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l .  Introduction 

I n  the  present  paper  we shall in t roduce a new me thod  to  es t imate  par t ia l  sums 

of Fourier  series. This will give quite precise results  and will in par t icular  enable us 

to  solve the  long open problem concerning convergence a.e. for functions in Z 2. We  

denote  b y  an(x) the  n th  par t ia l  sum of a funct ion / ( x ) E L i ( - g ,  7~) and  have  the fol- 

lowing theorem.  

then 

THEORV.M. (a) I /  /or some (~>0 

f~[/(x)i(l~ ])1+~ dx < OO 

sn(x)=o(loglogn),  a.e. 

(b) / /  / (x )EL' ,  l < p < 2 ,  then 

sn (x) = o (log log log n), a.e. 

(c) I /  /(x)e L 2, then sn(x) converges a.e. 

(1.1) 

Remarks. (a) This result  should be compared  wi th  Kolmogorov ' s  example  of an 

a.e. d ivergent  series in L 1. I f  we consider in detail  the  construct ion of H a r d y - R o g o -  

sinski (see [1], pp.  306-308), we see t h a t  the  following is ac tual ly  true.  Given e(n)-~0,  

n-~ oo, there  is a funct ion / E L  1 such tha t  

s~(x) # O(e(n) loglog n), a.e. 

The  best  previous result  in this case is o(log n). 

(1) This research was partially supported by NSF grant 4079 at Stanford University. 
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(b) The best previous result here is the Lit t lewood-Paley theorem (see [2], p. 166) 

s~(x)=o((logn)11~), a.e. I t  is rather obvious from the proof of (c) tha t  we actually 

have convergence a.e. in this case also, and the proof of (b) will only be sketched. 

(c) This result was conjectured by  Lusin. The best earlier result is the Kolmo- 

gorov-Seliverstov-Plessner theorem s.  (x) = o ((log n)�89 a.e. 

The proof is quite technical and it is convenient to give an outline of the idea 

behind the proof here. 

We assume ] real and extend / periodically. We then consider the modified Di- 

richlet formula 

1"4~, e-~,t/(t) 
s*(x)= |_ , . . /  ~S_~ dr, - ~ < x < e t .  (1.2) 

I f  eo is a subinterval of (-47~, 4~), we let E~(/) denote the mean value o f / o v e r  co. 

We consider a suitable disjoint covering ~={eov} of ( - 4 x ,  4~). I f  x Ewv=eo*(x), we 

write 

f,,, f,, E"~'(e-'nt/) dt s~*(x)= e-~"tl(t) d t+  
*(x) X - - t  ~ v  ~ X - - t  

f,o e-~nt/(t) -E~u(e-~'u/) dr. (1.3) -4- 

I f  x is "str ict ly" inside co*, the first term gives the main contribution. I f  co* has 

length 2g.  2 -s, s an integer, we modify in this term n to the closest integer of the 

form h. 2 ~. This gives only a small change in the value of the integral. After the 

modification and a change of variables x = 2s~, t = 2%, we have an integral of the 

same form as s* (x) but  localized to co*. We can now repeat the argument. 

To prove tha t  the second term is small, we choose ~ so tha t  the mean values 

E~,(e-~nt/) are all small, specifically of the same magnitude as S~_,/e-~ntdt. 
In  the third term, finally, we use the fact that  the numerator  has a vanishing 

integral over each ~%. In  this way we can change the first order singularity into a 

second order singularity, which is easier to handle (Lemma 5). The situation should be 

compared with the trivial formulas 

f~ dt , 1 f~ dr< -t- = xog ~ ; 5 ~- 1. 

For every combination of intervals r and integers n in formula (1.3)we get 

an exceptional set where the remainder terms are not small. In  the proof of (a), which 

will first be given in Sections 2-5, we allow in a certain sense all combinations (n, ~o*). 
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The improvement  t ha t  is needed to get  (c) is a careful examinat ion of which (n, 0)*)'s 

are necessary. The Parseval  equat ion plays a fundamenta l  role and to  get the  L ~- 

result, a sufficiently good subst i tute  has to be found. I n  Section 12 we sketch how an 

interpolat ion a rgument  gives (b). The au thor  is indebted to L. G~rding, A. Garsia, 

L. H6rmander ,  J . -P.  Kahane  and I.  Katznelson for m a n y  improvements  in the presenta- 

t ion of the proof. 

2. Some notations and lemmas 

Let  co'1 be the interval  ( - 4 ~ ,  47e) and  0)-~o, 0)oo, ~ 0)20 be the  intervals 

( - 47e, - 2~) . . . . .  (2z, 47e). We shall restrict  x to  ( - r~, ~) and 0)oo and eolo will be our 

basic intervals. We subdivide 0)oo U O)1o into 2 - 2  ~ equal intervals of lengths 2~ .  2 - ' ,  

v = 1, 2 . . . . .  The resulting intervals are f rom left to  r ight  denoted 0)~, ~" = - 2 " §  1 . . . . .  2". 

We further  define 

0)*,=0)j, U0)j+~.,, - 2 " +  1 ~<~ '<2"-  1. (2.1) 

For  the length of an interval  co we use the nota t ion ]mm[. 

