ON CONTRACTIONS SIMILAR TO ISOMETRIES AND TOEPLITZ OPERATORS

BÉLA SZ.-NAGY and CIPRIAN FOIAS,

1. Preliminaries and introduction

1. The (unitarily equivalent) canonical model of a completely nonunitary contraction T on a (separable, complex) Hilbert space is the operator $S(\theta)$ on the space $\mathfrak{y}(\theta)$, associated with a purely contractive analytic function $\left\{\mathcal{E}, ~ \mathfrak{E}_{*}, \Theta(\lambda)\right\}^{1}$ in the following manner ${ }^{2}$

$$
\begin{equation*}
\mathfrak{K}(\Theta)=\Omega(\Theta) \Theta\left\{\theta w \oplus \Delta w: w \in H_{\mathfrak{E}}^{2}\right\}, \tag{1.1}
\end{equation*}
$$

where

$$
\begin{equation*}
\mathscr{\Re}(\theta)=H_{\mathbb{E}_{*}}^{2} \oplus \overline{\Delta L_{\mathbb{C}}^{2}}, \quad \Delta\left(e^{i t}\right)=\left[I-\Theta\left(e^{i}\right) * \Theta\left(e^{i}\right)\right]^{1 / 2}, \tag{1.2}
\end{equation*}
$$

and

$$
\begin{equation*}
S(\Theta)(u \oplus v)=P_{\mathfrak{\xi}}(\Theta)(\chi u \oplus \chi v), \quad u \oplus v \in \mathfrak{\xi}(\theta), \tag{1.3}
\end{equation*}
$$

χ denoting the function $\chi(\lambda) \equiv \lambda$; cf. [4], Chapter VI.
We have $\mathfrak{y}(\theta)=\{0\}$ if and only if both \mathfrak{E} and \mathfrak{F}_{*}, are zero (i.e. equal $\{0\}$); cf. [4], Proposition VI.3.2. On the other hand, $\mathfrak{g}(\theta)=\mathscr{\Re}(\theta)$

[^0]if and only if $\Theta w \oplus \Delta w=0$, i.e. $w=0$ for all $w \in H_{\mathbb{E}}^{2}$, that is, if \mathfrak{F} is zero. Thus the inequalities $0 \neq \mathscr{G}(\Theta) \neq \mathscr{I}(\Theta)$ simultaneously hold if and only if
\[

$$
\begin{equation*}
\mathfrak{F} \neq\{0\} . \tag{1.4}
\end{equation*}
$$

\]

We shall assume (1.4) in the sequel.
The assumption that $\Theta(\lambda)$ be purely contractive has the effect that the operator $V(\Theta)$ defined on $\Omega(\Theta)$ by

$$
\begin{equation*}
V(\Theta)(u \oplus v)=\chi u \oplus \chi v, \quad u \oplus v \in \Omega(\Theta), \tag{1.5}
\end{equation*}
$$

is the minimal isometric dilation of $S(\Theta)$.
Note that (1.2) is just the Wold decomposition of the space $\Omega(\Theta)$ generated by the isometry $V(\Theta)$, that is,

$$
\begin{equation*}
\underset{n \geqq 0}{\cap} V(\Theta)^{n} \Omega(\Theta)=\{0\} \oplus \overline{\Delta L_{\mathscr{C}}^{2}} \tag{1.6}
\end{equation*}
$$

2. In any space L^{2} of scalar or vector valued functions u on the unit circle we denote by

$$
[u]_{+} \quad \text { and } \quad[u]_{-}
$$

the orthogonal projections of u to the subspaces

$$
H^{2} \quad \text { and } \quad L^{2} \ominus H^{2},
$$

respectively.
With a bounded analytic function $\{\mathfrak{A}, \mathfrak{B}, \Phi(\lambda)\}$ we associate the operator

$$
T(\Phi): H_{\mathfrak{A}}^{2} \rightarrow H_{\mathfrak{B}}^{2}
$$

defined by

$$
(T(\Phi) u)\left(e^{i t}\right)=\left[\Phi\left(e^{-i t}\right) u\left(e^{i t}\right)\right]_{+} ;
$$

such operators are also called co-analytic Toeplitz operators.
Observe that if W is the canonical unitary transformation $W: H^{2} \rightarrow$ $L^{2} \ominus H^{2}$ defined by

$$
W: u\left(e^{i t}\right) \mapsto e^{-i t} u\left(e^{-i t}\right) \quad\left(u \in H^{2}\right),
$$

then the transformed operator

$$
\begin{equation*}
T^{\wedge}(\Phi)=W_{\mathfrak{B}} T(\Phi) W_{\mathfrak{A}}^{-1}: L_{\mathfrak{A}}^{2} \ominus H_{\mathfrak{A}}^{2} \rightarrow L_{\mathfrak{B}}^{2} \ominus H_{\mathfrak{B}}^{2} \tag{1.7}
\end{equation*}
$$

is given by

$$
\begin{equation*}
\left(T^{\wedge}(\Phi) \varphi\right)\left(e^{i t}\right)=\left[\Phi\left(e^{i t}\right) \varphi\left(e^{i t}\right)\right]_{-} \quad\left(\varphi \in L_{\mathfrak{A}}^{2} \ominus H_{\mathfrak{A}}^{2}\right) \tag{1.8}
\end{equation*}
$$

3. The principal aim of this paper is to derive a condition for an operator valued contractive analytic function $\left\{\mathbb{C}^{\left(\varlimsup_{*},\right.}, \Theta(\lambda)\right\}$ in the unit dise to admit a "left-inverse", i.e. an operator valued bounded analytic function $\left\{\mathfrak{E}_{*}, \mathfrak{C}, D(\lambda)\right\}$ such that

$$
D(\lambda) \Theta(\lambda)=I_{\mathbb{E}},
$$

and estimates for $\|D(\cdot)\|_{\infty}$. This condition will involve the operator $T(\Theta)$, or equivalently, its unitary transform $T^{\wedge}(\Theta)$.

