
On Controlling Cloud Services Elasticity in
Heterogeneous Clouds

Georgiana Copil, Daniel Moldovan, Hong-Linh Truong, Schahram Dustdar

Distributed Systems Group, Vienna University of Technology

E-mail: {e.copil, d.moldovan, truong, dustdar}@dsg.tuwien.ac.at

Abstract—Various complex cloud services have to be deployed
in multiple heterogeneous clouds, due to the service requirements
for particular functionalities from specific clouds. In order to
control these cloud services, we need to monitor and control
the various units deployed across multiple clouds, dealing with
cloud-specific protocols to support an end-to-end cloud service
perspective. In this paper we present an approach for multi-
cloud control, which evaluates relationships among different units
deployed across heterogeneous clouds, and generates action plans
necessary for controlling service elasticity. We show experiments
of the end-to-end control and sensitivity analysis for a service
deployed across two different types of clouds.

Keywords—multi-cloud, end-to-end, elasticity control

I. INTRODUCTION

A considerable amount of work has been put into cloud
service control, focusing on controlling cloud services of
various types, or meeting various types of stakeholder require-
ments [1]–[3]. Next to these challenges, some services might
need to be distributed in several types of clouds, each with
different characteristics (e.g., mini-clouds for managing smart
buildings in combination with a public cloud for data analysis).
Within this multi-cloud configuration, the cloud service elas-
ticity should be controlled as a whole, for fulfilling stakeholder
(e.g., service developer or service provider) requirements,
possibly at multiple abstraction levels of the service.

In this case, several challenges need to be tackled when
designing the control for services executed across multiple
clouds. First, the programming interfaces offered by various
cloud providers can differ both from the point of view of the
services offered, and from the perspective of the protocols used
(e.g., Flexiant’s FCO1 REST API, or OpenStack2 python or
java-based libraries). Second, the run-time control capabilities
offered by different clouds have different enforcement time
and results (e.g., in mini-clouds a VM spawning action usually
takes much longer than in a public cloud). In this context, the
user needs an elasticity control with an end-to-end view of the
multi-cloud service, understanding different levels of service
abstraction, as opposed to current control flows where the user
needs to deploy separate controllers on each cloud, and treating
the distributed service parts as different services. A controller
offering this end-to-end perspective has to analyze various
types of information characterizing cloud heterogeneity, and
evaluate the impact upon the rest of the service when enforcing

This work was supported by the European Commission in terms of the
CELAR FP7 project (FP7-ICT-2011-8 #317790). The authors would like to
thank Stefan Nastic and Hung Duc Le for their fruitful insights.

an action. For instance, in the context of smart city services,
when releasing virtual resources in a smart building cloud, e.g.,
in sensors’ low-activity period, a controller should consider the
impact that this would have on the rest of the service possibly
deployed on a public cloud.

To address challenges above, we propose mechanisms
of controlling the service from an end-to-end perspective,
transparent to users from the point of view of the clouds hetero-
geneity. To this end, we model details specific to multi-cloud
deployments in order to base our mechanisms on a common
representation of the highly heterogeneous services offered by
cloud providers. For supporting controlling services from an
end-to-end perspective, we focus on modeling relationships
among multi-cloud distributed service units, to be used as a
basis for elasticity control of the cloud service.

The contributions of our paper are the following: (i) a
model for multi-cloud deployed services, with focus on re-
lationships which occur among service parts, (ii) new mech-
anisms for relationship-driven control of multi-cloud services.
We extend our rSYBL [4] controller with proposed multi-cloud
mechanisms, and show that by specifying simple, high level
requirements, stakeholders can have elastic services deployed
on multiple, heterogeneous clouds controlled at runtime with
rSYBL elasticity controller. Moreover, we emphasize the ex-
tensibility of our framework which can be easily customized
to support a variety of clouds and enforcement APIs.

The rest of this paper is organized as follows: Section II
motivates our work. Section III presents our approach of multi-
cloud elasticity control. Section IV presents the multi-cloud
controller prototype and experiments. Section V concludes the
paper.

