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1. Introduction

In the present paper we shall introduce a new method to estimate partial sums
of Fourier series. This will give quite precise results and will in particular enable us
to solve the long open problem concerning convergence a.e. for functions in L2 We
denote by s,(x) the nth partial sum of a function f(x)€L'(—sx,n) and have the fol-

lowing theorem.

THEOREM. (a) If for some 6>0

f:lf(x)l (log* | f(@) ) **dz < oo, (1.1)

then s,(x)=o(loglogn), a.e.
(b) If f(x)EL?, 1<p<2, then
s, (x)=o(logloglogn), a.e.
(e) If f(x)€ L2 then s,(x) converges a.e.

Remarks. (a) This result should be compared with Kolmogorov’s example of an
a.e. divergent series in L'. Tf we consider in detail the construction of Hardy-Rogo-
sinski (see [1], pp. 306-308), we see that the following is actually true. Given g(n)—0,
n— oo, there is a function f€L' such that

8, (x) * O(e(n) log log n), a.e.

The best previous result in this case is o(logn).

(*) This research was partially supported by NSF grant 4079 at Stanford University.
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(b) The best previous result here is the Littlewood-Paley theorem (see [2], p. 166)
8, (x) =o0((logn)""?), a.e. It is rather obvious from the proof of (c) that we actually
have convergence a.e. in this case also, and the proof of (b) will only be sketched.

(c) This result was conjectured by Lusin. The best earlier result is the Kolmo-
gorov-Seliverstov—Plessner theorem s,(x) =o((logn)}), a.e.

The proof is quite technical and it is convenient to give an outline of the idea

behind the proof here.

We assume f real and extend f periodically. We then consider the modified Di-
richlet formula

dn ,-int gy
s:(x)=f Ll (UF P (1.2)

_4n x—t
If w is a subinterval of (—4um,4m), we let E,(f) denote the mean value of f over w.
We consider a suitable disjoint covering Q={w,} of (—4m, 4n). If z€w,=w*(z), we

write
—int E (e—mt)
s:(x)=f e—f(—t)dt+ > Buule 1)
@*(x) x—1t

pFr Jou T

dt

b5 [ OO - By

pEy J % x—1

:. (1.3)

If x is “strictly” inside ©*, the first term gives the main contribution. If w* has
length 27-27°, s an integer, we modify in this term n to the closest integer of the
form %-2°. This gives only a small change in the value of the integral. After the
modification and a change of variables x=2°¢, t=2°7, we have an integral of the
same form as s,(x) but localized to w*. We can now repeat the argument.

To prove that the second term is small, we choose Q so that the mean values
E,, (e7™f) are all small, specifically of the same magnitude as f7.fe ™ di.

In the third term, finally, we use the fact that the numerator has a vanishing
integral over each w,. In this way we can change the first order singularity into a
second order singularity, which is easier to handle (Lemma 5). The situation should be

compared with the trivial formulas

1 dt 1 1dt
J:; 7—10g(—5, 6J:5 tT<1

For every combination of intervals w®(z) and integers n in formula (1.3) we get
an exceptional set where the remainder terms are not small. In the proof of (a), which

will first be given in Sections 2-5, we allow in a certain sense all combinations (n, w*).
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The improvement that is needed to get (c) is a careful examination of which (n, w*)’s
are necessary. The Parseval equation plays a fundamental role and to get the L?-
result, a sufficiently good substitute has to be found. In Section 12 we sketch how an
interpolation argument gives (b). The author is indebted to L. Garding, A. Garsia,
L. Hormander, J.-P. Kahane and I. Katznelson for many improvements in the presenta-
tion of the proof.

2. Some notations and lemmas

Let *; be the interval (—4m, 47) and @_;5 @gp W1y @Wg be the intervals

(—4m, —2n), ..., (27, 47). We shall restrict z to (—m, ) and w,, and w,y will be our
basic intervals. We subdivide wgyU o into 2-2” equal intervals of lengths 2727,
v=1,2, .... The resulting intervals are from left to right denoted w,, = —2"+1,...,2".

We further define
wh=wpU w1, —2+I<j<-1. (2.1)

For the length of an interval w we use the notation |w|.

Let f be a given real function with period 2n such that

jn | ()| (log™ [#])*** dz=1. (2.2)

-7

0>0 is fixed and Const. will indicate numbers only depending on 4. For each =

some wy, ¥=>0, we define the Fourier transform
1 .
ca(w)= ol f f(x) exp { — 2’ wix} dx, (2.3)

where o is any real number. Together with the Fourier coefficients ¢, (w), » an integer,

we consider the non-negative numbers C,(w) defined by

On(@)= 5 |enspus(@)] (L+aY 2 (24)

We shall also set p=(n,w) and use the notation C(p).
It will be necessary to have some estimates of ¢, and C,, as n-> oo, for func-

tions of type (1.1). The following form of the Hausdorff-Young inequality is sufficient.
Lemma 1. If |71;|f |f(x)] Qog™ |f]) 0 dx< 2, (2.5)

then there are numbers a(l) and A(A)>0. only depending on 1 and & such that

iexp{—aCn(w)‘”(”‘s)}SA. (2.6)
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Proof. Except for the fact that no constants are mentioned, (2.6) is given in [2],
p. 158, for |c,| instead of C,. It then also follows for ¢,y if we consider e*'? f(x),
f=4%2". To obtain (2.6) from this result we observe that

C, < Const. sup

1
. (_lmlc“”’sl'

This means that, ¢=1/(1+4),
exp{~bCy%) <3 exp{—alenual *(1L+|p)} (2.7)
for some other constant >0. Summing (2.7) with respect to » and observing that
for |c]<22
”iwexp{—-a[c]“’(l+[‘u|)“}<A1(2) exp{—alc|™%},
we obtain (2.6).

