiency in terms of the
final solution and the speed to obtain such solution. In this work,
the functions fminsearch, fminunc, and multistart were tested.
The first two optimizers fall in the category of “minimizers” and
attempt to find a local minimum of the objective function near
an initial estimate. On the other hand, the last function starts
a local solver from multiple start points in order to attempt to
find a global optimum. In this work, fminunc has been used
as such local solver. Default values were used in all evaluated
functions with the exception of the maximum number of al-
lowed iterations and the maximum number of allowed function
evaluations. These values were increased, thus allowing the
algorithm to be stopped when the ADCERI’s SNDR could not
be improved by more than certain tolerance. Moreover, the
coefficients obtained from (34) were set as the initial estimate.
Table II shows a comparison between the tested algorithms
when using a test case with practical values for the nonidealities
analyzed in Section V-C. The performance of each algorithm
is measured with respect to the ADCERI’s SNDR when using
a 10-b ADCER, while the speed is measured in the number of
functions evaluated in order to reach that solution. It can be seen
that fminunc is more efficient than fminsearch, in terms of both
the ADCERI’s SNDR obtained and the number of functions
needed to obtain such result. Moreover, even though it reaches
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Fig. 10. ADCERI SNDR performance versus (a) integrators’ coefficient
deviation, (b) integrators’ finite dc gain, (c) integrators’ finite GBW, and
(d) DAC ELD. (References: ADCER bits of (×−) three, (�) four, (+) five,
(©) six, (�) seven, (×) eight, (�) nine, and (�) ten).

a similar result as multistart, it does it with significantly less
number of functions evaluated. Based on these results, fminunc
is selected to optimize the noise cancellation filter.

To validate the ADCERI performance when using the pro-
posed filter, similar simulations as in Section V-C are shown
in Fig. 10, with the exception of the sensitivity to clock jitter.
As shown in Fig. 10(a), the proposed filter can successfully
counteract the degradation induced from process variations, ob-
taining, in comparison with Fig. 9(a), 59 dB of SNDR improve-
ment in the case of ΔRC = −30% and BER = 10. Although
one can expect large deviations after physical implementation,
the previous simulation highlights the possibility to compensate
and even cancel the influence of such variations in the digital
domain. When comparing Figs. 9(a) and 10(a), it is also worth

to notice a different behavior with respect to the sensitivity to
process variations. This difference can be understood as fol-
lows. With respect to Fig. 9(a), the dominant factor which limits
the ADC’s SNDR is the noise leakage from analog-digital
transfer function mismatches. Accordingly, any deviation in
the integrators’ coefficients, either positive or negative, will
affect the required matching, which, in return, will decrease the
ADC’s performance. With respect to Fig. 10(a), the optimized
digital filter is able to effectively counteract the analog-digital
transfer function mismatches. However, as the digital filter
is calibrated to match the nonideal analog transfer function,
and not otherwise, loop gain errors will still affect the overall
SNDR performance of the ADC. Similarly, as in traditional ΣΔ
modulators, coefficient deviations will affect the NTF in the
following way. A positive variation in the passives will translate
into a reduction in the integrators’ coefficients, which, in return,
will result in a less aggressive NTF and increase the in-band
noise, but it will not affect the stability. On the other hand, a
negative variation in the passives will increase the integrators’
coefficients, resulting in a more aggressive NTF. Although this
will initially result in a slight increase in performance, it could
potentially lead to instability, depending on the selected NTF,
as well as on the magnitude of the input signal. This highlights
the importance of proper NTF design so as to withstand the
expected spread.

The effects of the proposed noise cancellation filter when
considering op-amps’ nonidealities are shown in Fig. 10(b)
and (c), for finite amplifier dc gain and finite amplifier GBW,
respectively. Contrary to the respective simulations shown in
Section V-C, now, it is possible to use an op-amp with a GBW
product close to 2fs and a dc gain close to 40 dB. While this
represents a key feature for this architecture when compared to
DT counterparts, it is worth remembering that only the effects
described in (44) and (46) have been taken into account. Other
nonidealities, such as thermal noise and nonlinear effects, will
increase the lower boundary of the required dc gain.

With respect to DAC nonidealities, while the proposed filter
could effectively enhance, as shown in Fig. 10(d), the ADC’s
sensitivity to ELD, depreciable improvement was found with
respect to jitter degradation. Taking this into consideration, the
choice of the SCR-DAC mean lifetime value τ represents a
key design parameter to fully benefit from the ER approach,
as it will determine the sensitivity to clock jitter. Moreover,
as the jitter standard deviation in Fig. 9(e) is expressed with
respect to the sampling frequency, this figure could be used
to estimate the maximum frequency of operation for a given
clock with certain absolute jitter standard deviation. As in
traditional CT ΣΔ ADCs, jitter-induced degradations could
also be counteracted by using multibit feedback DAC. This
approach, however, would increase the complexity of the digital
filter and may require an extra calibration circuitry to reduce the
DAC mismatches.

Similar considerations apply with respect to the input re-
ferred circuit noise, as well as for the offset errors, in the case of
converting dc inputs. As in such cases where an optimized filter
obtains no improvement, the degradations induced by these
nonidealities should be kept within the intended margin so as
not to degrade the ADC’s resolution.
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VI. CONCLUSION

The theoretical analysis and circuit-level issues of ER in-
cremental ADCs have been presented for CT high-order SL
ΣΔ modulators. A general approach, applicable to any loop
filter topology, quantizer’s number of bits, and DAC’s coding
scheme, has been proposed so as to obtain key features of
the building blocks and qualitatively analyze the loop filter
influence as well as mismatches between analog and digital
transfer functions. It was shown that, as in DT counterparts,
feedforward loop filter topologies are preferable as they reduce
the quantization error of the incremental section of the ADC,
increasing, in turn, the ADC’s overall performance. It was
also found that, although CIFF+IFF topology does not provide
independence between the input signal and the quantization
error when using non-NRZ coding schemes, their correlation
is minimized if ER is used. A third-order single-bit ERIΣΔ
ADC has been used to illustrate the theoretical analysis and
quantify the impact of critical circuit nonidealities. It was
found that ERIΣΔ ADCs are highly sensitive to nonidealities,
particularly if a large number of bits are used in the ER ADC.
However, as most of the degradation stems from noise leakage
due to analog-digital transfer function mismatches, this can
be counteracted in the digital domain, as in cascaded ΣΔ
modulators, by optimizing the noise cancellation filter so as
to match the nonideal analog transfer function. When such
matching is restored, the ADC can effectively benefit from
relaxed amplifier’s finite GBW and finite dc gain, allowing, as
a consequence, a power-aware implementation. Furthermore,
the test case results show the importance of nonidealities that
could not be counteracted, such as thermal noise and jitter, and
may influence both system- and circuit-level decisions. The
theoretical analysis and test case both highlight the potential
of CT ERIΣΔ ADCs for low-power multichannel applications
and hint the designer about possible pitfalls in order to reach a
successful implementation.
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