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1 Introduction

Network architectures in which the control plane is de-

coupled from the data plane have been growing in pop-

ularity. Among the main arguments for this approach is

that it provides a more structured software environment

for developing network-wide abstractions while poten-

tially simplifying the data plane. As has been adopted

elsewhere [11], we refer to this split architecture as

Software-Defined Networking (SDN).

While it has been argued that SDN is suitable for some

deployment environments (such as homes [17, 13], data

centers [1], and the enterprise [5]), delegating control

to a remote system has raised a number of questions on

control-plane scaling implications of such an approach.

Two of the most often voiced concerns are: (a) how fast

can the controller respond to data path requests?; and

(b) how many data path requests can it handle per sec-

ond?

There are some references to the performance of

SDN systems in the literature [16, 5, 3]. For example,

an oft-cited study shows that a popular network con-

troller (NOX) handles around 30k flow initiation events1

per second while maintaining a sub-10ms flow install

time [14].

Unfortunately, recent measurements of some deploy-

ment environments suggests that these numbers are far

from sufficient. For example, Kandula et al. [9] found

that a 1500-server cluster has a median flow arrival rate

of 100k flows per second. Also, Benson et al. [2] show

that a network with 100 switches can have spikes of 10M

flows arrivals per second in the worst case. In addition,

the 10ms flow setup delay of an SDN controller would

add a 10% delay to the majority of flows (short-lived) in

such a network.

This disconnect between relatively poor controller per-

formance and high network demands has motivated a

1Throughout this paper we use flow initiation and requests

interchangeably.

spate of recent work (e.g., [6, 18]) to address perceived

architectural inefficiencies. However, there really has

been no in-depth study on the performance of a tradi-

tional SDN controller. Rather, most published results

were gathered from systems that were never optimized

for performance. To underscore this point, as we de-

scribe in more detail below, we were able to improve

the performance of NOX, an open source controller for

OpenFlow networks, by more than 30 times.

Therefore, the goal of this paper is to offer a better

understanding of the controller performance in the SDN

architecture. The specific contributions are:

We present NOX-MT a publicly-available multi-

threaded successor of NOX [8]. The purpose of NOX-

MT is to establish a new lower bound on the maximum

throughput. Unlike previous studies and implementa-

tions that were not tuned for performance, NOX-MT uses

well-known optimization techniques (e.g., I/O batching)

to improve the baseline performance. These optimiza-

tions lets NOX-MT outperform NOX by a factor of 33

on a server with two quad-core 2GHz processors.

We design a series of flow-based benchmarks embod-

ied in our tool, cbench, that we make freely available

for others use. Cbench emulates any number of Open-

Flow switches to measure different performance aspects

of the controller including the minimum and maximum

controller response time, maximum throughput, and the

throughput and latency of the controller with a bounded

number of packets on the fly.

We present a study of SDN controller performance

using four publicly-available OpenFlow controllers:

NOX, NOX-MT, Beacon, and Maestro [4]. We consider

NOX as the baseline for our performance study since it

has been previously used in different papers [14, 18, 6].

2 NOX-MT

NOX – whose measured performance motivated several

recent proposals on improving control plane efficiency



– has a very low flow setup throughput and large flow

setup latency. Fortunately, this is not an intrinsic limita-

tion of the SDN control plane: NOX is not optimized for

performance and is single-threaded.

We present NOX-MT, a slightly modified multi-

threaded successor of NOX, to show that with simple

tweaks we were able to significantly improve NOX’s

throughput and response time. The techniques we used

to optimize NOX are quite well-known including: I/O

batching to minimize the overhead of I/O, porting the

I/O handling harness to Boost Asynchronous I/O (ASIO)

library (which simplifies multi-threaded operation), and

using a fast multiprocessor-aware malloc implementa-

tion that scales well in a multi-core machine. Despite

these modifications, NOX-MT is far from perfect. It does

not address many of NOX’s performance deficiencies,

including but not limited to: heavy use of dynamic mem-

ory allocation and redundant memory copies on a per-

request basis, and using locking were robust wait-free

alternatives exist. Addressing these issues would signif-

icantly improve NOX’s performance. However, they re-

quire fundamental changes to the NOX code base and we

leave them to future work.

To the best of our knowledge, NOX-MT was the first

effort in enhancing controller performance and motivated

other controllers to improve. The experiments presented

in this paper were performed in May 2011. Ever since

all controllers studied in this paper have significantly

changed and have different performance characteristics.

We emphasize that our goal in this paper is to show that

SDN controllers can be optimized to be very fast.

3 Experiment Setup

In an effort to quantify controller performance, we cre-

ate a custom tool, cbench [12], to measure the number

of flow setups per second that a controller can handle.

In SDN, the OpenFlow controller 2 must setup and tear

down flow-level forwarding state in OpenFlow switches.