The theorem obtained reduces in the particular case when $\Theta(\lambda)$ is a finite column vector over H^{∞} to a recent result of Arveson [1], but it gives even in this case better estimates.

2. A general condition implying similarity

Proposition 1. Suppose T is a contraction on a Hilbert space $\mathfrak{y}=\mathfrak{g}^{\prime} \oplus \mathfrak{G}^{\prime \prime}$ such that
(i) the subspace \mathfrak{S}^{\prime} is invariant for T and $T \mid \mathfrak{W}^{\prime}$ is isometric,
(ii) $\inf \left\{\lim _{n \rightarrow \infty}\left\|T^{n} h\right\|: h \in \mathfrak{\xi}^{\prime \prime},\|h\|=1\right\}=\eta>0$.

Then there exists an invertible operator X from \mathfrak{G} onto some Hilbert space $\mathfrak{\Omega}$ such that $X T X^{-1}$ is an isometry on \mathfrak{Z} and

$$
\begin{equation*}
\|X\|\left\|X^{-1}\right\| \leqq 1 / \eta \tag{2.1}
\end{equation*}
$$

Proof. Let $A=\left(\lim _{n \rightarrow \infty} T^{* n} T^{n}\right)^{1 / 2}$; the strong limit exists because T is a contraction. We have $T^{*} A^{2} T=A^{2}$, and therefore $\|A T h\|=$ $\|A h\|$ for all $h \in \mathfrak{\mathfrak { G }}$. Thus there exists an isometry Z on $\mathcal{Z}=\overline{A \mathfrak{Y}}$ such that

$$
\begin{equation*}
A T=Z A \tag{2.2}
\end{equation*}
$$

For $\quad h^{\prime} \in \mathfrak{G}^{\prime} \quad$ we have, by (i), $\left\|T^{n} h^{\prime}\right\|=\left\|h^{\prime}\right\|(n=0,1, \ldots)$. Hence,

$$
\left\|A h^{\prime}\right\|^{2}=\left(A^{2} h^{\prime}, h^{\prime}\right)=\lim _{n}\left\|T^{n} h^{\prime}\right\|^{2}=\left\|h^{\prime}\right\|^{2} .
$$

As $\quad 0 \leqq A \leqq I$, equality $\left\|A h^{\prime}\right\|=\left\|h^{\prime}\right\|$ implies $A h^{\prime}=h^{\prime}$. Therefore \mathfrak{y}^{\prime} is invariant for A, and hence so is $\mathfrak{y}^{\prime \prime}$: the decomposition $\leftrightarrows=$ $\mathfrak{夕}^{\prime} \oplus \mathfrak{夕}^{\prime \prime}$ is reducing for A. Clearly,

$$
\eta=\inf \left\{\left\|A h^{\prime \prime}\right\|: h^{\prime \prime} \in \mathfrak{y}^{\prime \prime},\left\|h^{\prime \prime}\right\|=1\right\} .
$$

Because $\quad\left\|A\left(h^{\prime}+h^{\prime \prime}\right)\right\|^{2}=\left\|h^{\prime}+A h^{\prime \prime}\right\|^{2}=\left\|h^{\prime}\right\|^{2}+\left\|A h^{\prime \prime}\right\|^{2} \quad$ and $\quad 0 \leqq$ $\eta \leqq 1$, we infer that

$$
\begin{equation*}
\|A h\| \geqq \eta\|h\| \quad \text { for all } h \in \mathfrak{y} . \tag{2.3}
\end{equation*}
$$

Denote by X the operator $X: \mathfrak{F} \rightarrow \mathfrak{Z}(=\overline{A \mathfrak{F}})$ induced by A. Then, by (2.2), $X T X^{-1}=Z$. Moreover, $\|X\| \leqq 1$, and by (2.3), $\left\|X^{-1}\right\| \leqq 1 / \eta$. Thus (2.1) holds true.

3. A connection between the operators $S(\Theta)$ and $T(\Theta)$

Consider the operator $S(\Theta)$ generated by a purely contractive analytic function $\left\{\check{〔}, \bigodot_{*}, \Theta(\lambda)\right\}$ as in 1.1, that is, with non-zero \Subset.

