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ON CONTINUOUSLY DEFECTIVE ELASTIC CRYSTALS

MAREK Z. ELŻANOWSKI AND SERGE PRESTON

Abstract. We analyze mathematical underpinnings of Davini’s theory of defective crystals [1]
when the defectiveness of a kinematic state may be material point dependent. We show how
the underlying space can be identified with a suitably chosen homogeneous space and how the
uniformly defective structure is just a special case.
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INTRODUCTION

The kinematic theory of continuously defective elastic crystal bodies was origin-
ally proposed by Davini [1] and developed over the last two decades by him and
Parry, and his collaborators (see, for example, [2, 3, 7]). The key assumption of this
approach is that the state of a defective (continuous) crystal is defined by three lin-
early independent and smoothly varying over the body, R3 in our case, lattice vector
fields which are to represent an averaged micro (atomic) structure. The defective-
ness of such a state is described by the dislocation density tensor, an object which
measures the first order interrelations of the given lattice vector fields.

The main focus of the theory has been so far on uniform defective crystals, that is,
the states characterized by the property that the dislocation density tensor is constant
throughout the body. The reason for this is that when the given vector fields are
such that the corresponding dislocation density tensor is position independent, the
underlying space (the body) can be equipped with a Lie group structure in such a
way that the lattice vector fields are right invariant under its action on itself, [7]. The
availability of this ”additional” structure allows one to use the power of the theory
of Lie groups and algebras to analyze in a systematic way the properties of such
uniform defective crystal states, in particular, the question of symmetries, both local
and global, discrete and continuous (see for example [8]). In contrast, when the lattice
vector fields are such that the dislocation density tensor is material point dependent,
the Lie group structure is no longer available.

In this short note, we look closer at the states with a non-uniform dislocation dens-
ity tensor. We show that although the underlying space R3 cannot indeed be assigned
a Lie group structure, it can be identified with the properly defined homogeneous
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660 MAREK Z. ELŻANOWSKI AND SERGE PRESTON

space the total space of which is a Lie group. The Lie algebra of this group is ho-
momorphic to a Lie subalgebra of smooth vector fields on R3 generated uniquely by
the three lattice vector fields. The homogeneous space structure of R3 collapses to a
Lie group when the Lie algebra generated by the lattice vector fields is of dimension
three and the corresponding dislocation density tensor is base point independent, thus
proving that the uniformly defective state is just a special case of a general kinematic
state of a defective crystal.

The paper is divided into four short sections. The first two sections are dedicated
to the presentation of the foundations of Davini’s theory [1] and the analysis of the
uniformly defective states, [7]. In Section 3, we deal with the non-uniform case. In
the last section, we show how the dislocation density tensor relates to the intrinsic
characteristic of the homogeneous space associated with the lattice vector fields.

1. CONTINUOUS ELASTIC CRYSTALS

Let the kinematic state of a continuous solid crystal body be given by three linearly
independent vector fields li W R3 ! TR3, i D 1; 2; 3, where TR3 denotes the tangent
space to R3. In other words, the state of a continuous elastic crystal is defined be a
global smooth section l W R3 ! L.R3/ of the bundle of the linear frames of R3, [5],
called a continuous lattice or simply a lattice. Invoking the Euclidean structure of R3,
the lattice l.x/ induces the dual frame d W R3 ! L.R3/ such that di .x/ � lj .x/ D �ij ,
i; j D 1; 2; 3, x 2 R3, where �ij denotes the usual Kroneker’s delta. In this context,
the “defectiveness” of the lattice l.x/ can be characterized by the dislocation density
tensor (ddt) the components of which are defined by the equations

n.x/Sij .x/ D r ^ di .x/ � dj .x/; i; j D 1; 2; 3; x 2 R3; (1.1)

where n.x/ WD d1.x/ �d2.x/^d3.x/ is the lattice volume element. Looking closer at
the properties of the dislocation density tensor, we note that if the defining frame field
l.x/ is holonomic (integrable), the corresponding dislocation density tensor vanishes
everywhere. In fact, the opposite is also true. That is, if Sij .x/ is identically zero, the
lattice l.x/ it represents is holonomic, [2]. In particular, the dislocation density tensor
of the ideal lattice defined by a constant orthonormal frame e.x/ vanishes identically.