Let  / be a given real funct ion with period 2~ such tha t  

~ [/(X)[ (log + I/[) 1+~ dx = 1. (2.2) 

(~> 0 is fixed and Const. will indicate numbers  only depending on (~. For  each 0)-- 

some 0)~, v ~  > 0, we define the  l~ourier t ransform 

~w[ ~ / ( x )  exp { - 2 " : d x }  dx, (2.3) Cu(0) )  ~ 

where a is a ny  real number.  Together  with the Fourier  coefficients c n (0)), n an integer, 

we consider the non:negat ive numbers  Cn(0)) defined by  

c.(0))= -x. (2.4) 
]~=--oO 

We shall also set p = (n, 0)) and use the nota t ion C(p). 

I t  will be necessary to have some estimates of c n and Cn, as n-+ c~, for func.  

tions of type  (1.1). The following form of the Hausdor f f -Young  inequali ty is sufficient. 

1 1/ I0)1 I/( )l(log + [/I)~+~dx<L (2.5) 

then there are numbers a(A) and A(A)> 0 only depending on A and ~ such that 

exp { - a C. < A. (2.6) 
- r162  
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Proo/. Except  for the fact that  no constants are mentioned, (2.6)is given in [2], 

p. 158, for Icnl instead of C~. I t  then also follows for e~!1/8 if we consider e~P~/(x), 

~2 .  To obtain (2.6) from this result we observe that  

1 
C~ ~< Const sup ]c~+~/al. 

�9 . (1+  I~l)~ 

This means that,  q = 1/(1 + ~), 

exp { -- b C~ q} -<- ~ exp { - a I c~+.131 -q (I + I~ I) iq} (2.7) 

for some other constant b>  0. Summing (2.7) with respect to n and observing that  

for l e ] < 2 ~  

exp{ --a  [c]-ql + [,I) ~'} <A1(2 ) exp{ -aJe]-q} ,  

we obtain (2.6). 

With the intervals 0)~,, defined by (2.1), we associate the analogous numbers 

Cn (co~,) = max Cn (0)') (2.8) 
o9' 

where 0)' ranges over the four subintervals r of 0)*~. If 0)~ = o)'1, C* is simply 

Cn(0)0o). We also use the notations p * = ( n ,  eo*) and C*(p*). 

Finally, given an integer n and an interval 0)= 0)s,, we expand n to the basis 2 

n =  ~ .~2  f, ~=O,  1, 
t~>0 

and define n[0)] = 2 -~ ~ e~ 2t (2.9) 

If 0)' is related to 0)* as in (2.8), we also write n[w*] for n[0)']. 

The reason for considering C,(0)) together with c~(0)) is seen from the following 

lemma. 

LEM~X 2. For any integer n and any 0)=~oj, we have the inequality 

]cn ~-~ (0))] < Const. C~c~(0)). 

I t  will be convenient for future reference to collect the method of proof of Lemma 2 

in a special lemma. 

LEMMA 3. Let q~(t)6C2(0)), [0)1=2~.2-~. Then we can represent qJ(t) 

~(t) = ~ y~ exp { - i 2" a-1]ut}, tea) ,  (2.10) 

where (1 +/~2)lY,] ~< Const. (max ]~1 + 2-2" max I~" (t)[). (2.11) 
a)  co 
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Proo/ o/ Lemma 3. B y  a change of variables,  t = 2  -~ .v ,  we see t ha t  we m a y  

assume ~o = (0, 2z~). I f  we de termine  a polynomial  with the  same der ivat ives  of order 

~< 2 as ~(t) a t  t = 0 and vanishing with these der ivat ives  a t  t = -  2z~, and  do analo- 

gously for (2g, 4~e), we realize thas  we can ex tend  ~ to ( - 2 g ,  4z) and  then  period- 

ically so t ha t  m a x  IT[ + m a x  I T"I increases a t  mos t  b y  a fixed factor.  B y  par t ia l  in- 

tegrat ions we see t ha t  (2.11) holds for the  expansion of this function. 

Proo/ o/ Lemma 2. We app ly  L e m m a  3 to the  funct ion e -~t ,  f l = n - n [ e o ]  2 ~, 

co=eo~, so t h a t  I ? s [~<Cons t . ( l+#2 )  -1. We  find 

1 f~e_in ~/(t) dt= 1 c.2-. = [JI fo, dt = 7 (o,). 

The es t imate  of 7s and the  definition (2.4) p rove  the  lemma.  

The es t imat ions  of the  remainder  t e rms  of ( 1 . 3 ) d e p e n d  on the  following two 

lemmas,  the  first  of which is of well-known type .  

LEMMA 4. Let E(t) be defined on an interval w* and assume ]E(t)l <~c. Let ax denote 

subintervals o/ co* containing x inside their middle halves. We define (as principal values) 

the maximal Hilbert trans/orm 

Let T be the set T = { x l H * ( x ) > a ,  xeeo* }. 

Then ( a) mT <~ Const. exp - Const. c l e~ 

Proo/. B y  a change of scale we m a y  assume co*=(0 ,1)  and e = l .  Le t  u(z) be 

harmonic  in y > 0 ,  wi th  bounda ry  v a l u e s = E ( x )  on (0, 1) and  = 0  otherwise. Le t  v be 

the conjugate  of u, v ( c ~ ) = 0 .  I t  is easy to  see t h a t  (see [1], p. 103) 

H* (x) <. Const. sup I v(x + iy) l + Const. 
Y>0 

For  k<x~/2 we have  (see [1], p. 254) 

f~ l e  ~lv(x+i~)l < Const., dx 

and applying the  H a r d y - L i t t l e w c o d  max ima l  theorem ([1], p. 155) to exp { + 1 ki (u + iv)}, 

which is in L 2, L e m m a  4 follows. 