First observe that the linear manifold

$$
\begin{equation*}
\mathfrak{G}_{0}^{\prime \prime}(\Theta)=\left\{[\Theta \varphi]_{+} \oplus \Delta \varphi: \varphi \in L_{\mathfrak{C}}^{2} \ominus H_{\mathfrak{F}}^{2}\right\} \tag{3.1}
\end{equation*}
$$

and its closure $\mathfrak{S}^{\prime \prime}(\Theta)$ are contained in $\mathfrak{G}(\Theta)$. Indeed, $\mathfrak{Y}_{0}^{\prime \prime}(\Theta)$ is orthogonal to any vector of the form $\Theta w \oplus \Delta w\left(w \in H_{\mathfrak{E}}^{2}\right)$, because

$$
\begin{aligned}
\left([\Theta \varphi]_{+}, \Theta w\right)+(\Delta \varphi, \Delta w) & =(\Theta \varphi, \Theta w)+(\Delta \varphi, \Delta w) \\
& =\left(\left(\Theta^{*} \Theta+\Delta^{2}\right) \varphi, w\right)=(\varphi, w)=0
\end{aligned}
$$

Let $\mathfrak{G g}^{\prime}(\Theta)=\mathfrak{F}(\Theta) \ominus \mathfrak{g}^{\prime \prime}(\Theta)$. Clearly, we have:

$$
u \oplus v \in \mathfrak{G}^{\prime}(\Theta) \Leftrightarrow\left\{\begin{aligned}
& u \in H_{\mathfrak{E}_{*}}^{2}, v \in \overline{\Delta L_{\mathfrak{C}}^{2}}, \Theta^{*} u+\Delta v \in L_{\mathfrak{C}}^{2} \ominus H_{\mathfrak{C}}^{2} \\
& 0=\left(u \oplus v,[\Theta \varphi]_{+} \oplus \Delta \varphi\right) \\
&=\left(\Theta^{*} u+\Delta v, \varphi\right) \text { for all } \varphi \in L_{\mathfrak{F}}^{2} \ominus H_{\mathfrak{C}}^{2}
\end{aligned}\right.
$$

and therefore,

$$
\begin{equation*}
\mathfrak{g}^{\prime}(\Theta)=\left\{u \oplus v \in \mathfrak{Y}(\Theta): \Theta^{*} u+\Delta v=0\right\} . \tag{3.2}
\end{equation*}
$$

It follows that if $u \oplus v \in \mathfrak{S}^{\prime}(\Theta)$ then $\chi u \oplus \chi v \in \mathfrak{H}^{\prime}(\Theta)$, and hence, $\mathfrak{H}^{\prime}(\Theta)$ is invariant for $S(\Theta)$; moreover, $S(\Theta) \mid \mathfrak{H}^{\prime}(\Theta)$ is an isometry, namely multiplication by χ.

A straightforward computation shows that for any $u \oplus v \in \mathscr{H}(\Theta)$ (cf. (1.2)) its projection to $\mathscr{\Re}(\Theta) \ominus \mathfrak{Y}(\Theta)$ equals
$\Theta w \oplus \Delta w$, where $w=[x]_{+}, x=\Theta^{*} u+\Delta v$.
Therefore,

$$
\left\|P_{\mathfrak{Y}(\Theta)}(u \oplus v)\right\|^{2}=\|u \oplus v\|^{2}-\|\Theta w \oplus \Delta w\|^{2}=\|u \oplus v\|^{2}-\|w\|^{2} .
$$

Apply this to $\chi^{n} u \oplus \chi^{n} v(n=0,1,2, \ldots)$ as well, and obtain

$$
\lim _{n \rightarrow \infty}\left\|P_{\mathfrak{Y}(\Theta)}\left(\chi^{n} u \oplus \chi^{n} v\right)\right\|^{2}=\|u \oplus v\|^{2}-\lim _{n \rightarrow \infty}\left\|\left[\chi^{n} x\right]_{+}\right\|^{2} ;
$$

the last limit obviously equals $\|x\|^{2}$. Thus we have for $u \oplus v \in \mathfrak{g}(\Theta)$:

$$
\lim _{n \rightarrow \infty}\left\|S(\Theta)^{n}(u \oplus v)\right\|^{2}=\|u \oplus v\|^{2}-\left\|\Theta^{*} u+\Delta v\right\|^{2}
$$

Let, in particular, $h=u \oplus v \in \mathfrak{\biguplus}_{0}^{\prime \prime}(\Theta)$, say

$$
h=[\Theta \varphi]_{+} \oplus \Delta \varphi, \quad \varphi \in L_{\mathfrak{C}}^{2} \Theta H_{\mathscr{C}}^{2},
$$

then $\Theta^{*}[\Theta \varphi]_{+} \oplus \Delta \Delta \varphi=\left(\Theta^{*} \Theta+\Delta^{2}\right) \varphi-\Theta^{*}[\Theta \varphi]_{-}=\varphi-\Theta^{*}[\Theta \varphi]_{-}$; hence,

$$
\begin{align*}
\lim _{n \rightarrow \infty}\left\|S(\Theta)^{n} h\right\|^{2} & =\|h\|^{2}-\left\|\varphi-\Theta^{*}[\Theta \varphi]-\right\|^{2} \tag{3.3}\\
& =\|h\|^{2}-\|\varphi-B \varphi\|^{2},
\end{align*}
$$

where B denotes the operator on $L_{\mathfrak{C}}^{2} \ominus H_{\mathfrak{E} \text { defined by }}^{2}$

$$
B \varphi=\Theta^{*}[\boldsymbol{\theta} \varphi]_{-}
$$

B is selfadjoint and $0 \leqq B \leqq I$; indeed, we have

$$
\begin{equation*}
(B \varphi, \varphi)=\left([\Theta \varphi]_{-}, \Theta \varphi\right)=\left([\Theta \varphi]_{-},[\Theta \varphi]_{-}\right)=\left\|T^{\wedge}(\Theta) \varphi\right\|^{2} \tag{3.4}
\end{equation*}
$$