This “flow setup” process can happen statically before

packets arrive (“proactively”) or dynamically as part of

the next hop lookup process (“reactively”). Reactive flow

setups are particularly sensitive because they add latency

to the first packet in a flow. Once set up, the flow for-

warding state remains cached on the OpenFlow switch

so that this process is not repeated for subsequent packets

in the same flow. The OpenFlow controller also commu-

nicates how long to cache the state: either indefinitely,

after a fixed timeout, or after a period of inactivity. We

choose to focus on the flow setup process because both

2While the specifics of this description use an OpenFlow-based ter-

minology, the flow setup operation is common to all flow-based net-

work architectures, e.g., setting up virtual circuits in ATM, configuring

labels in MPLS, or physical circuits in optical networks.

because it is integral to SDN and because it is perceived

to be the likeliest source of performance bottleneck.

Our tool, cbench [12], measures various performance

issues related to flow setup time. Cbench emulates a con-

figurable number of OpenFlow switches that all commu-

nicate with a single OpenFlow controller. Each emulated

switch sends a configurable number of new flow (Open-

Flow packet in) messages to the OpenFlow controller,

waits for the appropriate flow setup (OpenFlow flow mod

or packet out) responses, and records the difference in

time between request and response.

Cbench supports two modes of operation: latency

and throughput mode. In latency mode, each emulated

switch maintains exactly one outstanding new flow re-

quest, waiting for a response before soliciting the next

request. Latency mode measures the OpenFlow con-

troller’s request processing time under low-load condi-

tions. By contrast, in throughput mode, each switch

maintains as many outstanding requests as buffering will

allow, that is, until the local TCP send buffer blocks.

Thus, throughput mode measures the maximum flow

setup rate that a controller can maintain. Cbench also

supports a hybrid mode with n-new flow requests out-

standing, to explore between these two extremes.

We analyzed cbench to ensure that it is not a bot-

tleneck in our experiments. For that, we instrumented

cbench to report the average number of requests on the

fly for different experiments. Cbench also reports av-

erage throughput and response time. According to Lit-

tle’s theorem (L = λW ) [10] the average number of out-

standing requests must match the product of the system

throughput and the average response time. Throughout

our experiments these numbers were in agreement. The

slight differences are an artifact of taking the average

over the samples collected in each run.

Using cbench, we evaluated the flow setup throughput

and latency of four publicly available OpenFlow con-

trollers using cbench: (a) NOX [8] is a single-threaded

C++ OpenFlow controller adopted by both industry and

academia. (b) NOX-MT is an optimized multi-threaded

successor of NOX we developed and presented in this

paper. (c) Maestro [4] is a multi-threaded Java-based

controller from Rice university. (d) Beacon3 is a multi-

threaded Java-based controller from Stanford university

and Big Switch Networks. We used the latest available

version of each controller available as of May 2011.

In all the experiments, each controller runs the L2

switching application provided by the controller.4 For

3Through private correspondence with Beacon’s author, we were

informed that Beacon performs twice better on a 64-bit OS. We note

that the results reported in this paper are for 32-bit runs. However, we

are not aware of the reason for this gap in performance.
4We choose to use L2 switching for our evaluation for two primary

reasons. First, it provides a lower-bound for lookup since the full for-

warding decision can be accomplished with a hash followed by a sin-



each switch on the path, the switch application performs

MAC address learning. Each packet is forwarded out

of the last port on which the traffic from the destination

MAC address is seen. Packets with unknown destina-

tions are flooded. In NOX, for each switch, the map-

ping between the MAC-switch tuple and the port num-

ber is stored in a hash table. The switch application has

mostly read-only work load: only requests with newly

observed source MAC addresses trigger an insert/update

in the hash table, and the number of such events is pro-

portional to the product of the number of hosts in the

network and the number of switches.

To minimize interference, we run the controller and

cbench on two separate servers (8 × 2GHz and 4 ×

2.13GHz CPU cores respectively, both with 4GB of

DDR2 ram)5. Each server has two Gigabit ports di-

rectly connected to the other server. The Gigabit links are

teamed together to provide a 2Gbps control bandwidth

required for some experiments. Throughout our experi-

ments cbench’s CPU utilization is consistently less than

50%. We occasionally run multiple parallel instances of

cbench on different processors to verify cbench’s fairness

in serving different emulated switches (sockets) as well

as its accuracy.

Each test consists of 4 loops each lasting 5 seconds.