9*t 
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LEMMi 5. 7Let (c%} be a disjoint covering o/ an interval w* and let e% have mid. 

point tk and length Ok. We de/ine the /unction 

A(x) X E 
( x -  t~) ~ + ~ '  

and the set U = (xIh(x)  > M, x e co*}. 

Then mU <~ Const. exp ( - Const. M) [w* [. 

Proo/. By a change of scale we may  again assume co*= (0, 1). Let  g(x)>~O be 

integrable and have its support in (0, 1) and let g(x+ iy), y > 0 ,  be the corresponding 

harmonic function in y >  0. Then 

s ; ~(x) g(x) dx = ~ Y. ~ g(t~ + i ~ )  < Const. sup g(x + iy) dx, 
k y > 0  

since by  Harnack 's  inequality Okg(tk + i~k) <~ 3 ~ k  g(t + i(Sk) dr. By the theorem on maximal 

functions, [1], p. 155, this last integral is bounded if 

f : g  ~< 2. (2.12) log + gdx 

Let # be the measure of the set where A ( x ) > M ,  xe(0,1), and define 

on this set and 0 otherwise. This function satisfies (2.12) and hence 

M 
- -  ~< Const., 

1 
log - 

which proves Lemma 5. 

3. Construction of the exceptional set 

We start  from a large number  ~ and an integer N. Depending on ~, we shall 

determine a number  ~1 and a set E~(~, Jr1) such tha t  outside EN the partial sums sn(x), 

n ~< 2 N, satisfy Isn(x) l <~ Const. ~1~ log N. In  this section we shall construct EN and in 

later sections show tha t  EN has the desired properties. EN will consist of four dif- 

ferent parts S, T, U, V, which will be constructed in the steps (A)-(E) below. 
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(A) We first consider the set of all o)= o)j ,c  ( -  2~, 2ze) such that  

foll(  )l (l~ + (3.1) 

We then define S to be the union of all intervals 

S: o)j+k.,, b = 0, + 1, + 2, _ 3, o)~ satisfies (3.1). 

Selecting successively suitable intervals o)~ for v = 0 ,  1,2 . . . .  , it is easy to see that  

(log+ ltl) (3.2) 

We observe certain properties of the set S. 

(A~) S does not depend on hr. 

(A~) If  (3.1) does not hold, then (1>e)  Ic~(o))[<2t and 

o~ 1 102. (3.3) C~(o))~<21 ~ _ ~ l + , u  ~< 

(Ay) Given (J0, %), - 1  ~< %, recaU the definition of o)*= o)~,,~ in (2.1) and of C* (o)*) 

in (2.8). If  o)j .... ~:S, (3.1) holds also for the neighboring intervals with v = % + 1  and 

it follows from (3.3) tha t  
C*IO) *~ ~ j <  102. 

(B) Again, given o)*-- o)*jo.,o, - 1  ~<%~<N-1, and an arbitrary, nonnegative in- 

teger n, we shall define a partition ~n(o)*) of o)*. To simplify our notations we assume 

co*= ( - 4 g ,  47e), but the general case consists simply in a change of scale. 

An interval o)=o)~, % + 1 = 0 ~ < v ~ < 2 7 - 1 ,  belongs to ~n(o)*) if 

(B~) ~.c~(o)) < 20*(o)*); 
(B~) the condition (B~)holds  with o)j~ replaced by any o)k~, o)j~ c eo~ co)*,  but  

not for a certain o)~.,+lco)j,. 

(B~') If  o ) j ,~o)~co)* ,  /c<], then (B:r and (B~) do not hold for o)k~. 

(By) f~.(o)*) contains all o)m not included in the o)~ defined by B (~r ~, ~'). 

Loosely speaking, the definition means that  we subdivide o)* into as small inter- 

vals as possible so that  (Ba) holds and ~ < h  r. 

(C) As a preparation for the construction of the sets T and U, we shall make a 

careful definition of the interval o)*(x) in (1.3) so that  x is "strict ly" inside o)*(x). 

Let  x belong to the middle half of co* and consider the set of intervals c5" which 

are obtained by taking every o)~Ef],(o)*) and adjoining o)s-l., or o)j+l.,. Among these 
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intervals c5" there are those which contain x in their middle half. We then define 

co*(x), corresponding to ~n(oJ*) and the point x as such an interval e5* for which ]~5" I 

is as large as possible. We observe that  

1~* (z)[ < �89 I~*l. (3.4) 

Furthermore, r has the following properties: 

(C~) x belongs to the middle half of co*(x). 

(C~) eo*(x) is a union of intervals eo~E~)n(eo*) since 1(5" I was assumed maximal  

(Cy) If  co* (x) = ~o~ U oJs~l,., eo = ~o~ E ~ .  (co*), it follows from (B~), (B~) and (C~) that  

O,E~,I (~o~), O,c~,1(o~j~.,) < 2 C*(o~*). 

(Ca) The complement of co* (x) with respect to co* is by (C~) the union of certain 

intervals in ~n(eo*). For each such interval a, the distance from x to a exceeds half 

the length of a. 

We now define H n (x) = f En (0 dr, 
J~ *-~*(x) X - -  t 

where (note %= - 1) 

'L E,(t) = ~ ]  / (x)e-t '~dx,  teo~e~.(oo*). (3.5) 

By the construction of ~n(eo*) and Lemma 2, I En(t)l <~ Const. Cn(eo* *). As in Lemma 4, 

we define the maximal transform H* (x) of En (t) and the set T ,  of points x E o)* such that  

Tn: H* (x) > 2x C* (co*) q log N, 

where p is a number, 0 < p < 0/(1 + ~), fixed from here on. By Lemma 4, 

m T  n < C o n s t .  e x p  { - -  C o n s t .  a I C*n ((D*) - l + g  log N} I *l. 