where $T^{\wedge}(\Theta)$ is the transformed Toeplitz operator defined by (1.8). We have

$$
\begin{align*}
\|h\|^{2} & =\left\|[\Theta \varphi]_{+}\right\|^{2}+\|\Delta \varphi\|^{2}=\left(\|\Theta \varphi\|^{2}-\left\|[\Theta \varphi]_{-}\right\|^{2}\right)+\|\Delta \varphi\|^{2} \tag{3.5}\\
& =\|\varphi\|^{2}-\left\|[\Theta \varphi]_{-}\right\|^{2}=\|\varphi\|^{2}-(B \varphi, \varphi)=\|C \varphi\|^{2},
\end{align*}
$$

where $C=(I-B)^{1 / 2}$, and

$$
\begin{align*}
\|h\|^{2}-\|\varphi-B \varphi\|^{2} & =\|\varphi\|^{2}-(B \varphi, \varphi)-\|\varphi\|^{2}+2(B \varphi, \varphi)-\|B \varphi\|^{2} \tag{3.6}\\
& =(B \varphi, \varphi)-(B \varphi, B \varphi)=(B C \varphi, C \varphi)
\end{align*}
$$

From (3.3), (3.5) and (3.6) we infer that the infima

$$
\underset{h}{\inf }\left\{\lim _{n \rightarrow \infty}\left\|S(\Theta)^{n} h\right\|: h \in \mathfrak{G}_{0}^{\prime \prime}(\Theta),\|h\|=1\right\}
$$

and

$$
\underset{\psi}{\inf }\{(B \psi, \psi): \psi \in \operatorname{range} C,\|\psi\|=1\}
$$

are equal. They remain, by continuity, unchanged and therefore equal to each other if we allow h and ψ to run over all unit vectors in $\mathfrak{y}^{\prime \prime}(\Theta)$ and in the closure $\Re(C)$ of the range of C, respectively. Now $\Re(C)$ is obviously reducing B and for ψ in the orthogonal complement of $\Re(C)$ we have $C \psi=0, B \psi=\psi, \quad(B \psi, \psi)=\|\psi\|^{2}$. Hence we infer that the second infimum does not change even if we allow ψ to run over all unit vectors in $L_{\mathfrak{C}}^{2} \ominus H_{\mathfrak{E}}^{2}$.

Recalling (3.4) and observing that the Toeplitz operator $T(\Theta)$ clearly has the same lower bound as its unitary transform $T^{\wedge}(\Theta)$, on the respective unit spheres, we conclude:

Proposition 2. For any purely contractive analytic $\left\{\mathfrak{E}^{\mathfrak{E}}, \mathfrak{E}_{*}, \Theta(\lambda)\right\}$ the decomposition $\mathfrak{G}(\Theta)=\mathfrak{G}^{\prime}(\Theta) \oplus \mathfrak{W}^{\prime \prime}(\Theta)$ of the space $\mathfrak{g}(\Theta)$ defined by (3.1) and (3.2) is such that
(i) $S(\Theta) \mid \mathfrak{W}^{\prime}(\Theta)$ is an isometry on $\mathfrak{G}^{\prime}(\Theta)$,
(ii) The infima

$$
\inf _{h}\left\{\lim _{n \rightarrow \infty}\left\|S(\Theta)^{n} h\right\|: h \in \mathfrak{G}^{\prime \prime}(\Theta),\|h\|=1\right\}
$$

and

$$
\inf _{u}\left\{\|T(\Theta) u\|: u \in H_{\mathscr{E}}^{2},\|u\|=1\right\}
$$

are equal to the same value $\eta=\eta(\Theta)$.

4. Similarity of $S(\Theta)$ to an isometry

In case the quantity $\eta=\eta(\Theta)$ defined in Proposition 2 is non-zero we can apply Proposition 1 and conclude that $S(\Theta)$ is similar to some isometry Z on a space \mathfrak{Z}, i.e. there exist operators

$$
X: \quad \mathfrak{Y}(\Theta) \rightarrow \mathfrak{Z}, \quad X^{\prime}: \quad \mathfrak{Z} \rightarrow \mathfrak{G}(\Theta)
$$

such that

$$
\begin{equation*}
Z X=X S(\Theta), \quad S(\Theta) X^{\prime}=X^{\prime} Z, \quad X^{\prime}=X^{-1} \tag{4.1}
\end{equation*}
$$

and moreover,

$$
\begin{equation*}
\left\|X^{\prime}\right\|\|X\| \leqq 1 / \eta \tag{4.2}
\end{equation*}
$$

Now the following is true:
Proposition 3. From (4.1), Z an isometry, it follows that there exists a bounded analytic function $\left\{\mathfrak{E}_{*}, \mathfrak{E}, D(\lambda)\right\}$ such that

$$
D(\lambda) \Theta(\lambda)=I_{\mathfrak{E}}, \quad \| D\left(\cdot\left\|_{\infty} \leqq\right\| X^{\prime}\| \| X \| .\right.
$$

Proof. The existence of a bounded analytic $D(\lambda)$ with the property $D(\lambda) \Theta(\lambda)=I$ is proved in Theorem 2.4 of [5], and an estimate for $\|D(\cdot)\|_{\infty}$ can also be deduced from the proof of that theorem. For convenience, we give a direct and complete proof.