II. MOTIVATION, BACKGROUND AND RELATED WORK

A. Motivation

Let us consider a Machine-to-Machine Data as a Service
(M2M DaaS), for a smart city. The smart city has millions
of sensors in each building, and a group of buildings sending
their data to a local mini-cloud (e.g., NuvlaBox3, or Ubuntu
Orange Box4) in which the M2M local processing units are
deployed and to which the sensors send data (left side of
Fig. 1). The data analyzed locally is sent to a public cloud

1http://www.flexiant.com/flexiant-cloud-orchestrator/
2http://developer.openstack.org/
3http://sixsq.com/products/nuvlabox.html
4http://www.ubuntu.com/cloud/tools/jumpstart-training

2014 IEEE/ACM 7th International Conference on Utility and Cloud Computing

978-1-4799-7881-6/14 $31.00 © 2014 IEEE

DOI

573

Fig. 1: Motivating Scenario

containing the rest of the M2M service (right side of Fig. 1)
for the higher availability of public clouds and due to the fact
that smart building mini-clouds can store a limited amount
of data. The M2M service needs to be controlled both in the
local mini-clouds and in the public one, in order to obtain
the best possible performance at the best possible cost. To
this end, user’s (i.e., any service stakeholder) requirements for
an elasticity controller play a major role, stating the trade-
off with regard to cost, quality and performance. We envision
that the users would describe requirements in a cloud agnostic
manner, at a high level, considering application level elasticity
metrics, and all the rest is being handled by the controller.
Given that the M2M service is deployed on multiple clouds,
controllers would need to use various programming interfaces
and service elasticity capabilities offered by different types
of cloud providers. Moreover, because users need an end-to-
end control of the service, the controller has to understand the
relationships among service parts deployed on different clouds,
and control them accordingly.

To address above-mentioned challenges, we propose a
model representing multi-cloud service information for con-
trollers to understand elasticity capabilities specific to different
cloud providers. Based on this model, we design control
mechanisms using common methods of enforcing control
capabilities, and focusing on relationships existent in multi-
cloud services. With a stakeholders centric approach, we are
not interested in providing standardized access to federated
clouds, but quite the opposite: we want to help them profit
from the current heterogeneity for creating multi-cloud elastic
services within nowadays dynamic cloud context.

B. Background: Single-cloud service control

The first step in controlling the elasticity of a cloud-
deployed service is the requirements specification, which en-
ables the service stakeholders to describe how and towards
what goal should the controller manage their service. For
the description of elasticity requirements we use SYBL, a
language for multi-level elasticity requirements specification.
We consider the complex cloud service structure and enable
the user to specify requirements at (i) cloud service, (ii) service
topology, (iii) service unit, and (iv) code region level. For each
level, the user can specify the following requirement types:
(i) MONITORING directives for specifying what needs to be
monitored and under which conditions, (ii) CONSTRAINT

directives define limits for the elasticity behavior, and (iii)
STRATEGY directives, specifying the mechanisms of achiev-
ing a desired elasticity behavior.

Our rSYBL elasticity controller analyzes the service run-
time, and generates action plans for fulfilling user’s require-
ments.The service is modeled during runtime as a dependency
graph, containing structural, elasticity and infrastructure infor-
mation, having as nodes the concepts describing the services
and as edges the relationships among them.

C. Related Work

Cloud control [5] aims at formulating and solving a
range of cloud management problems through control theo-
retic approaches. Al-Shishtawy et al. [3] propose ElastMan, a
framework which combines feedforward and feedback control
for the elasticity control of Cloud-based elastic key-value
stores. Xiong et al. [6] describe vPerfGuard, a framework
for application performance diagnosis in consolidated cloud
environments, automatically discovering metrics which are
most descriptive of application performance, and adaptively
detecting changes in performance, thus supporting cloud
service stakeholders in managing their applications. Miglierina
et al. [7] propose a control theoretic approach for multi-
cloud services, targeting resource level control and modeling
formally specific types of service units which are supported
(e.g., load balancer). Aragna et al. [8] propose a model-driven
approach for the multi-cloud deployment and monitoring of
cloud services over multiple cloud infrastructures, describing
a framework to support full transparency from the user. For
multi-cloud service control, Wu et al. [9] study how web
services latency impact of multi-cloud environments, while
Hu et al. [10] study the cost impact of having multi-cloud
backup servers, proposing a schema for computing the op-
timal number of backup servers. Elmroth et al. [11] pro-
pose control mechanisms to facilitate multi-cloud architectures
from a cloud federation perspective, focusing on predictive
elasticity, admission control, and virtual machines placement.
Almeida et al. [12] propose a branch and bound approach
for optimally selecting services from multiple clouds during
runtime. As opposed to this, we aim to support various types
of services, using customization mechanisms for providing
elasticity control, and we are focusing on cloud services which
are deployed in heterogeneous multi-cloud environments due
to their inherent requirements (e.g., privacy, availability, or
functionality requirements).