Having two crystalline structures, say l.x/ andzl.x/, we state that they are elastic-
ally related if there exists a diffeomorphism � W R3 ! R

3 such that

zli .�.x// D ��.li .x//; i D 1; 2; 3; x 2 R3 (1.2)

where �� W TR3 ! TR3 denotes the tangent map of �. Thus, any diffeomorphism
of R3, when applied to a continuous lattice via (1.2), induces an elastically related
structure. It is not true, however, that any two (smooth) crystalline structures are
elastically related unless additional conditions are met. Indeed, as shown in [1], one
of the properties of an elastic deformation is that it preserves the defectiveness of the
given continuous lattice. Namely, given a diffeomorphism � W R3 ! R

3, the lattice



ON CONTINUOUSLY DEFECTIVE ELASTIC CRYSTALS 661

l.x/, and the elastically induced latticezl.�.x// D ��.l.x//,
zSij .�.x// D Sij .x/; i; j D 1; 2; 3; x 2 R3 (1.3)

where zSij .x/ are the components of the dislocation density tensor of the new struc-
ture�.

The ideal lattice, in fact any holonomic frame field, is an example of a continuous
elastic crystal with a uniform (point independent) dislocation density tensor. More
generally, a continuous lattice is called uniformly defective if its dislocation density
tensor Sij .x/ is material point independent. It is easy to see from the equation (1.3)
that if two uniformly defective lattices are elastically related, they have the same
dislocation density tensor. The reader should, however, be cautioned that two uni-
formly defective lattices with the same dislocation density tensor are not guaranteed
to be elastically related. Indeed, such lattices may be related by the neutral deforma-
tion [1], which preserves defectiveness of a lattice but is not elastic in the sense that
it does not come from a diffeomorphism of the underlying space R3 in our case.

In the next section, we shall look closer at the uniformly defective continuous
lattices summarizing how the fact that the dislocation density tensor if uniform allows
one to introduce a nontrivial group structure on the underlying space R3.

2. UNIFORMLY DEFECTIVE STRUCTURES

Consider a uniformly defective continuous lattice l.x/ with the dislocation density
tensor Sij and such that li .0/ D ei , i D 1; 2; 3, at the origin 0 2 R3. Motivated by
the fact that Sij is constant and that any elastic deformation preserves it, we ask if
given an arbitrary point u 2 R

3 there exists a diffeomorphism  .�; u/ W R3 ! R
3

such that  .0; u/ D u and

li . .x; u// D r1 .x; u/li .x/; i D 1; 2; 3; x; u 2 R3 (2.1)

where r1 .�; u/ denotes the Jacobian of  with respect to the (first) variable. The
assumption that the dislocation density tensor Sij is constant turns out to be an in-
tegrability condition for the system of equations (2.1), [7], guaranteeing that there is
a smooth and invertible (in each variable separately) solution  W R3 � R3 ! R

3

which is associative and such that for every x 2 R3 there exists x�1 2 R3 with the
property that

 .x; x�1/ D  .x�1; x/ D 0; (2.2)

where
 .0; x/ D  .x; 0/ D x: (2.3)

�A homogeneous deformation �.x/ D x is a simple example of an elastic deformation, where
� f

j
i g is a non-singular 3 � 3 matrix. Indeed, as easily confirmed by the direct calculations, the

deformed lattice yli .x/ D 
j
i lj .

�1x/ has the dislocation density tensor ySij .x/ D Sij .
�1x/ for every

x 2 R3.
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In other words, any uniformly defective lattice is elastically self-similar. Conversely,
if, for some continuous lattice l.x/, the system of equations (2.1) has an associative
solution  satisfying (2.2) and (2.3), the lattice must be uniformly defective.