With the intervals wj,, defined by (2.1), we associate the analogous numbers

Cr (w}) = max C, (o) (2.8)

where ' ranges over the four subintervals wy,,+; of wph. If wh=w*;, O is simply
Cr(wgy). We also use the notations p* = (n,w*) and C*(p*).

Finally, given an integer n and an interval w=w;, we expand » to the basis 2
n= > g2, 5=0,1,
10

and define nfw]=2"" > &2t (2.9)
] .

i>v

If o' is related to w* as in (2.8), we also write n[w*] for nw'].
The reason for considering C,(w) together with c,(w) is seen from the following

lemma.
LeMMA 2. For any integer n and any w=w, we have the inequality
|€n.2-7 (w)] < Const. Cppay ().

It will be convenient for future reference to collect the method of proof of Lemma 2

in a special lemma.
Lemma 3. Let o(t)€C*(w), |w|=27-27". Then we can represent g(t)

pt)=2 vuexp{—12"37 ' ut}, t€w, (2.10)
where (1+ u?) | yu| < Const. (max |@| +27* max |¢” (£)]). (2.11)
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Proof of Lemma 3. By a change of variables, t=2""-7, we see that we may
assume = (0,2n). If we determine a polynomial with the same derivatives of order
<2 as ¢(t) at £=0 and vanishing with these derivatives at {= —2x, and do analo-
gously for (2, 47), we realize thas we can extend ¢ to (—2x,4n) and then period-
ically so that max|p|-+max|p’| increases at most by a fixed factor. By partial in-
tegrations we see that (2.11) holds for the expansion of this function.

Proof of Lemma 2. We apply Lemma 3 to the function e, f=n-—n[w]?2",
©=w;, so that |y,|<Const.(l+u* ' We find

1 1 ’
Cng-7 (0) = m f e ™ f(t) dt = m f e Pt e It {Y dE =3 v, Crpor s (@)

The estimate of y, and the definition (2.4) prove the lemma.
The estimations of the remainder terms of (1.3) depend on the following two

lemmas, the first of which is of well-known type.

LeMMA 4. Let E(t) be defined on an interval w* and assume |E(f)|<c. Let o, denote
subintervals of w* containing x tnside their middle halves. We define (as principal values)

the maximal Hilbert transform

E()
H* (2) = :
(x) SI:F foz o tdt
Let T be the set T={z|H*(x)>a, r€Ew*}.
Then mT < Const. exp (~ Const. %) |w*].

Proof. By a change of scale we may assume w*=(0,1) and c=1. Let u(z) be
harmonic in y>0, with boundary values=E(x) on (0,1) and =0 otherwise. Let v be
the conjugate of u, v(c0)=0. It is easy to see that (see [1], p. 103)

H*(x) < Const. sup |v(z + 1y)| + Const.
>0

For k<m/2 we have (see [1], p. 254)

2
f eBlPETl gy  Const.,
-1

and applying the Hardy-Littlewood maximal theorem ([1], p. 155) to exp { + L ki (v + )},
which is in L% Lemma 4 follows.

9*t
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LeMMA 5. Let {w;} be a disjoint covering of an interval w* and let w; have mid-

point b, and length 8;,. We define the function

and the set U={z|A(x)>M, z€Ew*}.
Then mU < Const. exp (— Const. M) |w*|.
Proof. By a change of scale we may again assume *=(0,1). Let g(x)>0 be

integrable and have its support in (0,1) and let g(x+dy), y¥>0, be the corresponding

harmonic function in y>0. Then

1

f A@) g@)dx =72 S gt + 16,) < Const.f sup g(x + iy) dz,
- 00 k

0 ¥y>0

since by Harnack’s inequality 6;g(t + ;) <3 fu, g(t+d;) d¢. By the theorem on maximal
functions, [1], p. 155, this last integral is bounded if

1
f glog* gdx<2. (2.12)
0
Let u be the measure of the set where A(x)> M, x€(0,1), and define
1 -1
g(x)= (u log —)
H“

on this set and 0 otherwise. This function satisfies (2.12) and hence

which proves Lemma 5.