Differently from other approaches, our work leverages the
heterogeneity of clouds and their services, thus enabling better
runtime elasticity control for service developers. We enable
an end-to-end control of services during runtime, maintaining
a simple requirements structure, thus shifting only the users’
focus towards the elasticity metrics they are interested in,
specific for multi-cloud services. This way, users can profit
from differences among cloud providers, and improve their
service performance, or achieve complex services with the
combination of domain-specific private and public clouds.

III. MULTI-CLOUD ELASTICITY CONTROL

For enabling the multi-cloud control described in our mo-
tivation scenario, the controller needs to analyze multi-cloud
service information, from capabilities of each service part, each

574

Fig. 2: Cloud Service Model

infrastructure element, to each measured metric. For instance,
for the case of the M2M DaaS service in Fig. 1, gateways’
elasticity capabilities and deployment structures from mini-
clouds would differ from deployment stacks and elasticity
capabilities of web services deployed in the public cloud.
Therefore, clouds heterogeneity results in a diversity of the
cloud services, not only of the supporting infrastructures.

This reveals a two-fold challenge: (i) from a conceptual
perspective, we need to enable the user to have an end-to-
end view of the service, (ii) from a technical point of view,
the controller has to understand a variety of primitives and
protocols from a variety of providers. For addressing the first
challenge, we model the multi-cloud specific information by
extending our model for single-cloud services [4]. We address
the second challenge in Section III-B, showing how we use the
modeled information to enable dependency-aware multi-cloud
service control and how we abstract elasticity capabilities from
primitive operations which are available for the different virtual
resources offered by cloud providers.

A. Multi-cloud service model for elasticity control

In our control approach described in Section II, the cloud
service is modeled together with the infrastructure in which
it runs, which is single-cloud. For multi-cloud service control,
we extend the model used in the single cloud control (Fig. 2,
gray background) for being able to better represent the infras-
tructure, from virtual machine to software artifacts and their
placement and configuration (Fig. 2, white background).

For understanding the cloud infrastructure used by the
service during runtime, and the different resources from differ-
ent clouds which are used to host the service’s software stack,
we introduce the following virtual infrastructure concepts:

• Virtual Data Center – the data center where the cloud
service is deployed (e.g., Amazon EU location 1)

• Virtual Cluster – a group of resources physically isolated
from the rest of the resources (e.g., the resources for a
specific company)

• Disk – a disk instance associated to a VM, or shared
among multiple VMs

• Virtual Network – network associated to a virtual cluster
• Container – any type of software having the property of

being used by others as a container (e.g., Docker5, web
server, gateway, or data store).

• Artifact – any type of atomic software (e.g., web service,
sensor, or data set).

Each of the service parts described in the structural infor-
mation (upper left side of Fig. 2) has associated elasticity infor-
mation (upper right side of Fig. 2), such as Elasticity Metrics,
Elasticity Requirements, or Elasticity Capabilities. The latter
represents complex actions exposed by service parts, composed
of Elasticity Capabilities exposed by infrastructure elements
described above, to which we refer as Primitive Operations.
We distinguish among them since primitive operations can be
linked to an actual operation made by the elasticity controller,
e.g., an API call, while elasticity capabilities are more abstract
actions which are composed of several primitive operations
(e.g., a scale in elasticity capability for the service unit level
can be a decommissioning primary operation achieved by the
software/artifact level and a remove VM primary operation
achieved at the virtual machine level). Enforcing elasticity
capabilities is equivalent to the enforcement of the associated
primitive operations, considering their dependencies.