We also observe that I H.(~)I < 2H* (x). 

(D) With the same definition of w*(x) we now set 

Rn(x) = R(x) = I e-'n~l(t) - En(t) dr, (3.6) 
d o~*-~*(x) X -- t 

where again we have normalized the situation to ~o *= ( - 4 g ,  4~). If  cok denote the 

intervals in ~n(eo*), oJ*-w*(x) is by (Ca) the union of a certain subset (x) of the ~ok's. 
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Denote by ~k the lengths and by t~ the midpoints of the o~k's and define A(x) as in 

Lemma 5. We rewrite the formula (3.6), using the fact that  the numerator has 

vanishing integral over each eok, 

~f,,, t-t, e-"'/(t) at- ~ f,,, t-t~ R ( x )  = ~ (x  - t)  (x  - tk) k (x  - t )  (x  - tk) E ~  (t)  dr .  (3.7) 

where, again observing (Ca), 

e -  ~,~t t - tk ( x -  t) ( x -  tk) e-'Z"nt'~ 

By Lemma 3, ~(t) can be written 

~(0: ~ 7~ e~p { - 2 ~ 3 -1 ~ t } ,  redo, (3.8) 

Const. (~ 
(1 + ~ )  [ ( x -  tk) ~ + ~]" 

We multiply (3.8) by /(t) and integrate over ink. If  we observe (B~), we obtain after 

summation over all k the desired bound so that  

JR(x) I ~< Const. C* (co*) A(x). (3.9) 

Let us now define U~(co*, 21, N ) as the set where 

Un: A(x) > 21C* (o)*) Q-1 log h r. 

I t  follows from (3.9) and Lemma 5 that  

mV~ <~ Const. [w* I exp { - Const. 21 C* (~o*) -I+Q log hr}. (3.10) 

Observe that  outside T~ U V~, [H~(x) I and [Rn(x)[ are less than Const. 21C* (eo*)qlog hr. 

(E) Finally, let V, not depending on hr, be the set, where 

Ifo'"' I V: sup ~ dt > 2 ,  
(Yz x 

10- -  662900. Acta mathematica. 116. I m p r i m ~  le 14 juin 1966. 

Using (Ca) and I E~(t)[ ~< Const. * * C~(eo ), we see that  the last sum is dominated by 

Const. C*~teo*~j A(x). 

We shall now prove that  also the first sum of (3.7)has this bound and shall use 

Lemma 3. We write, if t e eo = eok, I ,l = 2g. 2-',  
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ax being defined as in Lemma 4. 

depend on [ and ~-~0, 21-~ + ~ (see [1], p. 279). 

These definitions made, the exceptional set EN(2 , 21) is defined by 

E~= (S U V) U U (T.(o~*) U U.(o~*)), 
n ,  co* 

where ~o* runs over all intervals oJ~,~: S for which - 1  ~< v~<hr-1.  

As is well known m V ~ ( 2 1 )  , where ~1 does not 

(3.11) 

4. Estimate of the exceptional set 

We shall here estimate the measure of E~ and must now determine the relation 

between the numbers 2 and 21. 

Let us recall that  by (Ay) the numbers C*(eo*) associated with (3.11)are < 102. 

Furthermore, by (2.8) C*(oJ*)= Cn(og') for a certain subintervval co' of co*. For a fixed 

such a relation holds for at most  two and 1 '1=41 '1. Xt therefore follows 

from (2.6) and the definition of S in (A) that  

1 
~ e x p ( - a C * ( o ) * )  -~} 2~2-8<A(2),  q= 1 §  (4.1) 
(S) 

where is) indicates that  the summation runs over all pairs (n, w*) used in the defi- 

nition of E N for which Ico*1=292 -8, -2~<s~<hr -2 .  Summing over s we get 

exp { - aC* (eo*)-q} ' ] w* l <Const. A(2) h r. (4.2) 
n ,  co* 

In (4.2) we now only consider the set Qo of those pairs (n, co*) for which 

Q0: l~<C*(o~*) (<102).  

I t  follows that  ~ I co* I -<< Coast. A(2) hr. (4.3) 
Qo 

Disregarding the set (S U V), it follows from the estimates of mT,~ and mU, above 

that  only at most the fraction 

Const. exp ( -Const .  21 (102) -1 log N} 

of each interval m* that  corresponds to Qo can belong to EN. Hence choosing 21 suffi- 

ciently large as a function of 2, we can make this fraction <Coast.  N -a. (4.3) then 

implies that  the corresponding part of EN has measure <Const. A(2)N -2. 

Similarly, let Q~+I be the set of (n, o~*) for which 

2 -t-1 ~ C* co* n( ) <2-t ,  i = 0 , 1 , 2  . . . . .  
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As above, ~ I C~ I ~< Const. A (4) exp (2a 2 q'} N. (4.4) 
Q~+I 

The corresponding fractions are at  most 

Const. exp { - Const. 212 <l-Q) t log N}. 

We observe that  1 - ~  > q. Hence it follows that  if we take the above fraction of each 

term in (4.4) and sum over i, the result will for 41 >~41(4) be less than N -2. This 

implies 
mEN <~ m(S U V) + Const. A(4) N -~. 

Hence, since S and V are independent of N, we obtain 

m < e(4, 4~) + eonst. A(4) N~ ~, (4.5) 
N 

so tha t  the measure of E = [.JN~E~v iS less than a prescribed e if 4, 41 and N o are 

larger than certain bounds, which only depend on e and (~. 