3. Construction of the exceptional set

We start from a large number J and an integer N. Depending on A, we shall
determine a number A, and a set Ey(, A,) such that outside Ey the partial sums s, (%),
n <2V, satisfy |s,(z)|<Const.1;4log N. In this section we shall construct Ey and in
later sections show that Ey has the desired properties. Ey will consist of four dif-
ferent parts S, 7', U, V, which will be constructed in the steps (A)—(E) below.
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(A) We first consider the set of all w= w,<(— 27, 27) such that
[ 1@l qog 119+ dz> 2o, (31)

We then define S to be the union of all intervals
S: @iy k=0, 11, +2, +3, w;, satisfies (3.1).
Selecting successively suitable intervals wj for »=0,1,2,..., it is easy to see that

27
m8 < 7/1-1f If] Qog™ |F)** de s%. (3.2)
-2n

We observe certain properties of the set S.
(Aa) S does not depend on N.
(AB) If (3.1) does not hold, then (A>e) |c,(w)|<24 and

o0

1
< — . 3.
C,(w) 2}»”2W 1 +,u2< 104 (3.3)
(Ay) Given (jy, v5), —1<,, recall the definition of w* = wj,,, in (2.1) and of O} (w")
in (2.8). If wj,.»E S, (3.1) holds also for the neighboring intervals with »=»,+1 and
it follows from (3.3) that
Oh(w*) < 104.

(B) Again, given o*=w},,, —1<y,<N-1, and an arbitrary, nonnegative in-
teger n, we shall define a partition Q,(w*) of w*. To simplify our notations we assume
" = (—4m, 47), but the general case consists simply in a change of scale.

An interval 0=, 1,+1=0<y<N—1, belongs to Q,(w*) if

Ba) Cupy(@)<2CH(0™);

(BB) the condition (B«) holds with w; replaced by any wi., wp<we<w®, but
not for a certain wy,,+1 < wj.

(BR) If wy<wr<w*, k<j, then (Bx) and (BR) do not hold for wy.

(BY) Q,(w*) contains all w;y not included in the w, defined by B («,8,8').

Loosely speaking, the definition means that we subdivide w* into as small inter-
vals as possible so that (Ba) holds and »<N.

(C) As a preparation for the construction of the sets 7' and U, we shall make a
careful definition of the interval w*(x) in (1.3) so that z is “strictly” inside w*(x).
Let z belong to the middle half of w* and consider the set of intervals @* which

are obtained by taking every w;€Q,(w*) and adjoining ws_,, O ®;+1,,. Among these
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intervals @* there are those which contain x in their middle half. We then define

o* (%), corresponding to Q,(w*) and the point z as such an interval @* for which |&*|
is as large as possible. We observe that

lo*(2)| < 3]0®]. (34)

Furthermore, »*(z) has the following properties:
(Ca) = belongs to the middle half of w*(x).
(CB) w*(x) is a union of intervals w;,€Q,(w*) since |&*| was assumed maximal.

(CY) If 0" ()= wp U 0jsy.r, 0= wp€Qy(w*), it follows from (Bx), (BR) and (CB) that
Crn(wp), Ontan(@421,5) S 2C5(0").

(C3) The complement of w*(x) with respect to w* is by (CB) the union of certain
intervals in ,(w*). For each such interval ¢, the distance from z to ¢ exceeds half
the length of o.

We now define H, (z)= £, ¢) dt,
wt-at@) £ — t
where (note y,= —1)
E. ()= |—27| f fx)e ™ dx, t€w€EQ,(w*). (3.5)

By the construction of Q,(w*) and Lemma 2, | E, ()| < Const. C}(w*). As in Lemma 4,
we define the maximal transform Hj () of E,(¢) and the set T, of points x € * such that

T.: H(z)> 2, Cr(w*)log N,
where g is a number, 0<p<d/(1+9), fixed from here on. By Lemma 4,
mT', < Const. exp { — Const. 1, Cy (0*)"'*°log N} |w*|.
We also observe that |H,(x)|<2H; ().
(D) With the same definition of w*(z) we now set

e_mtﬂt) ~ B,

R,(x) = B(z) = f D 4, (3.6)

w*~@*(z) x—i

where again we have normalized the situation to w*=(—4m,47). If w, denote the

intervals in Q,(w*), ®* —w*(x) is by (C3) the union of a certain subset (z) of the wy’s.
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Denote by 8, the lengths and by £, the midpoints of the w,’s and define A(z) as in
Lemma 5. We rewrite the formula (3.6), using the fact that the numerator has

vanishing integral over each wy,

R(z)— b mpydi-S L= b

- @—1) (z—t) — : 3.7
@ Jo, (1) (x— ) &, @—1) (@—to) E. (t)dt 3.7)

Using (C8) and |E,(f)| < Const. Cr(w*), we see that the last sum is dominated by
Const. Oy (0*) A(x).
We shall now prove that also the first sum of (3.7) has this bound and shall use

Lemma 3. We write, if t€w=ay, |0|=27-27",

t—1
—int k — p—i2'n[wlt 8.
D@ &) w0

By Lemma 3, ¢(#) can be written
p) =2 yuexp{—2'371iut}, t€o, (3.8)
H

where, again observing (C3),

Iyl < Const. &,
PRS0 ) (=) + 03

We multiply (3.8) by f(f) and integrate over w,. If we observe (Ba), we obtain after
summation over all k the desired bound so that

| R(z)| < Const. Oy (0*) A(x). (3.9)
Let us now define U,(w* 4,, N) as the set where
Un: A@x)> 2,05 (0*)?  log N.
It follows from (3.9) and Lemma 5 that
mU, < Const. |w*| exp { — Const. 4, O (w*) " *?log N}. (3.10)
Observe that outside T, U Uy, |H,(x)| and | R,(x)| are less than Const. 4, C;; (w*)?log N.