The associative solution  to the system of equations (2.1) can be viewed as a
group multiplication on the underlying space R3 with the identity element at the
origin 0 2 R3. In fact, as the mapping  is smooth and invertible in each argument,
it introduces a Lie group structure on R3 such that the vector fields li .x/, i D 1; 2; 3

are right invariant under its action. This implies that the algebra of vectors fields
generated by li .x/, i D 1; 2; 3, with the standard Lie bracket �li ; lj � WD .li � r/lj �

.lj � r/li is isomorphic to the Lie algebra of the left invariant vector fields on R3

viewed as a group with the multiplication  W R3 � R3 ! R
3. Let Ckij denote the

corresponding Lie algebra constants, that is, �li ; lj � D Ckij lk , i; j; k D 1; 2; 3, where
the summation convention over the repeated indices is enforced. It can be shown, [3],
that the dislocation density tensor is such that

�jklSij D Cikl (2.4)

where �jkl is the classical alternating tensor.
To end this section, we present a simple example illustrating the concepts intro-

duced so far.

Example 1. Let us consider a continuous lattice defined by the frame

l1.x/ D e1; l2.x/ D e2; l3.x/ D x1e1 C x2e2 C e3: (2.5)

As the Lie brackets are �l1; l2� D 0, �l1; l3� D l1 and �l2; l3� D l2, the only non-zero
Lie algebra constants are C113 D C223 D 1. Hence, the dislocation density tensor

Sij D

0
@
0 1 0

�1 0 0

0 0 0

1
A : (2.6)

To find a suitable group operation  W R3 � R3 ! R
3, we must solve the system of

equations (2.1). It can easily be shown that

 .u; v/ D uC .0; 0; v3/C eu3.v1; v2; 0/; u; v 2 R3 (2.7)

is indeed a solution. Calculating its Jacobian with respect to its first variable, we
obtain

r1 .u; v/ D

0
@
1 0 v1e

u3

0 1 v2e
u3

0 0 1

1
A (2.8)

confirming, that the vector fields generating the given lattice are right invariant under
the action of this group.
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3. NON-UNIFORMLY DEFECTIVE STRUCTURES

We start our analysis of crystal structures which may not be uniformly defective
by looking at a specific example of a continuum lattice with a variable dislocation
density tensor.

Example 2. Consider the crystalline structure of an elastic body given by three
linearly independent vector fields

l1.x/ D e1; l2.x/ D e2 � x2e1; l3.x/ D x1e1 C x2e2 C e3; x 2 R3: (3.1)

Using the definition of the dislocation density tensor (1.1), we see that it is position
dependent as

Sij .x/ D

0
@
�x2 1 0

�1 0 0

0 0 0

1
A ; x D .x1; x2; x3/ 2 R

3: (3.2)

Looking back at the identity (2.4), we conclude that either the relation between the
Lie algebra constants and the dislocation density tensor is no longer valid and/or
the given vector fields do not generate a 3-dim Lie algebra. Indeed, calculating the
corresponding Lie brackets, one obtains that

�l1.x/; l.2.x/� D 0; �l1.x/; l3.x/� D l1.x/; �l2.x/; l3.x/� D e2 (3.3)

where the vector field e2 � l2.x/C x2l1.x/ cannot be represented as a linear com-
bination of the given vector fields (3.1). Investigating this further, one discovers that
as

�e2; l1.x/� D 0; �e2; l2.x/� D �l1.x/; �e2; l3.x/� D e2; (3.4)
the smallest Lie algebra of vector fields on R3 the given frame field belongs to is the
four dimensional Lie algebra generated by

e1; e2; e2 � x2e1; x1e1 C x2e2 C e3: (3.5)

Thus, it appears that no group structure can be given to the underlying space R3.
However, one may ask if there is an algebraic or a differential structure which R3 can
be equipped with, above and beyond its natural Euclidean structure. Moreover, one
wonders how the dislocation density tensor relates to any intrinsic characteristics of
such a structure�. We shall investigate these questions in the sequel.