5. Proof of  Theorem (a)  

As in the introduction, we assume / real with the integral (1.1) equal 1 and ex- 

tend / periodically. We first compare the Dirichlet formula for the nth partial sum, 

1 f" sin (n + �89 (x - t) sn(x)=~ j_. ; ~-~ l(t)dt, 
s m ~  

2 

1 
with tn(x) = ~ (e'n" s * (x) - e-'n" s*~ (x)), 

where s*(x) is defined by (1.2). I t  is very easy to see that  uniformly for [ x l < g  

I sa (x)[ ~< Const. ]tn (x) I + o(1), n-~ oo. (5.1) 

We are going to prove that  outside the set E of measure < e constructed in 

Section 4 
Is* (x)] ~< Const. 414 log log n, n/> 2 N~ (5.2) 

By (5.1) this implies the same relation for s,(x) .  To obtain the o(loglogn) of the 

theorem, we simply consider / ( x ) - T ( x )  which has a small integral (1.1), if the trigo- 

nometric polynomial T is suitable, and observe that  the bounds on 4, 41 and N 0 only 

depend on (~ and e. 
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Let us now consider 0 < n < 2 N, 2V >t/V0, and a fixed x outside EN. If  we can prove 

Is*(x)l ~<Const. 2i 2 logh  r, the proof is complete. In  formula (1.3) we choose as ~ the 

covering f ~  ( -  4~, 4re) defined by (B~)-(B~') in Section 3. The interval o9" (x) is defined 

in (C). Using the previous notations, (1.3) becomes 

s* (x) = f ~  e - ' ' / ( t )  dt + Hn(x ) + R . (x ) .  (5.3) 
*(x) X - -  t 

Since x ~EN, the bounds Const. 2 1 C* ( -  4~, 4~)~log N are valid for the two remainder 

terms. 

In  the integral (5.3) we are now going to replace n by the number n i = n[~o'] 2 "+1 

if o)*(x) =w~, and IoYl=2~2 -'-~. Multiplying the integral in (5.3) by e 'm', m = n - n i ,  

and subtracting the integral with n replaced by n a, we obtain the difference 

f ~ e *m(~-~ - 1 
e-~"'~ l(t) dr. (5.4) 

*(x) X --  t 

If  we observe that  C~t~](co)~<2C*(-4~, 4~) for the two intervals constituting w*(x), 

we see that  we can estimate (5.4) by  Lemma 3 applied to the function u- i (e  t'n"- 1). 

We find 7~ = O(2"/z -2) since ]m] < 2 "+l, and for (5.4) we obtain the estimate 

Const. G* ( - 4g, 4~). (5.5) 

This is smaller than the previous bound if ~r >/Ni (2) and can be included in that  term. 

The relation (5.3) now becomes 

e-t2~+ in ICe,it /. 
l(t) 8 :  (X) = e i0* / d $  ~- 0 ( ~  1 log N" ~0), 

,1o~* X - - t  

where co*= co* ix)= w~ for a certain eo~ and where 

~o = c :  ( -  4m 4~).. (5.6) 

0(" ) has the same dependence as the notion Const. Here, the integral over co* is of 

exactly the same type as the original integral with the fundamental difference tha t  

by  the property (B~) of f~, and the definition (2.8) of C*m. 

For the new interval oJ* we construct the covering f~,t~(~o*), get a similar re- 

mainder term since x is so chosen that  the estimates for the remainder terms are valid 
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for all w* that  come into account. We also get a new number cq~>2e~r The process 

cannot stop until we reach an interval (o*(x)=I  of length 2 x . 2  -~+1, in which case 

n[ol] = 0 since n < 2 N. Hence 

s*(x)=e~~ ~(()t d r + -  (=0 ~ 0(21 l~165 ~t)' 

where ~+1 > 2Q and ~ < 102. (5.7) 

The first integral is bounded by  Const. 21 since x(~ V and since x belongs to the 

middle half of I .  Since ~(~ grow exponentially by (5.7) and are bounded above, we 

obtain the desired bound O(2121og!V), and the proof is complete. 

6. Summary of proof of (c) 

The result for L ~ is proved by analyzing carefully the weak point in the pre= 

ceding proof. This is the fact that  we have allowed all combinations p * =  (n, co*)when 

we estimate the size of the exceptional set in (4.2). The factor N that  is introduced 

in this way must then be compensated by the factor log N in the exponent. How- 

ever, in the proof itself only certain special combinations (n, co* (x)) will occur. Further- 

more, in changing n to the closest nl, we obtain the very small error C* (n; ( - 4 x ,  4z~)). 

Obviously, we can allow a larger gap between n and n 1, i.e., restrict the choice of the 

new combination (nl, o)*(x)). The basis for the construction of those pairs p*= (n, co*) 
that  may  be used during the proof is certain trigonometric polynomials Pk(x, o~). They 

will be constructed in the next  section. I t  will also be convenient to modify the defi- 

nition of the coverings ~ ,  and we m u s t  add new exceptional points. This is done in 

Sections 7, 8 and 9, and the proof of (c) is completed in Sections 10 and 11. 