(E) Finally, let ¥V, not depending on N, be the set, where

f ﬂ—t)dt‘>ll,
oz £ —1

10 - 662900. Acta mathematica. 116. Imprimé le 14 juin 1966.

V: sup

oz
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o, being defined as in Lemma 4. As is well known mV <(4,), where 7 does not
depend on f and >0, 1, ~> + co (see [1], p. 279).
These definitions made, the exceptional set Ey(4,4,) is defined by

Ey=(8UV)U U (Ta(@") U Us(@")), (3.11)

where @* runs over all intervals w}, ¢S for which —1<y<N-1.

4. Estimate of the exceptional set

We shall here estimate the measure of E, and must now determine the relation
between the numbers A and 1,.

Let us recall that by (Ay) the numbers Cf (w*) associated with (3.11) are <104.
Furthermore, by (2.8) Oy (w*)=C,(w’) for a certain subintervval o’ of w*. For a fixed
o', such a relation holds for at most two w*’s and |w*|=4|w’|. It therefore follows
from (2.6) and the definition of § in (A) that

exp{—aCs(w*)"% 272 < A(1), q=—1—, (4.1)
® 1+6
where (s) indicates that the summation runs over all pairs (n,w*) used in the defi-
nition of By for which |w*|=272"% —2<s<N—2. Summing over s we get

Z‘exp {-a0s(0*)}|w*| < Const. A() N. 4.2)

In (4.2) we now only consider the set @, of those pairs (n, ®*) for which
Qy: 1<Cr(w*) (<104).

It follows that > |@*| < Const. 4(A) N. 4.3)
Qe

Disregarding the set (SU V), it follows from the estimates of mT, and mU, above

that only at most the fraction
Const. exp { — Const. 4,(104) ' log N}

of each interval w* that corresponds to @, can belong to Ey. Hence choosing A, suffi-
ciently large as a function of A, we can make this fraction < Const. N~%, (4.3) then
implies that the corresponding part of E, has measure < Const. A(4) N2

Similarly, let @;., be the set of (n,w*) for which

21K CHo*) <27, i=0,1,2,....
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As above, > |w*| < Const. A(A) exp {2 29} N. (4.4)

Qi+1
The corresponding fractions are at most

Const. exp { — Const. 1, 20! log N}.

We observe that 1—g>g¢. Hence it follows that if we take the above fraction of each
term in (4.4) and sum over 4, the result will for 4,>2,(1) be less than N2 This
implies

mEy<m(S U V)+ Const. A(A) N~2.

Hence, since S and V are independent of N, we obtain

m ( U EN) <e(d, A,) + Const. A(4) No", 4.5)

N=N,
so that the measure of E= Uy, Ey is less than a prescribed ¢ if 4, 4, and N, are
larger than certain bounds, which only depend on ¢ and 4.
5. Proof of Theorem (a)

As in the introduction, we assume f real with the integral (1.1) equal 1 and ex-
tend f periodically. We first compare the Dirichlet formula for the nth partial sum,

=g [ TEEDE g,
5
with ()= s (67501 (@) — 4 2)),

where s} (z) is defined by (1.2). It is very easy to see that uniformly for |z|<m
|8 (x)| < Conmst. |¢,(z)| +0(1), n-—>oo. (5.1)

We are going to prove that outside the set F of measure <g constructed in
Section 4
|8k ()| < Const. 4, Aloglogn, n=>2%. (5.2)

By (5.1) this implies the same relation for s,(z). To obtain the o(loglogn) of the
theorem, we simply consider f(z)—T'(z) which has a small integral (1.1), if the trigo-
nometric polynomial 7' is suitable, and observe that the bounds on 4,4, and N, only
depend on ¢ and e.
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Let us now consider 0 <n<2¥, N> N,, and a fixed = outside Ey. If we can prove
|s% (x)| < Const. A, 4 log N, the proof is complete. In formula (1.3) we choose as Q the
covering £, (— 4w, 4n) defined by (Ba)—(By) in Section 3. The interval w* (x) is defined

in (C). Using the previous notations, (1.3) becomes

& (x)= f (%Tj—it—) dt+ H,(x) + B, (x). (5.3)
w*(z)
Since z ¢ Ey, the bounds Const. 4, O (— 47, 47)?log N are valid for the two remainder
terms.
In the integral (5.3) we are now going to replace n by the number n, =n[w’]2"*!
if w*(z)=w}, and |0’'|=272""". Multiplying the integral in (5.3) by €™, m=n—mn,,
and subtracting the integral with » replaced by n,, we obtain the difference

; teim(:c—t)__l i 1
e Mt ————— f(t) dt. 5.
[ ems = 5.4
If we observe that O, (w)<20y(—4n, 4n) for the two intervals constituting w*(z),
we see that we can estimate (5.4) by Lemma 3 applied to the function w™(e!™ —1).
We find y,=0(2"u"?) since |m|<2"*’, and for (5.4) we obtain the estimate

Const. Cj ( — 4, 47). (5.5)

This is smaller than the previous bound if N > N, (1) and can be included in that term.