This proof is based upon the "commutant lifting theorem" of [3]; see also [4], Sec.II.2.3. Since Z is its own minimal isometric dilation this theorem asserts in this case that there exist operators

$$
Y: \Omega(\Theta) \rightarrow \Omega, \quad Y^{\prime}: \quad \mathbb{Z} \rightarrow \Omega(\Theta)
$$

such that (using the notations of Sec. 1.1):

$$
\begin{gather*}
Z Y=Y V(\Theta), \quad V(\Theta) Y^{\prime}=Y^{\prime} Z \tag{4.3}\\
Y P_{\mathfrak{G}(\Theta)^{\perp}}=0,{ }^{3} \tag{4.4}\\
X=Y \mid \mathfrak{G}(\Theta), \quad X^{\prime}=P_{\mathfrak{G}(\Theta)} Y^{\prime} \tag{4.5}
\end{gather*}
$$

and

$$
\begin{equation*}
\|Y\|=\|X\|, \quad\left\|Y^{\prime}\right\|=\left\|X^{\prime}\right\| \tag{4.6}
\end{equation*}
$$

Moreover, $X^{\prime} X=I_{\mathfrak{G}(\Theta)}$ implies by (4.5):

$$
P_{\mathfrak{Y}(\Theta)} Y^{\prime} Y \mid \mathfrak{G}(\Theta)=I_{\mathfrak{H g}(\Theta)} ;
$$

on account of (4.4) this is equivalent to the condition

$$
\begin{equation*}
P_{\mathfrak{Y}(\Theta)}\left(I-Y^{\prime} Y\right) k=0 \quad \text { for all } k \in \Im(\Theta) \tag{4.7}
\end{equation*}
$$

From (4.4) and (4.7) it easily follows that the operator

$$
\begin{equation*}
F=I-Y^{\prime} Y \tag{4.8}
\end{equation*}
$$

satisfies the conditions

$$
\begin{equation*}
F^{2}=F \quad \text { and } \quad F \Omega(\Theta)=\mathscr{G}(\Theta)^{\perp} . \tag{4.9}
\end{equation*}
$$

Thus F is a (bounded) parallel projection of $\Omega(\Theta)$ onto $\mathscr{S}(\Theta)^{\perp}$.
Observe that

$$
\omega: w \mapsto \Theta w \oplus \Delta w \quad\left(w \in H_{\mathscr{E}}^{2}\right)
$$

is a unitary operator $\omega: H_{\mathfrak{C}}^{2} \rightarrow \mathfrak{y}(\Theta)^{\perp}$, which commutes with multiplication by the scalar function χ. As (4.3) implies $F V(\Theta)=V(\Theta) F$, the operator F also commutes with multiplication by χ. As a consequence we have

$$
\begin{aligned}
F \cap \cap_{n \geqq 0} V(\Theta)^{n} \mathfrak{H}(\Theta) & \subset \cap_{n \geqq 0}^{\cap} V(\Theta)^{n} F \mathscr{\Re}(\Theta)=\cap_{n \geqq 0}^{\cap} V(\Theta)^{n} \mathfrak{S}(\Theta)^{\perp}=\cap_{n \geqq 0}^{\cap} \chi^{n} \cdot \omega H_{\mathscr{C}}^{2} \\
& =\omega \bigcap_{n \geqq 0}^{n} \chi^{n} H_{\mathfrak{E}}^{2}=\omega\{0\}=\{0\},
\end{aligned}
$$

thus by (1.6)

$$
F(0 \oplus v)=0 \quad \text { for any } v \in \overline{\Delta L_{\mathscr{E}}^{2}} .
$$

Combining this with (4.9) we get in particular

$$
{ }^{3} \mathfrak{y}(\Theta)^{\perp}=\mathfrak{K}(\Theta) \ominus \mathfrak{Y}(\Theta)=\left\{\Theta w \oplus \Delta w: w \in H_{\mathfrak{C}}^{2}\right\} \text {; cf. (1.1). }
$$

$$
\begin{align*}
\Theta u \oplus \Delta u & =F(\Theta u \oplus \Delta u) \tag{4.10}\\
& =F(\Theta u \oplus 0)+F(0 \oplus \Delta u)=F(\Theta u \oplus 0)
\end{align*}
$$

for any $u \in H_{\text {だ }}^{2}$.
Applying (4.9) again, we see that for every $k \in \Omega(\Theta)$ there exists a unique $w \in H_{\mathfrak{F}}^{2}$ such that $F k=\omega w$. Choosing in particular $k=u_{*} \oplus 0$, $u_{*} \in H_{\mathfrak{E}_{*}}^{2}$, equation

$$
\begin{equation*}
F\left(u_{*} \oplus 0\right)=\omega \cdot D u_{*} \tag{4.11}
\end{equation*}
$$

defines an operator $D: H_{\mathfrak{E}_{*}}^{2} \rightarrow H_{\mathfrak{C}}^{2}$; clearly

$$
\begin{equation*}
\|D\| \leqq\|F\| . \tag{4.12}
\end{equation*}
$$

For F, the inequality $\|F\| \leqq 1+\left\|Y^{\prime}\right\|\|Y\|$ is immediate from the definition (4.8). But we have even

$$
\begin{equation*}
\|F\|=\|I-F\|, \tag{4.13}
\end{equation*}
$$

and hence the inequality ${ }^{4}$

$$
\begin{equation*}
\|F\| \leqq\left\|Y^{\prime}\right\|\|Y\| . \tag{4.14}
\end{equation*}
$$