7. The polynomials P~(x, to) 

Denote by bk the numbers 2 -~,  k=O, 1 . . . . .  Let ](x) be real and periodic and 

assume 

~2 = f :  [/(x)is dx ~< 1. (7.1) 

Denote by  a~o those integral Fourier coefficients cn, n = 2~o, of ] over eoto which are 

of absolute value ~> bk. We define 

t~pO z Pk(x;(o~o)=~at,o e , ]---- -- 1,0, 1,2. 
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On each of the two intervals OZl constituting co~0, we consider similarly those Fourier 

coefficients (now corresponding to even integers) o f / i  x) - Pk (x; coj0) which are of modu- 

lus >/bk. They are denoted %1, corresponding to ~t m, and will be called primitive for 

(.Oll. W e  d e f i n e  

Pn (x; cotl) = -Pn (x; co~0) + ~ a.1 e %i'- 

I t  is clear how the construction proceeds, and we obtain the polynomials 

Pn(x; co)= 2. a,,e , (7.2) 
(~) 

where the summation runs over a certain set (r of pairs (a~, 2~). By  the Parseval 

relation we have, summed over all co, I col = 2re2-v, 

II(z)-pn(~;co)12dx+ 5 51a,ol~lcol = II(~)l~dx. 
r (r - 4 : z  

Hence if we define by an infinite sum where (P): a~ primitive for co, holds 

An ix) = ~ [ao 12, 
3 ~ E a )  

i t  follows tha t  2[ao, l~lcol = Ak(x)dx <4e~<4. i7.3) 
(P) - 4~ 

Denote by  Xn the set Xn= (x[An(x) > b;l} 

so that  mXn<~ 4bk. To every co c Xn we associate its three right and left neighbors of 

equal length and define X~ as the union of all such intervals so that  

reX* <~ 7 mXn <~ 28bn. (7.4) 

I f  co~:X~, then Pn (x; co) has at most b~ 3 terms and 

]Pn (x; co) l ~ ~ I a~l ~< b~ u. (7.5) 
(r 

In analogy with Section 3 we shall also consider the set S of points x included 

in an interval co such that  

(7 8 CO 

Such co's together with their six neighbors are denoted by S*. Then 

mS* <~ 28e. i7.7) 

Denote by  Mk the set of co q~ iXk 0 S). 
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B. Allowed pairs p* 

We first consider the set F~ of pairs p = (n, co), o~EM~, for which Pk(x; co) con- 

tains a primitive term ad  ax, ~[o~]=n. By (7.3) 

< 4b;  2. (8.1) 
Ft 

We are now going to define in (Fa) and (Fb) below a larger set i ~  by  associating 

with each p e Fk a number of elements ~. Let  P defined in (7.2) be the k-polynomial 

corresponding to co. 

(Fa) If  p = (n, ~o) e Fk, then Pk contains every ~ = (fi, ~5) such that  ~5 e Mk and 

where ~ is an arbitrary exponent in P(x; w). 

The condition means that  we include all neighbors within b; 1~ of all exponents 

in P not only on o~ but  also on sufficiently large subintervals o5 of w. 

The number of possibilities for fi is ~< Const. b;Sb-~ 1~ log b; 1. 

(Fb) Again let p = (n, ~o) e Fk and consider ~ = (~, eS), ~5 E Mk, e5 c co, and the poly- 

nomial P(x, co). Then, by  definition, ~E i~k if there are two different exponents 2~ 

and 2~, in P such that  

~ and o 

To estimate the number of such pairs ~3, we first observe that  P contains < b~ s 

exponents so that  the number of pairs (~ ,  X~) is < b; 6. For each fixed pair, the first 

inequality holds for ~< Const. log b; x choices of lengths of t5 and the second for < 2b~ 1~ 

different fi's. This implies that ,  for /ixed p E F~, 

< Const. b;'l ol, 
(~b) 

and the same inequality clearly also holds for (l~a). 

If  we also observe (8.1), we find 

1~] < C o n s t .  b ;  19. (8 .3)  
(Fk) 

The above construction has the following consequence: i/ p = (n, co)~ 1~, then 

P(x, eo) = Qo (x, o~) + (21 (x, co), (8.4) 
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where the polynomials Q~ saris]y: 

Qo(x) = q e a~ + O(b~), xE co, (8.5) 

where ~ is constant and ) ,=some 2~,; /urther [~14bg 2 by (7.5); 

Ql (x) contains those ~,, /or which I n - ~ [ o ) ] l  ~> b; 1~ (8.6) 

Since p r ~k, the exponents in Qo satisfy by (Fb) [ 2 ~ -  2~,1 [cSl < b~ ~ which gives (8.5). 

If  Q0 only contains one exponent, (8.5) is obvious. 

With the primitive elements we also associate an exceptional set. If  p = (n, o)) 

gives a primitive element, the set Y* contains two intervals of lengths 2b~ [o)l, sym- 

metric around the endpoints of o). By (8.1) 

mY* <~ 16bk. (8.7) 

This set is of a purely technical nature and is introduced to secure the validity 

of Lemma 6 below. 

With each ~ = (~, ~5) we associate the two intervals o)*, [o)*I = 41~5[, which con- 

tain ~5. The set of such combinations (n, o)*)=p*, n = ~ ,  for ~E /~ ,  is denoted F* and 

the relation (8.3) becomes 

Io)*l ~< Const. b; 19. (8.8) 

Finally we shall need the following lemma. 

L~.MMA 6. Let p*=(n,o)*) be given and assume p*~F~. Assume that /or each 

o)' c o)*, 4]o)' I = I o)*[, o)' ~: Xk U Y~. We [urther assume that /or a certain choice o)o o/o)'  

the corresponding polynomial po contains an exponent ~o such that ]2~ 

Then the /our polynomials P corresponding to di]/erent choices o[ o)' are all identical. 