The relation (5.3) now becomes

e—i2"+1n[w']t f®)

sh(x)= e“’“f

w*

dt+ O(A log N - o),

where w* =" (z) =} for a certain w; and where
ay= Cr (— 4, 7). (5.6)

O(-) has the same dependence as the notion Const. Here, the integral over w* is of
exactly the same type as the original integral with the fundamental difference that

dl = G:[m'] ((X)*)Q > 2Q oco

by the property (BB) of Q, and the definition (2.8) of Cr.
For the new interval w* we construct the covering Qni(w*), get a similar re-

mainder term since x is so chosen that the estimates for the remainder terms are valid
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for all »* that come into account. We also get a new number a,>>2°a,. The process
cannot stop until we reach an interval w*(z)=1I of length 27-27"*!, in which case

n{w’']=0 since n<2"., Hence
s:(x)=ewf T8 31 5 0, log N+ ),
Ix_t i=0

Xi+1
&;

where > 2¢ and o <104. (6.7)
The first integral is bounded by Const.A; since z¢V and since x belongs to the
middle half of I. Since «; grow exponentially by (5.7) and are bounded above, we
obtain the desired bound O(J;4log N), and the proof is complete.

6. Summary of proof of (c)

The result for L? is proved by analyzing carefully the weak point in the pre-
ceding proof. This is the fact that we have allowed all combinations p* = (n, ©*) when
we estimate the size of the exceptional set in (4.2). The factor N that is introduced
in this way must then be compensated by the factor log N in the exponent. How-
ever, in the proof itself only certain special combinations (n, »* (z)) will occur. Further-
more, in changing n to the closest n,, we obtain the very small error C*(n; (— 4, 4x)).
Obviously, we can allow a larger gap between n and n,, i.e., restrict the choice of the
new combination (n;, w*(z)). The basis for the construction of those pairs p* = (n, ")
that may be used during the proof is certain trigonometric polynomials Py (x, w). They
will be constructed in the next section. It will also be convenient to modify the defi-
nition of the coverings Q, and we must add new exceptional points. This is done in
Sections 7, 8 and 9, and the proof of (¢) is completed in Sections 10 and 11.

7. The polynomials P;(x, w)

Denote by b, the numbers 2-%, k=0,1,.... Let f(x) be real and periodic and

assume
n

82=f |[f(=) P da < 1. (7.1)

-

Denote by a, those integral Fourier coefficients c,, n=A1,, of f over w; which are
of absolute value =56, We define

Pol®; o) = 3 a0 €%, j=—1,0,1,2.
w
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On each of the two intervals w;; constituting wj, we consider similarly those Fourier
coefficients (now corresponding to even integers) of f(x) — Pyx(x; ;) which are of modu-
lus >b;. They are denoted a@,, corresponding to 4., and will be called primitive for
w;n. We define

)
Po(w; on1) = Pi(; wj0) + Same M.

It is clear how the construction proceeds, and we obtain the polynomials

Pz 0) =3 aue ™, (7.2)
(w)

where the summation runs over a certain set (w) of pairs (@, l»). By the Parseval
relation we have, summed over all w, |w|=2:rz2“",

4

%fwlf(x)—Pk(x; o) dx-i-%(%ladz |w|=J‘ 4n|f(av:)|2 dx.

Hence if we define by an infinite sum where (P): a, primitive for w, holds

A= S ok

an
it follows that Dlawf? o] = f Ay (x) dr <4£2<4. (71.3)
(] —4n
Denote by X, the set Xy ={x| de(x)>b;"}

so that mX,<4b,. To every w<=X, we associate its three right and left neighbors of
equal length and define X} as the union of all such intervals so that

mXE<TmX, <28b,. (7.4)
If wdX;, then P(r;w) has at most b;® terms and
| Pre(; w)| < %Iaw|<b;2. (7.5)

In analogy with Section 3 we shall also consider the set S of points x included
in an interval w such that

j |f(2) |2 dz > | w]. (7.6)
Such w’s together with their six neighbors are denoted by S*. Then
mS* < 28e. (7.7)

Denote by M, the set of wd (XU S).
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8. Allowed pairs p*

We first consider the set Fj, of pairs p=(n, w), w € M, for which Pi(x;w) con-
tains a primitive term ae®*, A[w]=n. By (7.3)

> o] <4z (8.1)

We are now going to define in (i“a) and (i*‘b) below a larger set F, by associating
with each p€F, a number of elements §. Let P defined in (7.2) be the k-polynomial

corresponding to w.

(f‘a) If p=(n,w)€EF,, then F, contains every P =(f, ®) such that &€ M, and
dcw, |6|z o], |i-A.[@]]<b;Y, (8.2)

where A, is an arbitrary exponent in P(z; w).
The condition means that we include all neighbors within b;'® of all exponents

in P not only on w but also on sufficiently large subintervals & of w.

The number of possibilities for # is < Const. b;3b;'"log b}
(l*:b) Again let p=(n, w) € F; and consider § = (%, &), @€ My, @ < w, and the poly-

nomial P(z,w). Then, by definition, € F, if there are two different exponents A,
and A, in P such that

BP<|2— 0| |®|<B;® and |7—Aul®]|<bi™.