Consider a continuous lattice defined by a frame field l W R3 ! L.R3/ such that
li .0/ D ei , i D 1; 2; 3. We assume that the lattice fields li .x/, i D 1; 2; 3, generate
a k-dimensional Lie subalgebra, say l, of the algebra X.R3/ of all smooth vector
fields on R3, where 3 � k < 1. Hence, the lattice algebra l is spanned by the
vector fields, say l1; l2; : : : ; lk , where for the consistency of our presentation, the
vector fields are ordered so that li D li .x/, i D 1; 2; 3, unless stated otherwise. We

�Note that the relation (2.4) is still valid if the Lie algebra constants are replaced by the variable
coefficients yCkij .x/ such that �li ; lj � D yCkij .x/lk . See also Proposition 3.
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postulate also that all generators of the subalgebra l are complete vector fields on the
manifold R3, which implies that the algebra l consists entirely of complete vector
fields, [4]. Moreover, there exists a Lie group acting on R3 the Lie algebra of which
is isomorphic to l, [4, 6].

Theorem 1. Consider a continuous lattice defined by three linearly independent
smooth vector fields li W R3 ! TR3, i D 1; 2; 3. Let l � X.R3/ be the smallest
algebra of vector fields containing the given lattice vector fields. Assume that l is
finite-dimensional and complete. Then, there exists a simply connected Lie group
G contained in Diff.R3/ as an abstract subgroup and such that the natural action
� W G �R3 ! R

3 of the group G on R3 is smooth and the algebra l is homomorphic
to the Lie algebra, say g, of the group G.

Given the smooth action�, there exists a homomorphism � W G ! Diff.R3/ from
the group G into the group of all diffeomorphisms of R3 such that

�.a/.x/ D �.a; x/; a 2 G; x 2 R3: (3.6)

If, in addition, the action � is effective, the homomorphism � identifies the group G
with a subgroup, say �.G/ � Diff.R3/. Given x 2 R3, consider a smooth mapping
�.x/ W G ! R

3 such that
�.x/.g/ WD �.g; x/ (3.7)

for any g 2 G. The mapping �.x/ maps the group G onto the orbit G.x/ of the
point x (under the action�). Indeed, y 2 G.x/ if and only if there exists a 2 G such
that y D �.x/.a/ � �.a; x/. Moreover, the mapping �.x/ is a morphism (but not
necessarily an isomorphism) of the action of G on itself (by left translations) into the
action of� on R3. Correspondingly, there exists a relation between the Lie algebra g
and the algebra of all smooth vector fieldsX.R3/. To illustrate this fact, let us define
the map d� W g! X.R3/ by requiring that

d�.v/.x/ WD de�.x/.v/ (3.8)

for any v 2 g and any x 2 R
3, where de�.x/ denotes the tangent map of �.x/ at

the identity e 2 G. Note that, by (3.8), d�.v/ is a smooth vector field on R3 while
de�.x/.g/ is a subset of the tangent space TxR3. In addition, [4],

Proposition 1. The mapping d� W g ! X.R3/ is a homomorphism of Lie algeb-
ras. In fact, d�.g/ D l.

Remark 1. The action� is a generalization of the action of R3 on itself when the
lattice is uniformly defective. Indeed, to illustrate this claim, let us revisit Example 1.
There, we shall look at R3 both as a Lie group with the Lie algebra g � R

3 generated
by the standard basis fe1; e2; e3g, and as the space (manifold) the group is acting on.
The action � of the additive group R3 on the space R3 is given by

�.a; u/ D .a1 C u1e
a3 ; a2 C u2e

a3 ; a3 C u3/ (3.9)
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where for the clarity of the presentation, a 2 R
3 denotes a group element while

u 2 R3 is a point in the space acted upon. To identify the homomorphism d� defined
by (3.8), we calculate that

d0�.u/ D da�.u/jaD0 D

0
@
1 0 u1e

a3

0 1 u2e
a3

0 0 1

1
A
jaD0

D

0
@
1 0 u1
0 1 u2
0 0 1

1
A : (3.10)

Hence, given an arbitrary element v D .v1; v2; v3/ of the Lie algebra g, we have

d�.v/.u/ D d0�.u/.v/ D

0
@
1 0 u1
0 1 u2
0 0 1

1
A
0
@
v1
v2
v3

1
A D v1e1C v2e2C v3

0
@
u1
u2
1

1
A (3.11)

which is exactly the subalgebra l � X.R3/ of example 1, that is, the corresponding
lattice algebra; see (2.5).