Proof. Let o)' be another choice and assume that  the corresponding polynomial 

does not contain ~o. This exponent was primitive for a certain o)1 D o)o. By the con- 

struction (Fa), Io)11 >~ b; 1~ Io)'[ because the opposite inequality would imply (n, o)o) G P~, 

i.e., p* E F*. Since o)l~bo)', it then follows that  o)o C Y* against our assumption. 

In the same way it then also follows from (Fa) that  none of the four polyno- 

mials P(x, co') can contain exponentials that  are primitive for intervals o)~Do)', [o)2I < 

b~l~ and that  every primitive interval o) 2 for one o)' must contain the three 

others. 
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9. The coverings 2 (p*; l) and the exeeptlonal set 

Consider a pair p*=  (n, co*). If  the following conditon f2(l) 

f2(l): p* e F~'+8, C* (p*) < bl-1, 

holds, we construct the partition s l) in analogy with Section 3 (B). The condition 

(B:r is simply changed to 

(B*u) C(n[eo]; m) < bl-1. 

N is here arbitrary but fixed, and the main point in the proof is to make the esti- 

mates independent of ~V. We may take / as a trigonometric polynomial of degree 2V. 

As in (C) and (D) of Section 3, we form the functions H*(x) and A(x) corre- 

sponding to the partition and define the exceptional sets 

T* (p*): H* (x) > b~-l, U* (p*): A(x) > 5[)i, 
and as there 

re(T* (p*) t) U* (p*)) < Const. exp ( - Const. b[)l) Ira* [. (9.1) 

We next observe that  for o~*~=S*, C*(p*)<bL will automatically hold where 

L= L(e)---, ~ ,  e-~0. We shall therefore only consider l>~L and define 

T*= U UT*(p*)  
l=L  ~(l) 

and similarly for U*. Since s defines a subset of F~'+a, we have by 0.1) and (8.8) 

m(T* U V*) < Const. ~ b 9  'le exp ( - Const. b;�89 (9.2) 

oo * oo * 

Similarly, we define X* --- UXk, :Y* = U Yk, 
L L 

and recall the definition of V in (E) of Section 3, here with 21 = e  �89 We then define 

the exceptional set 
E =  S* U T* U U* U X* U Y*UV. 

The results (7.7), (8.7) and (9.2) show that  

mE~(e )~O,  ~-~0, 

and there is no reference to N in the estimate of E. I t  now remains to prove that  

every partial sum of order < N is small outside E. 
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lO. Proof of Theorem (c). Three propositions 

To get a bet ter  organization of the proof, we isolate certain parts  of it  in propo- 

sitions 1-3 in this section and complete the proof in Section 11. Proposition 1 is purely 

technical and is needed because we have used integers relatively each co in the defini- 

tion of the polynomials P. We must  then deduce estimates for fractional Fourier trans- 

forms. Proposition 2 gives an estimate of the change in s*(x) when we move n to 

another position n I for which we have an estimate of the remainder terms. Proposi- 

tion 3 finally shows how tha t  estimate for a pair P~ = (no, co'~) can be obtained from 

the corresponding expression for (~,~5") where tB*Dco~. This fact is the crucial one; 

it is here essential tha t  H*(x) is a maximal  Hilbert  transform and tha t  A(x)has  posi- 

tive terms. 

In  the sequel we shall consider x fixed outside E. 

P~OPOSITION 1. Let g(t)EL~(o~ *) and let n be given. We assume 

,,,lg(t)12 dt< ~lo~ *l 

and /or all m'ceo*,  1~*1=41~'1, 

Then 

[ m - n l < M .  

�9 { C,~ (w ; g) ~< Const. /~ log M + G 

Then 

Proo]. Take a fixed to' and normalize to r (0, 2zt) and n = 0 .  Let  

e t~'t ,'~ ~ o~ e t~t, 0 < t < 2:~. 
--@r 

2 
I~l<l~-vl+ 1 

and c~(to') = ~. c ,~ .  

I f  I :~] ~< �89 M, we have 

,c~(~'), < Const. {~ ~ 1+ {~,c,'~}' {,~ ~} ' } 

For I~I~>�89 we have le~l<2a. We find 

Const. =q.  
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1 ~ 1 
c~ .~q N4-j~, + 4o  -oo /~ l + r  3' 

which proves the assertion. 

For proposition 2, let us recall definition (1.2) of s~ (x) for co*l = ( -4Jr ,  4~t). The 

same integral over an arbitrary co* is denoted s* (x; co*). We shall also assume e suf- 

ficiently small. 

PROPOSITIO~r 2. Assumptions. Let no and p* = (no[W~], co~) be given and assume 

e% dg E. .Let l be de/ined by 

bz_~>C*(p~)>~bz (so that l>~L(e)) (10.1) 

and suppose p~ * $Fz+8. Let x belong to the middle hall o/ co~. 

Assertions. There exist co~ ~ co~, x belonging to the middle hal/o/eo~, and n 1 such that 

and 

P l  = (h i  [col ],  (~I)  E - ~  +8 

[n~ I c o n ' ]  - -  no[coZ] I < 

(10.2) 

(10.3) 

.Furthermore, i/  we set p~o = (nl [co~'], co~'), then 

]]s*, (x; co~)[ -- [sn (x; co~)[ < Const. {C* (P*o) + bz} (10.4) 

/or all n such that I n l [co~]-  n[co~]] < b ;  3'2 (10.5) 

and in particular /or n = no. 