Indeed, (4.13) holds for any (bounded) parallel projection of a Hilbert space onto a non-trivial subspace. This follows, namely, from the relation ${ }^{5}$

$$
\|F\|^{-2}=1-\sup |(h, g)|^{2}
$$

where h, g run over the sets of unit vectors satisfying $(I-F) h=0$ and $F g=0$, respectively, and from the symmetry of this relation in F and $I-F$. Note that in the case under consideration F projects indeed to a non-trivial subspace of $\mathscr{\Omega}(\Theta)$, because our assumption $\mathbb{E} \neq\{0\}$ assures that $\{0\} \neq \mathfrak{\xi}(\Theta) \neq \mathscr{I}(\Theta)$.

Thus, taking account of (4.6) and (4.12), we have

$$
\begin{equation*}
\|D\| \leqq\left\|X^{\prime}\right\|\|X\| \tag{4.15}
\end{equation*}
$$

Next observe that as F and ω commute with multiplication by χ so does D too. Hence it follows (cf. Lemma V.3.1 in [4]) that D itself is a multiplication operator, viz.

$$
\left(D u_{*}\right)(\lambda)=D(\lambda) u_{*}(\lambda),
$$

[^1]where $\left\{\mathfrak{E}_{*}, \mathfrak{E}, D(\lambda)\right\}$ is a bounded analytic function，
\[

$$
\begin{equation*}
\|D(\cdot)\|_{\infty}=\|D\| . \tag{4.16}
\end{equation*}
$$

\]

On account of definition（4．11）of D we have in particular $F(\Theta u \oplus 0)=\omega \cdot D \Theta u \quad$ for any $\quad u \in H_{\mathfrak{E}}^{2}$ ，while（4．10）means $F(\Theta u \oplus 0)=\omega \cdot u$ ．Therefore，$u=D \Theta u$ ，and hence

$$
D(\lambda) \Theta(\lambda)=I_{\mathfrak{F}} .
$$

Recalling（4．15）and（4．16）the proof of Proposition 3 is done．

5．Conclusions

Combining Propositions $1-3$ we conclude that if $\left\{\mathbb{E}^{\left(\mathfrak{E}_{*}, \Theta(\lambda)\right\}}\right.$ is a purely contractive analytic function for which ${ }^{6}$

$$
\begin{equation*}
\inf \left\{\|T(\Theta) u\|: u \in H_{\mathfrak{F}}^{2},\|u\|=1\right\}=\eta>0 \tag{5.1}
\end{equation*}
$$

then there exists an analytic function $\left\{\mathfrak{E}_{*}, \mathfrak{E}, D(\lambda)\right\}$ such that

$$
\begin{equation*}
D(\lambda) \Theta(\lambda)=I_{\mathscr{E}} \text { and }\|D(\cdot)\|_{\infty} \leqq 1 / \eta \text {. } \tag{5.2}
\end{equation*}
$$

Now it is easy to get rid of the restriction＂purely contractive＂．Indeed，
 position V．2．1 of［4］，direct sum of a purely contractive analytic function $\left\{\mathfrak{E}^{0}, \mathfrak{F}_{*}^{0}, \Theta^{0}(\lambda)\right\}$ and of a unitary valued constant function $\left\{⿷_{⿷^{\prime}}^{\prime}, ⿷_{*}^{\prime}, \Theta^{\prime}\right\}$ （ぼ $\left.=\mathfrak{F}^{0} \oplus \mathfrak{E}^{\prime}, \mathfrak{F}_{*}=\mathfrak{F}_{*}^{0} \oplus \mathfrak{ほ}_{*}^{\prime}\right)$ ．Hence it follows for any $u=$ $u^{0} \oplus u^{\prime} \in H_{\mathscr{C}}^{2}$ with components $u^{0} \in H_{\mathfrak{C}^{0}}^{2}, u^{\prime} \in H_{\mathscr{C}^{\prime}}^{2}$ that

$$
T(\Theta) u=T\left(\Theta^{0}\right) u^{0} \oplus \Theta^{\prime} u^{\prime}, \quad\|T(\Theta) u\|^{2}=\left\|T\left(\Theta^{0}\right) u^{0}\right\|^{2}+\left\|u^{\prime}\right\|^{2}
$$

In the case the first component is missing，but（5．1）is fulfilled，then，neces－ sarily， $\mathscr{E}^{\prime} \neq\{0\}$ and $\eta=1$ ，and a trivial solution for $D(\lambda)$ in（5．2）is the constant function $\left\{\mathfrak{E}_{*}^{\prime}, \mathscr{E}^{\prime}, \Theta^{\prime *}\right\}$ ．If both components are present then η equals the analogous quantity η^{0} formed for Θ^{0}（because $\eta^{0} \leqq 1$ ）and hence（5．1）implies the existence of an analytic function $\left\{\mathfrak{\oiiint}_{*}^{0}, \mathfrak{\sqsubseteq}^{0}, D^{0}(\lambda)\right\}$ satisfying $D^{0}(\lambda) \Theta^{0}(\lambda)=I_{\mathfrak{E}^{0}},\left\|D^{0}(\cdot)\right\|_{\infty} \leqq 1 / \eta^{0}=1 / \eta$ ． Setting $D(\lambda)=D^{0}(\lambda) \oplus \Theta^{\prime *}$ we get a solution for（5．2）．