Given a k-parameter Lie group G acting on R3, where the Lie algebra g of G is
homomorphic to the lattice algebra l, consider a point, say x0 2 R3, and let Gx0 be
the isotropy group of the action � at x0. That is, let

Gx0 WD fg 2 G W �.g; x0/ D x0g; (3.12)

where the projection�.x0/ W G ! R
3 given by (3.7) is such that�.x0/.Gx0/ D x0.

If the action � is transitive, the rank of the projection �.x0/ is constant, [4], which,
in turn, allows one to identify R3 with the quotient space G=Gx0 . Indeed, consider
the mapping1�.x0/ W G=Gx0 ! R

3 such that

1�.x0/.hGx0/ D �.x0/.h/ D �.h; x0/: (3.13)

where hGx0 denotes the left co-set of Gx0 under the left translation of the group G.
It can easily be shown that1�.x0/ is a diffeomorphism and that the isotropy group at
a point, say y 2 R3 such that y D �.h; x0/ for some h 2 G, is the conjugate of Gx0 ,
i. e., if g0 2 Gx0 , then

�.hg0h
�1; y/ D �.hg0h

�1; �.h; x0// D �.hg0; x0/ D �.h; x0/ D y: (3.14)

Summarizing what we have just discussed, we state

Theorem 2. Consider a continuous lattice defined by three linearly independent
smooth vector fields li W R3 ! TR3, i D 1; 2; 3, where l � X.R3/ is the corres-
ponding lattice algebra. Then, if the induced action � W G � R3 ! R

3 is transitive,
the underlying space R3 can be identified with the homogeneous space G=G0 where
the subgroup G0 � G is the isotropy group of the action � at the origin of R3.

Note that if the isotropy group G0 is trivial and/or a normal subgroup of the group
G, the homogeneous space G=G0 is a group proving that the corresponding con-
tinuous lattice is uniformly defective. Note also that, as the isotropy groups at two
different points of the underlying space are conjugate of each other, the identification
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(diffeomorphism)1�.x0/ W G=Gx0 ! R
3 is a base point dependent. Indeed, consider

y 2 R
3 and let h 2 G be such that y D �.h; x0/. Then �.y/.g/ D �.g; y/ D

�.g;�.h; x0// D �.gh; x0/ D �.x0/.gh/ for any g 2 G. In other words,

�.y/ D �.�.h; x0// D �.x0/ �Rh W G ! R
3 (3.15)

where Rh W G ! G denotes here the right translation by h 2 G.

Example 3. We shall revisit now Example 2 where the continuous lattice l was
given by the frame (3.1) with the corresponding four-dimensional lattice algebra l
of vector fields on R3 generated by (3.5). Thus, using the fact that the group of af-
fine transformations of R3 can be realized as a subgroup of the general linear group
GL.4;R/, it is easy to show that the general element v of the algebra g of the sub-
group G � Diff.R3/ acting on R3 can be represented as

v D

0
BB@
q �r 0 t

0 q 0 s C r

0 0 0 q

0 0 0 0

1
CCA ; q; r; s; t 2 R; (3.16)

where

v D te1 C se2 C r.e2 � x2e1/C q.x1e1 C x2e2 C e3/; x1; x2 2 R: (3.17)