To estimate the number of such pairs $, we first observe that P contains <bj; 8
exponents so that the number of pairs (2., 4,) is <b;°. For each fixed pair, the first
inequality holds for < Const.logb;' choices of lengths of & and the second for < 2b;°

different 7’s. This implies that, for fixed p€ F,,

2. |®] < Const. b | o],
@™

and the same inequality clearly also holds for (fa).
If we also observe (8.1), we find

2. |®| < Const. b, ™. (8.3)

(Fr)
The above construction has the following consequence: if p=(n, )¢ Fy, then

Pz, w) = @z, w) + ¢ (z, w), (8.4)
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where the polynomials @ satisfy:
Q,(x) =0 +0@}), z€w, (8.5)
where g 1s constant and A=some A,; further |p|<b;® by (7.5);
Q,(x) contains those A, for whick |n— Au[w]]=bi™. (8.8)

Since p ¢ F,, the exponents in @, satisfy by (Fb) |A,—2,||®|<bi, which gives (8.5).
If @, only contains one exponent, (8.5) is obvious.

With the primitive elements we also associate an exceptional set. If p=(n, )
gives a primitive element, the set Y% contains two intervals of lengths 2b}|w|, sym-
metric around the endpoints of w. By (8.1)

mY¥<16b,. (8.7)

This set is of a purely technical nature and is introduced to secure the validity
of Lemma 6 below.

With each §=(,®) we associate the two intervals w*, |w*|=4|®|, which con-
tain @. The set of such combinations (n, w*)=p*, n=1, for §€ F,, is denoted F and
the relation (8.3) becomes

> |w*| < Const. b;*°. (8.8)

B
Finally we shall need the following lemma.

LEMMA 6. Let p*=(n,w”) be given and assume p*¢Fi. Assume that for each
o' cw*, 4|o’|=|w*|, o't X, U Yi. We further assume that for a certain choice wo of '
the corresponding polynomial P° contains an expoment 1° such that |A°[we] —n|<bi®.

Then the four polynomials P corresponding to different choices of w’ are all identical.

Proof. Let ' be another choice and assume that the corresponding polynomial
does not contain A°. This exponent was primitive for a certain wy > wo. By the con-
struction (Fa), |w,|>b5°|w’| because the opposite inequality would imply (n, wq) € F,,
ie., p*€F;. Since w,Pw’, it then follows that wo< Y; against our assumption.

In the same way it then also follows from (f‘a) that none of the four polyno-
mials P(z,w’) can contain exponentials that are primitive for intervals w,> o', |w,| <
b:;°|w’|, and that every primitive interval w, for one o’ must contain the three
others.
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9. The coverings Q(p*; I) and the exceptional set
Consider a pair p* = (n, »*). If the following conditon Q(f)
Q(l) p*e l*+3’ 0*(1”*)<b1—1,
holds, we construct the partition Q(p*;l) in analogy with Section 3 (B). The condition
(Bw) is simply changed to
(B*«) Cn[w]; w) <by_1.
N is here arbitrary but fixed, and the main point in the proof is to make the esti-
mates independent of N. We may take f as a trigonometric polynomial of degree N.

As in (C) and (D) of Section 3, we form the functions H*(z) and A{x) corre-
sponding to the partition and define the exceptional sets

T*(p*): H*(x)>bl§—17 U*(P*): A("'v)>bl——4k19
and as there

m(T* (p*) U U*(p*)) < Const. exp { — Const. b4} |w*]. (9.1)
We next observe that for w*&:8*, C*(p*)<b, will automatically hold where
L=L{g)-» oo, ¢+0. We shall therefore only consider {>ZL and define

T*=U U T (p"
1=L QO

and similarly for U*. Since Q(l) defines a subset of Fj,5, we have by (9.1) and (8.8)

m(T* U U*) < Const. > b; %% exp { — Const. b; #}. 9.2)
ey
Similarly, we define X*= lj Xz, Y*= G Yy,
L L

and recall the definition of V in (E) of Section 3, here with A, =¢t. We then define
the exceptional set
E=8*yT*yU*uXx*ur*uv.

The results (7.7), (8.7) and (9.2) show that
mE <d(e)~>0, &0,

and there is no reference to N in the estimate of E. It now remains to prove that
every partial sum of order < N is small outside E.
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10. Proof of Theorem (c). Three propositions

To get a better organization of the proof, we isolate certain parts of it in propo-
sitions 1-3 in this section and complete the proof in Section 11. Proposition 1 is purely
technical and is needed because we have used integers relatively each w in the defini-
tion of the polynomials P. We must then deduce estimates for fractional Fourier trans-
forms. Proposition 2 gives an estimate of the change in s;(x) when we move n to
another position n, for which we have an estimate of the remainder terms. Proposi-
tion 3 finally shows how that estimate for a pair pg=(no, wg) can be obtained from
the corresponding expression for (7, ®*) where @* > wg. This fact is the crucial one;
it is here essential that H*(x) is a maximal Hilbert transform and that A(z) has posi-
tive terms.