For understanding how different service parts interact, we
introduce the following elasticity relationship types (bottom of
Fig. 2), as subtypes of Elasticity Relationships:

• Single way load dependency – a change in the antecedent
load causes a similar change in consequent load

• Two way load dependency – a change in the antecedent
or consequent causes a similar change in the other

• Instantiation dependency – for the instantiation of the
consequent the antecedent should to exist. This relation-
ship can also contain other properties, like the data needed
to be transferred among the two.

• Data dependency – the specified data should to be trans-
ferred among the antecedent and the consequent.

Relationship concepts above are used in order to connect two
parts of the service, regardless on whether or not they are in the
same cloud. All the above concepts are represented at runtime
through a runtime dependency graph, which has as nodes
the concepts and as edges the relationships presented in the
model (bottom of Fig. 2), and which is used by the elasticity
controller to take control decisions. We obtain relationships
above from service profilers that have analyzed the execution
of respective services [13], or from other various service
stakeholders. The model contains sufficient information for
the controller to understand the complex implications of an
enforcement of an elasticity capability on one end, on the rest
of the cloud service hosted in other cloud infrastructures.

B. Multi-cloud service elasticity control

Based on the model above, we propose mechanisms to
control the multi-cloud service, based on two major issues
that rise out of the multi-cloud setting: (i) mechanisms to
control service parts relationships/dependencies in multi-cloud

5http://www.docker.com/

575

Fig. 3: rSYBL multi-cloud control framework

Algorithm 1 Multi-cloud elasticity capability analysis

Input: evalEC - evaluated elasticity capability, sp - targeted
service part, graph - current dependency graph
Output: resultedECs - Elasticity capabilities to be enforced
with evalEC

1: initialReq=evaluateRequirements(graph)
2: initECs = evaluateInstantiations(evalEC,sp,graph)
3: simulateEnforcementOfECs(initECs)
4: spsToEval.add(simulateImpact(graph.getDataRel()))
5: spsToEval.add(simulateImpact(graph.getLoadRel()))
6: ecs=[]
7: for each service part in spsToEval do
8: ecs.add(node.evaluateECs())
9: end for

10: simulateEnforcementOfECs(ecs)
11: if evaluateEnforcement(dependencyGraph,initialReq)

then
12: resultedECs.add(initECs)
13: resultedECs.add(ecs)
14: end if
15: return resultedECs

(Section III-B1), and (ii) mechanisms to manage primary
operations’ heterogeneity (Section III-B2).

1) Control mechanisms based on service part dependencies
in multi-clouds: For the elasticity control of a multiple het-
erogeneous clouds deployed service, we evaluate the runtime
dependency graph modeling the various types of information
(e.g., structural, elasticity, or infrastructure) with regard to the
cloud service. The major difference in the control mecha-
nism rests in the way in which we evaluate the actions to
be enforced. For the multi-cloud scenario, we evaluate the
consequences of the enforcement of one elasticity capability
on the rest of the parts of the service, possibly deployed in
other cloud infrastructures.

Algorithm 1 shows the evaluation procedure for an elas-
ticity capability considered by our control mechanism. When
choosing an elasticity capability to be enforced, as part of
the control mechanism, we evaluate the elasticity relationships
associated with the target service part. We determine the
instantiations necessary with the enforcement of evalEC (Line
2-3 of Algorithm 1) and simulate their enforcement on graph
for preparing it for the other relationship evaluations. We
use simulateImpact function to simulate on the dependency
graph graph the impact reflected by elasticity relationships
(Lines 4-6 of Algorithm 1), by modifying metric values or used
resources according to what is defined in the relationships (e.g.,

for data relationship we compute expected data-related metrics
like data transfer, or storage size). We analyze the dependency
graph and evaluate whether compensation elasticity capabil-
ities should be enforced for overcoming the effect produced
by our initial capability. At the end of this process we have
a list of elasticity capabilities resultedECs to be enforced
for fulfilling user’s elasticity requirements, which results in an
end-to-end control of the multi-cloud service.

2) Heterogeneous services control: Considering we have a
service deployed across a heterogeneous multi-cloud environ-
ment, services offered by providers are highly diverse, both in
their structure and in the elasticity capabilities offered.