One can also show that the corresponding, but re-parameterized, four parameter sub-
group G of Diff.R3/ (or rather its GL.4;R/ representation) is given by the elements

g.q; r; �; �/ D

0
BB@
eq �req 0 �

0 eq 0 �

0 0 1 q

0 0 0 1

1
CCA : (3.18)

This means that the smooth action � of the group G on R3 takes the form

�.g.q; r; �; �/; .u1; u2; u3// D

0
@
u1e

q � u2re
q C �

u2 C �

u3 C q

1
A (3.19)

where .u1; u2; u3/ 2 R
3. The corresponding homomorphism d� of the algebras g

and l can now be easily evaluated as

d�.�/.u/ D de�.u/ D

0
@
u1 �u2 1 0

u2 1 0 1

1 0 0 0

1
A (3.20)

where the identity element e of the group G is attained when all the parameters
vanish. Note that the isotropy group of the action� at the origin 0 2 R3 is represented
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by 0
BB@
1 �r 0 0

0 1 0 0

0 0 1 0

0 0 0 1

1
CCA : (3.21)

4. DISLOCATION DENSITY TENSOR

When a continuous lattice is uniformly defective, its dislocation tensity tensor Sij
can be represented as a linear combination of the Lie algebra constants of the defining
lattice frame li .x/, i D 1; 2; 3, see (2.4). On the other hand, when the lattice is non-
uniform, that is, when the dislocation density tensor is material point dependent, the
relation (2.4) is no longer valid. In this section, we shall show how to re-interpret this
relation so as to make it a natural generalization of the uniformly defective case.

To this end, note first that the projection �.0/ W G ! R
3, which we shall denote

by �0, commutes with the left action of G as

�0.gh/ D �.gh; 0/ D �.g;�.h; 0// D �.g;�0.h// (4.1)

for any g; h 2 G. Given the lattice subalgebra l � X.R3/, we can lift its generators
li .x/, i D 1; � � � ; k to the Lie algebra g of the group G using the homomorphism
d�, (3.8). That is, let li 2 g be such that d�.li / D li .x/, i D 1; � � � ; k. Hence, using
the relation (3.15), we obtain that

d�.li /.x/ D de�.x/.li / D de.�0 �Rh/.li / D dh�0 � deRh.li / (4.2)

where x D �.h; 0/ and h 2 G. This proves, in fact, that given the generators li of
the Lie algebra g and extending them by the right translation to the whole group G,
one obtains a right-invariant frame field zli .h/ WD deRh.li / such that it projects onto
the generators of the lattice algebra l. Namely,

d�0.zli .h// D li .�.h; 0// (4.3)

for any i D 1; � � � ; k and h 2 G. In particular, the first three vector fields zli W G !
TG, corresponding to the lattice frame li W R3 ! TR3, form a 3-dimensional, right
invariant, distribution zD W G ! TG (of vector spaces) in TG. That is,

zD.h/ D deRh. zD.e//: (4.4)

The projection of the distribution zD by the tangent map d�0 is, by the definition
of �0 and the explicit construction of the frame field zli .h/, i D 1; 2; 3, the tangent
space TR3. This immediately implies

Proposition 2. Let � W G � R3 be a transitive action of a Lie group G on R3.
Given a complete lattice frame l W R3 ! L.R3/ such that the Lie algebra g �
TeG is isomorphic to the lattice algebra l � X.R3/, the tangent space TG can be
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decomposed into the direct sum of the right-invariant distribution zD and the tangent
space to the fibers of the projection G ! G=G0. That is, at any point p 2 G

TpG D zD.p/� Tp.pG0/: (4.5)

Moreover, this direct sum is right invariant under the natural action of the isotropy
group G0.

Indeed, consider an arbitrary x 2 R
3 and h 2 G such that �.h; 0/ D x. Knowing

that the mapping y�0, see (3.13), identifying the underlying space R3 with the homo-
geneous space G=G0, is a diffeomorphism, one can easily see that the inverse image
y�0
�1
.x/ D hG0 is a submanifold. Thus, the kernel

ker dhG0

y�0 D ker dh�0 D Tp.pG0/: (4.6)

This and the fact that dh�0.D.h// D T�.h;0/R
3 prove finally the decomposition (4.5)�.