In the sequel we shall consider = fixed outside H.

ProPOSITION 1. Let g(t)€ L* (w*) and let n be given. We assume

[ loorases
and for all o' cw®, |0*|=4|w'],

[em(@)|<p, |m—n|<M.

G
Then O (w*; 9) < Const.{ lo M+—}.
(™5 9) plog Vil

Proof. Take a fixed o’ and normalize to o’ =(0,27) and n=0. Let

e
¢t~ >, 0<t<2n.
-0

2
Then |<x,,| < W_ﬁ
and c{w)=2 ¢, &,

If |«|<3M, we have

3

|c,,(w’)|<00nst.{[u f 1+{§ |c,,|2}}{§ 1—2
y=17 -0 M

1 v

H
} }<Const.{,ulogM+‘%[}=q.

For |x|>3}M we have |c,|<2G. We find
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1
1+ 4%’

Cr< 5 1
n\qz
)

44
. l-l—v2+ g

which proves the assertion.
For proposition 2, let us recall definition (1.2) of si(x) for w*;=(—4n,4n). The

same integral over an arbitrary w* is denoted s} (z; w*). We shall also assume ¢ suf-
ficiently small.

ProPOSITION 2. Assumptions. Let ny and pg = (no[ws], ws) be given and assume
wo & E. Let 1 be defined by

bi_1>C*(p§)=b;, (so that 1> L(e)) (10.1)

and suppose py & Fi,5. Let x belong to the middle half of w;.

Assertions. There exist wf 2 we, x belonging to the middle half of wf, and n, such that

21 = (m[o07), 07) € Fss (10.2)
and |71 5] — nolws ]| <%. (10.3)
1

Furthermore, if we set pjo=(ni[ws], wq), then

[sx. (x5 03)]| — | 8a (2; @5) |l < Const. {C* (pTo) + bi} (10.4)
for all n such that |71 [e0d]— nlewg]] < b7 %2 (10.5)
and in particular for n=mn,.

Proof. Let wy be the subinterval of wg for which O,y (we) =C*(ps) and let o’
be an arbitrary interval o’ Cw*, |w*|=4|w’|. Let P, and P be the corresponding

(1 + 3)-polynomials. The definition of (I+ 3)-polynomials implies for every such o’
|ew(@’, f—P)|<biis, m an integer.
Since |P ] <bi%, we can use Proposition 1 with
G=3b% u=bs, M=0b2, n arbitrary.
We obtain Co(w's f—P)<bi2 (I=L(c), e<g) (10.6)

for all n.

In particular for o' =wg and n=mn¢[wg], (10.6) yields

On(w(;; Po)> O*(P(’;; P —bi2=b—byya.
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Since p; ¢ Fl s by our assumption, we can use (8.4-6) with k=7+3 and find

‘9‘
Const. —————=+———>b,. 10.
nst |1[wo]—no[wo]|>bl (10.7)

We now choose n,=1; A[wg] is used in (10.6) and we obtain
|o| <Const. (C*(plo) + bis2) <1 (e<g,). (10.8)

We finally insert this improved estimate of ¢ in (10.7) and have verified (10.3). The
relation (10.2) also holds for m, =1 since 4 is an exponent in P. ; is the corresponding
primitive interval or its left neighbor so that wf2w; and contains x in its middle
half. We also observe that by Lemma 6 the polynomials P corresponding to the four
choices of o’ coincide and we have a unique P on wg.

To prove (10.4), we write
(s H=8 (s f—P)+s(-;P)
Since (10.6) holds for f— P, it follows from (5.4) and (5.5) used less than b;%? times that
|eegh (-3 f— P)— ek (- f— P)| < Const. by ¥28,.,5,

if n satisfies (10.5). Since P =@, @, satisfies (8.5) and (8.6) and since P has at most

b % terms an easy calculation shows that
| sk (-; P)— ™85 (-3 P)| < Const. {|o] + b}

for these values of n. The basic fact for this calculation is the relation

it
f dt =i sign (4) e + O((A| wg ) ™Y)-

2 x—1
The proof of proposition 2 is now complete.

ProrosiTION 3. Assumptions as in Proposition 2.
Assertions. There exist @, x belonging to the middle half of &, an integer m, m <1,
and an inleger i such that

|7 [w3] — no[ews]| < Const. b; (10.9)
P*=(A[®"], ®*) € Frss, (10.10)
C* (p*) <bn-1. (10.11)

The relations (10.10) and (10.11) imply that Q(P*;m) is defined. For this partition it
kolds that
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@ (x) < g strictly and wi — @* (x) is a union of intervals belonging to Q(p*; m). (10.12)

Furthermore, of pio is given by Proposition 2, then
C* (plo) <bm-1. (10.13)

Proof. Denote by X the set of triplets (n;w*; k) where » and k are integers and
w* an interval w;, such that
(1) w*2w and x € middle half of o*;
(2) k<! and C*(ph), defined in Prop. 2, <b;_1;
% (3) if n, is defined in Prop. 2, then |n; [ws] — n[we]| <,:Zkbj_l;
(4) ([w*], w*) € Fis.