The first five seconds (first loop) is considered as con-

troller warm-up and its results are discarded. Each test

uses 100k unique MAC addresses (representing 100k

emulated end hosts). For experiments with fixed number

of switches, we chose to present the results for 32 em-

ulated switches because we do not expect a large num-

ber of switches to be stressing the network simultane-

ously. To maximize the stress on the controller and to

ensure that the bandwidth is not the bottleneck to the ex-

tent possible, we use 82-byte sized OpenFlow packet-in

messages (referred to as requests in the graphs).6

gle lookup. Thus, the test is not heavily augmented by overhead of

the lookup (which could be the case with something like longest-prefix

match implemented in software). And secondly, basic switching has

been implemented in all the controllers we tested.
5All servers run Debian Squeeze with Linux

2.6.32-5-686-bigmem, gcc 4.4.5, GNU libc 2.11, GNU

libC++ 3, Boost 1.42, Sun Java 1.6, and TCMalloc 1.5. NOX and

NOX-MT are compiled with no support for python and with debugging

disabled. All controllers are run with logging disabled and no verbose

output. For NOX, NOX-MT, and Maestro threads are bound to distinct

CPUs. We used TCMalloc [7] malloc implementation since it provides

a faster alternative to GNU libc’s malloc with better scalability in

multi-threaded programs. Also, unless otherwise noted, we run the

experiments with default sizes for Linux networking stack buffers

as well as NIC drivers’ ring buffers. Cubic is the default congestion

control algorithm on Linux 2.6.32.
6All our estimates on the bandwidth usage is based on this size.

For instance, throughout the paper we map 1.45M requests to 1Gbps

control bandwidth. That is because 1.45
Mreq
sec

× 82
bytes
req

× 8 bits
byte

=

951.2Mbps and assuming that the majority of Ethernet frames are

MTU-sized (to account for Ethernet+IP+TCP overhead), this number

roughly corresponds to 1Gbps.

4 Controller Throughput

Individual controllers’ throughput is an important factor

in deciding the overall number of controllers required to

handle the network control load. Our focus in this sec-

tion is to study the maximum throughput in the system in

various settings.

Maximum throughput:

Figure 1 shows the average maximum throughput of dif-

ferent controllers with different number of threads. The

results suggest that: (a) NOX-MT shows a significantly

better performance compared to the other controllers. It

saturates 1Gbps control bandwidth with four 2GHz CPU

cores. (b) As expected, all the multi-threaded controllers

achieve near-linear scalability with the number of threads

(cores), because the controller’s workload is mostly read-

only minimizing the amount of required serialization.

Figure 1: Average maximum throughput achieved with differ-

ent number of threads. We use 32 emulated switches and 100k

unique MAC addresses per switch. NOX-MT saturates 1Gbps

(1.45Mreq/sec) of control bandwidth using four 2GHz CPU

cores. Since NOX is single-threaded it only has a single point

in this and similar graphs.

Relation with the number of active switches:

Ideally, controller’s aggregate throughput should not be

affected by the number of switches connected to it. How-

ever, increased contention across threads, TCP dynam-

ics, and task scheduling overhead within the controller

are factors that can lead to a degraded performance if we

have a large number of highly active switches.

To study the impact of the number of switches on con-

troller performance, we measure the average maximum

throughput with different number of switches and threads

in Figure 2. We observe that, adding more threads be-

yond the number of active switches does not improve

throughput. Also, increase in the number of switches

beyond a threshold reduces the overall throughput, be-

cause: (a) I/O handling overhead increases, (b) con-

tention on the task queue and other shared resources in-

creases, and (c) I/O and job batching become less effec-

tive. We note that the number of switches presented in



our experiments only reflects the highly active (i.e. pro-

ducing an extremely large number of requests per sec-

ond) switches. In a typical network it is very unlikely

that all the switches are highly active at the same time,

so each controller should be able to manage a far larger

number of switches.

Relation with the load level:

Cbench’s throughput mode effectively keeps the pipe be-

tween itself and the controller full all the time. However,

since we have large buffers across all layers in the net-

working stack (e.g., network adapter’s ring buffer, net-

work interface’s send and receive queues, TCP buffers,

etc.), this pipe is quite large.

Our experiments verify that average maximum

throughputs with 212 outstanding requests are very close

to the ones with unlimited number of outstanding re-

quests (see Figure 3). With the same throughput, it fol-

lows from the Little’s law that doubling the number of

requests in the system doubles the response time. In our

experiments, the average delay with unlimited outstand-

ing requests is almost an order of magnitude larger than

the limited ones even though they achieve the same level

of throughput. We study the controller response time cor-

responding to different load levels in Section 5.

Effect of write-intensive workload:

Write-intensive workloads increase the contention in the

network control applications. For the switch control ap-

plication, having a large number of unique source MAC

addresses result in a write-intensive workload. As shown

in Figure 4, both Maestro and Beacon are significantly

affected by this workload. However, NOX-MT does

not exhibit a similar behavior. That is because NOX-

MT’s switch application minimizes contention in such

scenarios by partitioning the network’s MAC address ta-

ble among a pool of hash tables selected by the hash of

the MAC address.