So we can formulate our main result：
Theorem．If the contractive analytic function $\left\{\mathfrak{E}, \mathfrak{E}_{*}, \Theta(\lambda)\right\}$ is such that

[^2](*) $\quad\|T(\Theta) u\| \geqq \eta\|u\| \quad$ for an $\eta>0$ and all $u \in H_{\mathfrak{C}}^{2}$,
then there exists an analytic function $\left\{\bigodot_{*}, \mathfrak{E}, D(\lambda)\right\}$ such that
$$
D(\lambda) \Theta(\lambda)=I_{\mathfrak{E}} \text { for }|\lambda|<1 \text {, and }\|D(\cdot)\|_{\infty} \leqq 1 / \eta \text {. }
$$

Remark 1. In the special case of a function $\left\{E^{1}, E^{N}, \Theta(\lambda)\right\}$, where

$$
\Theta(\lambda)=\left[\begin{array}{c}
\vartheta_{1}(\lambda) \\
\vdots \\
\vartheta_{N}(\lambda)
\end{array}\right],
$$

the theorem can be given the following from: If

$$
\sum_{k=1}^{N}\left|\vartheta_{k}(\lambda)\right|^{2} \leqq 1 \quad \text { for } \quad|\lambda|<1
$$

and

$$
\sum_{k=1}^{N}\left\|T\left(\vartheta_{k}\right) u\right\|^{2} \geqq \eta^{2}\|u\|^{2} \quad \text { for an } \eta>0 \text { and all } u \in H^{2} \text {, }
$$

then there exist $d_{k} \in H^{\infty} \quad(k=1, \ldots, N)$ such that, for $|\lambda|<1$,

$$
\begin{equation*}
\sum_{k=1}^{N} d_{k}(\lambda) \vartheta_{k}(\lambda)=1 \quad \text { and }\left|d_{k}(\lambda)\right| \leqq 1 / \eta \quad(k=1, \ldots, N) \tag{5.3}
\end{equation*}
$$

Observe that if

$$
\begin{equation*}
f_{k} \in H^{\infty},\left\|f_{k}\right\|_{\infty} \leqq 1 \quad(k=1, \ldots, N) \tag{5.4}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{k=1}^{N}\left\|T\left(f_{k}\right) u\right\|^{2} \geqq \varepsilon^{2}\|u\|^{2} \quad \text { for some } \varepsilon>0 \text { and all } u \in H^{2}, \tag{5.5}
\end{equation*}
$$

then the functions $\vartheta_{k}(\lambda)=f_{k}(\lambda) / \sqrt{N} \quad(k=1, \ldots, N)$ satisfy the above requirements, with $\eta=\varepsilon / \sqrt{N}$. Hence there exist functions $d_{k}(\lambda)$ as in (5.3), and therefore the functions $g_{k}(\lambda)=d_{k}(\lambda) / \sqrt{N}$ satisfy

$$
\begin{equation*}
\sum_{k=1}^{N} g_{k}(\lambda) f_{k}(\lambda)=1 \quad \text { and } \quad\left\|g_{k}\right\|_{\infty} \leqq 1 / \varepsilon(k=1, \ldots, N) \tag{5.6}
\end{equation*}
$$

The fact that assumptions (5.4) and (5.5) imply the existence of $g_{k} \in H^{\infty}$ satisfying (5.6) was also proved by Arveson [1], Theorem 6.3, however with the estimate $\left\|g_{k}\right\|_{\infty} \leqq 4 N \varepsilon^{-3}$ only.

Remark 2. The functions $k_{\mu}(\lambda)=(1-\mu \lambda)^{-1} \quad(|\mu|<1)$ span the space H^{2} and therefore the functions $k_{\mu}(\lambda) a(|\mu|<1, a \in \mathfrak{C})$ span $H_{\mathfrak{E}}^{2}$. Thus (*) holds for every $u \in H_{\mathfrak{C}}^{2}$ if and only if it holds for the finite linear combinations of these functions. Now observe that

$$
\left(T(\Theta) k_{\mu} a\right)\left(e^{i t}\right)=\left[\Theta\left(e^{-i t}\right) k_{\mu}\left(e^{i t}\right) a\right]_{+}=k_{\mu}\left(e^{i t}\right) \Theta(\mu) a
$$

and that $\left(k_{\mu}, k_{v}\right)=(1-\bar{v} \mu)^{-1} \quad(|\mu|<1,|\nu|<1)$. Thus we infer that condition (*) is equivalent to the condition that the kernel

$$
K(\mu, v)=(1-\bar{v} \mu)^{-1}\left(\Theta(v)^{*} \Theta(\mu)-\eta^{2} I\right) \quad(|\mu|<1, \quad|v|<1)
$$

be positive definite, i.e.