Virtual infrastruc-
ture element

Elasticity capabilities

Bash Process change priority, kill process

Gateway create, delete, add data repository

RabbitMQ create, delete, modify policies, change environment variables

Data Repository create, delete, change access rights, create new sub-repository

Tomcat create, delete, tomcat manager-based runtime deployment and config

Docker run new image/artifact

Disk resize, attach

Virtual Machine create, delete, change number of cores, change RAM

TABLE I: Examples of elasticity primitive operations

Table I shows different elasticity primitive operations asso-
ciated with various artifacts and virtual resources, which can be
used simultaneously in a multi-cloud deployment. An elasticity
primitive operation can be seen as an atomic operation to
be executed on an infrastructure-related or software related
element (e.g., virtual resource, or artifact). As we can see
in this case, the nature of these primitives is quite diverse,
from simple creation/deletion, to reconfigurations, or policy
changing, different types of artifacts having different manner
of enforcing each primitive.

IV. PROTOTYPE AND EXPERIMENTS

A. Prototype

We implement the above mechanisms as an rSYBL [4]
extension, for managing the interaction simultaneously with
different types of clouds, which host different types of artifacts.
The multi-cloud rSYBL controller is able to control, based on
the dependency graph which follows the new model described
in Section III-A, cloud services composed of service parts
distributed over multiple, heterogeneous clouds.

Fig. 3 shows the multi-cloud rSYBL elasticity controller,
having components deployment over different clouds, and
their communication. Whenever a direct communication is not
possible (e.g., a private cloud API is not publicly accessible),
we deploy an rSYBL Cloud Orchestrator to which the cloud
API calls and communication with Local rSYBL Controller
are delegated. Although the rSYBL controller receives all the

576

Infrastructure Element Primitive Parameters

OpenStack VM create/remove IP

Flexiant VM create/remove UUID

Flexiant Nic create/remove/attach UUID

HAProxy leave/join load balancer IP, Load Balancer Config

Cassandra leave/join cluster IP, Data Controller Config

TABLE II: Currently supported primitives

elasticity requirements, some are delegated to the rSYBL Local
Controller in case the user defines local (e.g., code region)
requirements, most of the times they would refer local metrics
and local enforcement mechanisms (e.g., manage thread pool).
Given the service description given by the service stakeholder,
including its structure, the possibility of combining different
artifacts and containers, and the capabilities for each arti-
fact and container, and the monitoring information, rSYBL
evaluates the dependency graph and generates a sequence of
elasticity capabilities to be enforced.

B. Experimental application end-to-end view

For our experiments we use the M2M DaaS, presented in
Fig. 1. We simulate the mini-clouds gateways (in the left part
of Fig. 1) through virtual machines deployed on our private
OpenStack cloud. We have simulated sensors as units sending
real GPS data from open data stores. The sensors send data to
an ActiveMQ6 queue, which our LocalProcessingUnit
evaluates and decides whether is urgent to send it. The
data is either sent on an on-demand basis, or as bulk in
periodic intervals, to the EventProcessingTopology,
composed of a LoadBalancerUnit and an
EventProcessingUnit, which further analyzes and
stores the data in a DataEndTopology, composed of
a DataControllerUnit and a DataNodeUnit. The
EventProcessingTopology and DataEndTopology
are deployed on Flexiant’s public cloud infrastructure. The
two clouds are heterogeneous, providing different services,
different control primitives, and interaction protocols.

Within this setting, we use our multi-cloud rSYBL con-
troller to manage the M2M DaaS deployed over the two
cloud infrastructures. The elasticity capabilities available for
the M2M DaaS service parts are scale in and scale out,
each being composed of a different sequence of primi-
tives from the ones specified in Table II (e.g., scale in for
EventProcessingUnit is composed of a ”leave load
balancer” for HAProxy, followed by a removal of Nic and
a removal VM Flexiant primitive). For control primitives
enforcement in the two cloud infrastructures, rSYBL uses
Salsa [14] for the OpenStack private cloud, and Flexiant Cloud
Orchestrator (FCO) for the case of the Flexiant public cloud,
which differ in the protocols used and information required for
the control.