Figure 4: Average maximum throughput for various levels of

write-intensive workloads with 32 switches and 4 threads.

5 Controller Response Time

In a software-defined network where flow setup is per-

formed reactively, controller response time directly af-

fects the flow completion times. In this section, we

present benchmarks to measure minimum (least load)

and maximum controller (maximum load) response time

of SDN controllers. Then, we study the relation between

the load level and response time as well as the number of

switches and response time.

Minimum response time:

To measure minimum control plane response time, we

constrain the number of packets on the fly to be exactly

one. Besides controller service time, this minimum re-

sponse time includes traversal of networking stacks on

both the controller and cbench sides twice, as well as

the processing time of the controller. Average response

times of all controllers are between 100 and 150 mi-

croseconds.

Maximum response time:

Maximum response time for each controller is observed

when the maximum number of packets on the fly is not

bounded (i.e., when the benchmakrer exhausts all the

buffers in between the emulated switch and the con-

troller). Since NOX-MT has the highest throughput, it

has the least response time compared to others. As we

see in Table 1, the average number of packets on the

fly across these experiments is inversely proportional to

the controller throughput (in accordance with the Little’s

law)

Relation with the load level:

To better understand the relation between controller load

and response time, we plotted the response time CDFs

fixing the load level to 212 requests on the fly (see Fig-

ure 5) and the response time varying the load level (see

Figure 6). We find that for the same workload adding

more threads decreases the response time. Also, dou-

bling the number of outstanding requests doubles the re-

sponse time, but does not significantly affect the through-

put (see Section 4).

Relation with the number of active switches:

Varying the number of active switches (see Table 2), we

observe the same pattern for delay as we observed for

throughput in Figure 2. Adding more CPUs beyond the

number of switches does not improve latency, and serv-

ing far larger number of switches than available CPUs

results in a noticeable increase in the response time.



(a) NOX-MT (b) Beacon (c) Maestro

Figure 2: Average maximum throughput with different number of switches. NOX-MT shows nearly identical average maximum

throughput for 16, 32 and 64 emulated switches. With 256 emulated switches the performance of all three controllers degrades.

(a) NOX-MT (b) Beacon (c) Maestro

Figure 3: Average maximum throughput with different number of threads and limits on the maximum overall number of requests

on the fly. It is possible to achieve an almost maximum throughput even with limited number of requests on the fly for all three

controllers.

1 2 4 8

NOX 631.87±44.62 - - -

NOX-MT 349.44±127.45 143.55±63.19 92.59±42.40 66.34±38.32

Beacon 1028.51±175.32 634.83±204.99 394.21±205.59 293.80±233.33

Meastro 1268.58±84.38 783.56±56.56 558.40±338.04 361.01±301.68

Table 1: Worst-case average response time and standard deviation (milliseconds) for various number of threads with 32 switches

and unlimited number of outstanding flow setup requests.

(a) Single-threaded (b) Four threads (c) Eight threads

Figure 5: Response time CDF for different controllers with 32 switches, and 212 maximum requests on the fly. NOX-MT has the

lowest response time for 1, 4 and 8 threads.

1 4 16 32 64 256

NOX-MT 9.92±6.39 3.80±0.69 3.51±1.10 3.84±2.51 4.63±6.65 8.63±18.73

Beacon 30.47±14.99 14.85±18.69 11.89±26.22 11.86±35.69 18.74±85.57 30.48±116.02

Meastro 22.75±10.55 15.98±10.18 15.97±11.08 26.09±43.76 23.35±49.69 29.84±57.88

Table 2: Response time (milliseconds) varying the number of switches for runs with 4 threads and 212 requests on the fly.



(a) NOX-MT (b) Beacon (c) Maestro

Figure 6: Response time CDF for various maximum number of requests on the fly with 32 switches, and four threads.

6 Concluding Remarks

We present NOX-MT that establishes a new lower bound

on the maximum throughput for SDN controllers. Our

microbenchmarks demonstrate that existing controllers

all perform significantly better than what current liter-

ature assumes. On an eight-core machine with 2GHz

CPUs, NOX-MT handles 1.6 million requests per sec-

ond with an average response time of 2ms. We empha-

size that controller responsiveness is the primary factor

to decide if additional controllers should be deployed.

We are not, however, suggesting that a single physi-

cal controller is enough to manage a sizeable network.

High availability and maintaining low response times are

among the reasons that a network needs multiple con-

trollers. However, given the low frequency of failures

and changes to the network topology, it seems that main-

taining a consistent logically centralized view of the net-

work across controllers (e.g., [15]) is feasible.

Finally, we note that understanding overall SDN per-

formance remains an open research problem. System-

wide performance is likely a complex function of topol-

ogy, work load, equipment, and forwarding complexity.

Our single-controller microbenchmarks presented in this

paper are just a first step towards the understanding of

the performance implications of SDN.
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