$$
\sum_{i=1}^{N} \sum_{j=1}^{N}\left(K\left(\mu_{i}, \mu_{j}\right) a_{j}, a_{i}\right) \geqq 0
$$

for any finite set of points μ_{i} in the unit disc and vectors a_{i} in E.
Remark 3. Our Theorem has a rather immediate converse. Indeed if there exists an analytic function $D(\lambda)$ such that

$$
D(\lambda) \Theta(\lambda)=I_{\mathbb{C}} \text { and }\|D(\cdot)\|_{\infty}=1 / \eta<\infty
$$

then we have for $u \in H_{\mathbb{E}}^{2}$

$$
u=[u]_{+}=\left[D\left(e^{-i t}\right) \Theta\left(e^{-i t}\right) u\left(e^{i t}\right)\right]_{+}=\left[D\left(e^{-i t}\right)\left[\Theta\left(e^{-i t}\right) u\left(e^{i t}\right)\right]_{+}\right]_{+},
$$

and hence

$$
\eta^{2}\|u\|^{2} \leqq \eta^{2} \int_{0}^{2 \pi}\left\|D\left(e^{-i t}\right)\left[\Theta\left(e^{-i t}\right) u\left(e^{i t}\right)\right]_{+}\right\|^{2} \frac{d t}{2 \pi} \leqq\|T(\Theta) u\|^{2}
$$

Remark 4. From Propositions $1-3$ and Remark 3 it readily results the equality of the infima

$$
\inf \left\{\left\|X^{-1}\right\|\|X\|: X^{-1} S(\Theta) X \text { is an isometry }\right\}
$$

and

$$
\inf \left\{\|D(\cdot)\|_{\infty}: D(\lambda) \Theta(\lambda)=I_{\mathfrak{E}}\right\} .
$$

References

[1] Arveson, W.: Interpolation problems in nest algebras. - J. Functional Analysis 20, 1975, 208-233.
[2] Gohberg, I. C., and M. G. KreIn [И. Ц. Гохберr and M. Г. Крейн] : Введение в теорию линейных несамосопряженных операторов. - Издательство "Наука", Москва, 1965. Translation: Introduction to the theory of linear nonselfadjoint operators. - Translations of Mathematical Monographs 18. American Mathematical Society, Providence, Rhode Island, 1969.
[3] Sz.-NAGY, B., and C. Folas: Dilatation des commutants d'opérateurs. - C. R. Acad. Sci. Paris. Sér. A-B 266, 1968, A493-A495.
[4] Sz.-NAGy, B., and C. Foias: Harmonic analysis of operators on Hilbert space. -North-Holland Publishing Company, Amsterdam-London / Akadémiai Kiadó, Budapest, 1970.
[5] -»- -»- On the structure of intertwining operators. - Acta Sci. Math. (Szeged) 35, 1973, 225-256. ${ }^{7}$

Bolyai Institute
Aradi vértanuk tere 1
H-6720 Szeged
Hungary

Facultatea de Matematica
Str. Academiei 14
Bucharest
Romania

Received 5 September 1975
${ }^{7}$ We use this opportunity to correct some deficiencies of the paper [5].
Page 230: at the end of the 9 th row change " $\hat{\Theta}_{1}$ " for " $\hat{\Delta}_{1}$ ".
Page 231: insert between the 12th and 13th rows:

$$
"(\delta)_{0} \quad B^{\prime} A_{*}+C^{-1} B=-\hat{\Delta}_{1} D "
$$

Page 231: 8th row from below, insert " $B^{\prime}=0$ ".
Page 254: papers [6]-[8] in the References have the authors "B. Sz.-Nagy C. Foias "

[^0]: ${ }^{1}$ We denote by $\{\mathfrak{H}, \mathfrak{B}, \Phi(\lambda)\}$ an analytic function on the unit disc, whose values are operators from the Hilbert space \mathfrak{A} into the Hilbert space \mathfrak{B}, both spaces being supposed complex and separable. This function is bounded if $\|\Phi(\cdot)\|_{\infty}=$ $\sup _{\lambda}\|\Phi(\lambda)\|$ is finite; it is contractive if $\|\Phi(\lambda)\| \leqq 1$, and purely contractive if, moreover, $\|\Phi(0) a\|<\|a\|$ for all $a \in \mathfrak{A}, a \neq 0$. For a bounded analytic function the radial limits $\Phi\left(e^{i t}\right)=\lim \Phi\left(r e^{i t}\right)(r \rightarrow 1-0)$ exist in the strong sense, almost everywhere on the unit circle.
 ${ }^{2} L_{\mathfrak{K}}^{2}$ denotes the Hilbert space of \mathfrak{C}-vector valued, norm-square integrable functions on the unit circle, with respect to normalized Lebesgue measure. $H_{\mathscr{C} \text { © }}^{2}$ is its subspace of functions $u\left(e^{i t}\right) \sim \sum_{k=0}^{\infty} a_{k} e^{i k t}$; these are radial limits a.e. of the corresponding analytic functions $u\left(\lambda_{.}\right)=\sum_{k=0}^{\infty} a_{k} \lambda^{k}$ in the unit disc.

[^1]: ${ }^{4}$ The authors are indebted for this ingenious and useful remark to Professor T. Ando from Sapporo (Japan), presently visiting Szeged (Hungary).
 ${ }^{5}$ This formula for F is due to V. E. Ljance and is reproduced in the book of I. C. Gohberg and M. G. Kreĭn [2], VI.5.4.

[^2]: ${ }^{6}$ This condition obviously implies $\mathbb{C} \neq\{0\}$ ．