For controlling the service on multi-clouds, the M2M DaaS
stakeholder describes SYBL elasticity requirements, which are
interpreted and enforced by rSYBL:

• M2MDaaS–STRATEGY CASE avgBufferSize < 5: minimize

(cost)

• LocalProcessingUnit–CONSTRAINT avgBufferSize<50

• EventProcessingUnit–STRATEGY CASE responseTime <

40ms AND throughput < 20ops/s: scalein, CONSTRAINT

responseTime<50ms

6http://activemq.apache.org/

Fig. 4: Multi-cloud control snapshot

The requirements above specify constraints and strategies
on monitored metrics (e.g., bufferSize is the total size
of the currently processed data, avgBufferSize averages
the bufferSize over all LocalProcessingUnit instances,
responseTime is measured for the EventProcessingUnit
web service). Moreover, the stakeholder adds a relationship
that connects the two parts of the service deployed on mul-
tiple clouds, as shown in Listing 1, saying that we expect
that whenever a huge amount of data is accumulated in the
LocalProcessingUnit we would have huge amount of
requests and vice-versa for the case of small amounts of data.
This kind of information can be obtained from existing service
analytics tools (e.g., Moldovan et al. [13]).

Listing 1: Relationship description

<Relationship type="Load" id="LoadRelationship">
<source>LocalProcessingUnit</source>
<target>LoadBalancerUnit</target>
<metricSource>bufferSize</metricSource>
<metricTarget>requests</metricTarget>

</Relationship>

Using the above information (e.g., M2M DaaS structure,
associated primitives, requirements and relationships among
service parts, and monitoring information from MELA7) which
is represented in our runtime dependency graph, rSYBL
generates and enforces when needed elasticity control plans
containing sequences of elasticity capabilities for ensuring
the fulfillment of elasticity requirements. The workload for
our experiment consists of addition/removal of gateways with
sensors, each gateway containing 3 to 15 sensors. Fig. 4
shows the monitored M2M DaaS, with the metrics monitored
for each service topologies and service units which belong
to the service. Using the mechanism described in Algorithm
1, rSYBL decides that even though the constraint targeting
responseTime is currently fulfilled, a new instance of
LocalProcessingUnit, would increase the load, thus

7http://github.com/tuwiendsg/MELA

577

decrease the response time. For this, a compensation elas-
ticity capability is added to the control plan: scale out
EventProcessingUnit on Flexiant using FCO. Fig. 5
shows the estimated cost associated to the private cloud, and
cost associated to the public cloud, given that the buffer size
has the shown peaks, due to the periodic sending of data to
the public cloud. An increase of cost is associated with an
increase of resources used by the M2MDaaS, and we can see
that both on the public and private clouds the load intensity is
followed. This way, the public cloud resources are allocated
in advance to the load peak, for ensuring better elasticity and
smaller cost on the M2M DaaS deployed on the public cloud,
without having lags in provisioning sufficient resources.

Fig. 5: Multi-cloud executed M2M DaaS cost in time

Fig. 6 shows the different amounts of time needed for
enforcing elasticity capabilities on service units deployed on
the two clouds. In this context, it is worth mentioning that Salsa
deploys all artifacts needed on demand, while for Flexiant we
use machines with needed software pre-installed. However,
in both cases configurations are made on-demand, and the
majority of the time is spent on creating and configuring
the virtual machines. Therefore, we can affirm that in the
case of Flexiant public cloud, the expected time for elasticity
capabilities is much more reliable, with low standard deviation.
In our experiment which lasted for 4 hours, in which each
elasticity capabilities were enforced more than five times, the
scaling out on Flexiant had a standard deviation of 0, while the
scale in elasticity capability had a bigger deviation in average
time, 2.82, due to the decomissioning (i.e., leaving the cluster)
action which depends on the state of decomissioned unit.

Fig. 6: Multi-cloud control sensitivity

We have shown that rSYBL is able to control an M2M
service deployed on two different clouds, considering the end-
to-end service perspective. For M2M service stakeholders, this
is a step towards achieving better end-to-end service elasticity

control, this way ensuring control for services possibly com-
posed of multiple LocalProcessingUnits deployed over
multiple mini-clouds.

V. CONCLUSIONS AND FUTURE WORK

This paper emphasizes the need for elastic multi-cloud ser-
vices, showing the main challenges, and presenting models and
mechanisms for providing heterogeneous multi-cloud control
for services. We have extended our framework, rSYBL, with
these mechanisms, and presented some experiments with a
service deployed on two different cloud infrastructures, with
different time sensitivities. As future work, we will focus
on discovering dependencies among services deployed on
multiple clouds, which for this paper were manually described.
Accurate elasticity dependencies will facilitate a better elastic-
ity control of services executing on heterogeneous clouds.