We first show that X is not empty. If C*(plo)<b;_1, then (ny; wf;)€X. If
C*(plo) = b,_1, we define k by b, <C*(plo) <br_1. If plo€ Fris, then (m; wg; k) €X. If
Plo ¢ Fr.3, We use pjy as pg in Proposition 2 to construct a new pair (n,, w3). By (10.3)

| n2[wd] — ny [w]| < b3

so that % (3) bolds. It is now clear that (ny wi; k)€ 2.

Define (7; &*; m) of Proposition 3 as an element of X for which % is minimal.
Then (10.9) holds by (3) in the definition of ¥ since (10.3) holds and

1
> by 1< Const. b; %
=1

(10.10) follows from (4) and (10.13) is included in (2). It remains to prove (10.11)
and (10.12).

Assume first C*(p*)>b,_1 and define k by b, <C*(p*)<by_1, k<m. Since m is

minimal, (7; ®*; k)¢Z, ie. p*¢ Fr.s. We then use p* as pg in Proposition 2 and obtain
iy, @F by that construction. Since

|71 [0d] = 71 [08]] < | i1 [w0d] — Alwi]| + | Alc0d] — 71 [00d]]
<[y [&*) -~ #[@"]| + é b

H
267,
k

A

(7iy; @7; k) €Z, which again contradicts the minimality of m. We have thus proved
(10.11).
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We now know that we can use the construction Q(m) on 7* and get &* (x) =@}

and a corresponding p}. Then C*(3})>b,-; and if ®f 2w, we could use the argu-
ment above to obtain a contradiction. Hence @f Cewg strictly, and it is then easy to
see that wg—@*(x) has the stated property.

11. Proof of Theorem (c), completed

Let us again consider formula (5.3) for s;(x), « fixed not in E. We have used
the covering Q((n, w*1); k), by < OF (w*1) <by_,. Since all ¢,(wyg), [cn|>bi+3, are coeffi-
cients in Pjy.3(c; wgy), it follows from Proposition 1 and (ﬁa) in Section 8 that
(n; w*y) € F}.3. The remainders in (5.3) therefore are O(b}_,).

We write o*(x) =we and p§=(n[wg], ws). If b,_1>C*(pg)=>b;, then I<k. If
py € F.5, we can make the construction Q(ps:l) and the remainders will be O(bi,).
If ps ¢ Fivs, we construct pi and m, according to Proposition 2 and %, & and m ac-
cording to Proposition 3. We write, using Q(7*; m) only on wg,

—int —int
f . - ! :t) dt= f o e ! t(t) dt+ Hy () + Rz (2).
By the estimate (10.9) for 7% and (10.4) and (10.13), the left side integral differs in
modulus from the corresponding integral in (5.3) by O(b,_;). Since z belongs to the
middle half of &%, wi and &*(x), it follows that

|H_(x)| <2HZ(x) <20},

since x ¢ T*. A similar inequality holds for R;(x) since wg — &* (x) satisfies (10.12) so
that Const.b,_jA(r) is a majorant also of R;(x). Finally we observe that unless
|®* ()| =272~ 7!, which case is easy, since f is of degree N,

O* (@[o* ()], @ (%)) > bp-1.

We can therefore repeat the argument and obtain, as in the proof of Theorem (a),

@)= 3 (0B} +0(b,)+Ver0, e-0,

i=L(®

for all x¢ E, mE—~0, ¢>0. Since no estimates depend on N, Theorem (c) is proved.

12. Theorem (b)

As mentioned before, it seems clear that s,(x) converges a.e. also if fEL”, p>1.
We shall therefore only outline the proof of (b).
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Let N be fixed and define in this case the exceptional sets as in (c) by the in-
equalities, n <27,
T*: H*(z)>b},;

respectively, U*  A(x)>bi.

As in the proof of (a) we allow the construction Q(p*; 1), b;<C*(p*) <b;_, for all pairs
p* for which [ is such that b,_; < (log N)™%, where k is a suitable constant depending
on p (f€LP). As in the proof of (a), it follows from the Hausdorff-Young inequality that
the corresponding exceptional set has measure O(N%).

If b,_1> (logN)* we have to select certain pairs p=(n, w) for which we allow
the construction. For w,, we include all n such that |c,|>b;. The set {p}=®d;, being
defined for |w|>2727", we include p'=(n', ') |w'|=2727""" if

le(p’s Hl=b and ||w|n' —|o'[n]>bF|o] (12.1)

holds for every (n,w)€®, with w>w’; K is a suitable constant.
We now consider functions ¢(z), |z|<4n, of the form
2nn
px)=6%- el ", z€w, (n,w)ED,
where for fixed ¢ the different w’s do not intersect and are maximal with respect to
this property. From the separation (12.1) it follows that this system is “almost’ or-
thogonal. From this we obtain L? estimates by a standard interpolation. It is then
easy to define a set X* for the set ®, as we did for F; in (b).

By the above construction, we have for each (n[w*], w*)=p* with C*(p*)>b, a
p*€®,, as in Proposition 3, such that

|#{w*] — n[w*]| < Const. b X =b.

Since ¢ 8*, |87 —s,/|=0(og1l/b) and summing this for b,> (log N)™*, we obtain the
desired estimate.
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