In general, the vector space D WD zD.e/ � g is not a subalgebra�, thus, the com-
mutators �li ; lj �, i; j D 1; 2; 3, although in the algebra g, are not necessarily elements
of the vector space D. Looking closer at the commutators of the vectors defining the
vector space D, we know that

�li ; lj � D Cmij lm; i D 1; 2; 3; m D 1; � � � ; k (4.7)

where Cmij are the Lie algebra constants of the algebra g and not all the coefficients
Cmij , m D 4; � � � ; k, i; j D 1; 2; 3, vanish. The linear combination of the first three
vectors is in D. The remaining vectors lrij WD Cmij lm, m � 4, although not in D, are
elements of the algebra g and can therefore be presented as a sum of an element from
D and an element from Te.G0/ (see footnote 4). That is,

lrij D C r
mij lm C vij (4.8)

where the vertical vector vij 2 Te.G0/ and where the constants C r
mij , i; j;m D

1; 2; 3, are no longer the Lie algebra constants. In summary, for any pair of vectors
li ; lj 2 D � g, the corresponding commutator can be represented as

�li ; lj � D Cmij lm C .C r
mij lm C vij /; i; j;m D 1; 2; 3: (4.9)

Note, however, that as the first part of the decomposition is G right invariant, the
second part is not. Therefore, extending the vectors li , i D 1; 2; 3, to the whole
group G by the right translation, we obtain that the corresponding vector fields zli
have commutators which can be represented as

�zli .h/;zlj .h/� D Cmij
zlm.h/C .C r

mij .h/
zlm.h/C vij .h//; i; j;m D 1; 2; 3 (4.10)

�The distribution zD W G ! TG defines a (right) invariant connection on the bundle G ! G=G0 �

R
3, see [5]. The curvature of this connection is an invariant of the non-uniformly defective crystal states,

the issue which we will look closer at in the forthcoming work.
�However, the Lie algebra g D D � g0, where g0 D Te.G0/, is the Lie algebra of the isotropy

group G0.
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where h 2 G and the coefficients Cmij are the Lie algebra constants. Indeed, al-
though a bracket of two right invariant vector fields is right invariant and the right
translations deRh are linear maps, the decomposition (4.5) of the tangent space TG
into the distribution zD and the tangent space to the cosets of the isotropy group G0 is
not. That is, when the right translations of the remainder vector lrij get decomposed,
the decomposition is, in general, point h dependent causing the coefficients C r

mij .h/

to be different at different points of the groupG. Note that as the decomposition (4.5)
is G0 (isotropy group) right invariant, the coefficients C r

mij .h/ are constant along the
fibers Tp.pG0/, p 2 G. Note also that should the coefficients C r

mij .h/ be shown to
be group element independent, the vector space D would be a Lie subalgebra of the
algebra g.

The above analysis leads one to a straightforward generalization of the relation
(2.4).

Proposition 3. Consider a continuous lattice li .x/, i D 1; 2; 3, not necessarily
uniformly defective, and let Sij .x/ be its dislocation density tensor. Then

�jklSij .x/ D yCikl.x/; i; j; k D 1; 2; 3; x 2 R3 (4.11)

where
yCkij .x/ D Ckij C C r

kij .h/ (4.12)

for x D �.h; 0/.

Indeed, the key point to consider is the fact that the Lie algebra homomorphism
d� W g! X.R3/ takes a Lie bracket into a Lie bracket of its image and that its kernel
is the tangent space to cosets of the isotropy group G0. Namely,

d�.�li ; lj �/.x/ D dh�0.�zli ;zlj �.x/ D �li .x/; lj .x/� D yCmij .x/lm.x/: (4.13)

The rest follows the argument of the uniformly defective case [3]. To see how this
works in the case of a specific non-uniformly defective lattice, the reader may revisit
Example 2 where the only nonzero coefficients yCkij .x/ are yC113.x/ D yC223.x/ D 1

and yC123.x/ D x2.

REFERENCES

[1] C. Davini, “A proposal for a continuum theory of defective crystals,” Arch. Rational Mech. Anal.,
vol. 96, pp. 295–317, 1986.

[2] C. Davini and G. P. Parry, “A complete list of invariants for defective crystals,” Proc. Roy. Soc.
London A, vol. 432, pp. 341–365, 1991.
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