REFERENCES

[1] J. Rao, Y. Wei, J. Gong, and C.-Z. Xu, “QoS Guarantees and Service
Differentiation for Dynamic Cloud Applications,” IEEE Transactions
on Network and Service Management, vol. 10, no. 1, pp. 43–55, 2013.

[2] A. Naskos, E. Stachtiari, A. Gounaris, P. Katsaros, D. Tsoumakos,
I. Konstantinou, and S. Sioutas, “Cloud elasticity using probabilistic
model checking,” CoRR, vol. abs/1405.4699, 2014.

[3] A. Al-Shishtawy and V. Vlassov, “ElastMan: Elasticity Manager for
Elastic Key-value Stores in the Cloud,” in Proceedings of the 2013 ACM
Cloud and Autonomic Computing Conference, 2013, pp. 7:1–7:10.

[4] G. Copil, D. Moldovan, H.-L. Truong, and S. Dustdar, “Multi-level
Elasticity Control of Cloud Services,” in Service-Oriented Computing,
ser. Lecture Notes in Computer Science, S. Basu, C. Pautasso, L. Zhang,
and X. Fu, Eds. Springer Berlin Heidelberg, 2013.

[5] M. Kihl, E. Elmroth, J. Tordsson, K.-E. Årzén, and A. Robertsson,
“The Challenge of Cloud Control,” in 8th International Workshop on
Feedback Computing, San Jose, CA, USA, Jun. 2013.

[6] P. Xiong, C. Pu, X. Zhu, and R. Griffith, “vPerfGuard: an automated
model-driven framework for application performance diagnosis in con-
solidated cloud environments,” in Proceedings of the 4th ACM/SPEC
International Conference on Performance Engineering, 2013.

[7] M. Miglierina, G. Gibilisco, D. Ardagna, and E. Di Nitto, “Model based
control for multi-cloud applications,” in 5th International Workshop on
Modeling in Software Engineering (MiSE), 2013, pp. 37–43.

[8] D. Ardagna, E. Di Nitto, P. Mohagheghi, S. Mosser, C. Ballagny,
F. D’Andria, G. Casale, P. Matthews, C.-S. Nechifor, D. Petcu et al.,
“Modaclouds: A model-driven approach for the design and execution of
applications on multiple clouds,” in 2012 ICSE Workshop on Modeling
in Software Engineering (MISE). IEEE, 2012, pp. 50–56.

[9] Z. Wu and H. V. Madhyastha, “Understanding the Latency Benefits of
Multi-cloud Webservice Deployments,” SIGCOMM Comput. Commun.
Rev., vol. 43, no. 2, pp. 13–20, Apr. 2013.

[10] B. Hu, Y. Sudo, K. Hato, Y. Murata, and J. Murayama, “Cost reduction
evaluation of sharing backup servers in inter-cloud,” in 2013 19th Asia-
Pacific Conference on Communications (APCC), 2013, pp. 256–261.

[11] in Towards a Service-Based Internet, ser. Lecture Notes in Computer
Science, 2011, vol. 6994.

[12] A. Almeida, F. Dantas, E. Cavalcante, and T. Batista, “A Branch-and-
Bound Algorithm for Autonomic Adaptation of Multi-cloud Applica-
tions,” in 2014 14th IEEE/ACM International Symposium on Cluster,
Cloud and Grid Computing (CCGrid), May 2014, pp. 315–323.

[13] D. Moldovan, G. Copil, H.-L. Truong, and S. Dustdar, “On Analyz-
ing Elasticity Relationships of Cloud Services,” in 2014 IEEE Sixth
International Conference on Cloud Computing Technology and Science
(CloudCom), 2014.

[14] D.-H. Le, H.-L. Truong, G. Copil, S. Nastic, and S. Dustdar, “On
Analyzing Elasticity Relationships of Cloud Services,” in 2014 IEEE
Sixth International Conference on Cloud Computing Technology and
Science (CloudCom), 2014.

578