Proo[. Let, 090 be the subinterval of co~ for which Cn~ (wo)= O*(p~) and let co" 

be an arbitrary interval co' c co*, leo* ] = 41~~ Let Po and P be the corresponding 

(1 + 3)-polynomials. The definition of (l+ 3)-polynomials implies for every such co' 

ICm( c o ' , / ' P ) I  <bz+3, m an integer. 

Since IPl<bi-+~3, we can use Proposition 1 with 

G=3b/+~3, ~=bz+3, M-~b -1~ z+a, n arbitrary. 

We obtain C , ( eo ' ; / -P )<bz+2  ( l~L(e) ,  e<e0) 

for all n. 

In particular for co'=co~ and n=no[eO~], (10.6) yields 

(lO.6) 

C. (coo; Po) 1> o* (pg; l) - b~§ >/b, - bz+2. 
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Since * * Po ~F,+a by  our assumption, we can use (8.4-6) with k = l + 3  and find 

We now choose n 1 =~; ~[eo0] is used in (10.6) and we obtain 

19[ ~< Const. (C*(p~o) + bz+2) < 1 (e < el). (10.8) 

We finally insert this improved estimate of 9 in (10.7) and have verified (10.3). The 

relation (10.2) also holds for n 1 = ;L since 2 is an exponent in P. eo~ is the corresponding 

primitive interval or its left neighbor so that  co~_D eo~ and contains x in its middle 

half. We also observe that  by Lemma 6 the polynomials P corresponding to the four 

choices of co' coincide and we have a unique P on co~. 

To prove (10.4), we write 

s ~ ( ' ; / ) = s * ( ' ; / - P ) + s * ( ' ; P ) .  

Since (10.6) holds for ] - P ,  it follows from (5.4) and (5.5) used less than b[ 3/2 times that  

e~'~ s *n ( " ; /t - P~/ - e~'~ ~*~,~',' " ] - P )  [ < Const.  b[  8/~ bz + ~ , 

if n satisfies (10.5). Since P = Q o + Q 1  satisfies (8.5) and (8.6)and since P has at most 

bi-+s3 terms an easy calculation shows that  

]e'~ s * ( . ; P )  - e '~'~ sn,* ,t . ; P)  [ < Const.  {[el + bz } 

for these values of n. The basic fact for this calculation is the relation 

foJ e-|~t .* ~ dt = ~i sign (~) e -a~ + O((~t [ co~ [)-a). 

The proof of proposition 2 is now complete. 

P~OrOSZTION 3. Assum p t i ons  as in Proposi t ion 2. 

Assertions.  There exist  CO, x belonging to the middle hall o/ Co*, an integer m,  m <~ l, 

and  an integer ~ such that 

[fi [oJ~] - no [eo~] I ~< Const. b[ 1, 

~* = ( ~ [ c o * ] ,  - ,  , ~o )EFm+3, 

C* (~*) < bm-1. 

(10.9) 

(10.10) 

(10.11) 

The  relations (10.10) and (10.11) i m p l y  that ~(~*;m) is defined. Fo r  this part i t ion it 

holds that 
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CO* (x) c eo~ strictly and w~ - Co* (x) is a union o/intervals belonging to ~(~*; m). (10.12) 

Furthermore, i /P*o is given by Proposition 2, then 

C* (P~o) < b~-l. (10.13) 

(D 

Pro@ Denote by  Y, the set of triplets (n; co*; k) where n and k are integers and 

an interval co~, such that 

t 
(1) r o~ and xE middie half of co*; 

(2) k<~l and C*(p~o), defined in Prop. 2, <bk-1; 

(3) if n I is defined in Prop. 2, then I n l [ o ~ ] -  n[o~][ ~ < ~. bj-~; 
l = k  

(4) (n[~*], o~*) e F*+8. 

We first show that  2] is not empty. If  C*(p~o)<bz-1, then (nl; top; l)E Y,. If  

C*(p*o)>~bz_t, we define k by  bk<~C*(p~o)<bk_l. I f  p*0eF~+8, then (n~; m~;k)q~.  If  

P*0 * Fk+8, we use P~'0 as p~ in Proposition 2 to construct a new pair (n2, * eoa). By  (10.3) 

I na [m~] - n I [eo~] I < b; 1 

so that  E (3) holds. I t  is now clear that  (n~; r k)e  Y,. 

Define (fi; CO*; m) of  Proposition 3 as an element of Z for which k is minimal. 

Then (10.9) holds by (3) in the definition of Y~ since (10.3) holds and 

l 
b; 1 < Const. b~ 1. 

t=1 

(10.10) follows from (4) and (10.13) is included in (2). I t  remains to prove (10.11) 

and (10.12). 
Assume first C*(~*)>~bm_l and define k by bk~<C*(~*)<b~_1, k < m .  Since m is 

minimal, (~; CO*; k) ~ Z, i.e. ~* F* ~* k+a. We then use as p~ in Proposition 2 and obtain 

~i, CO~ by that  construction. Since 

I~1 [~o~] - n, [ ~ ] 1  < I~1 [ ~ ]  - ~[~*] 1 + I ~ [ ~ ]  - nl [~*]1 
l 

< l a l r ~ * ]  - ~[co*31 + Y 5; 1 
m 

l 
<Y~b; ~, 

(nl; ~5"; k)E Z, which again contradicts the minimality of m. We have thus proved 

(10.11). 
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We now know that  we can use the construction ~(m) on ~* and get r (x)= r 

and a corresponding ~ .  Then C*(~)>~bz-1 and if r we could use the argu- 

ment above to obtain a contradiction. Hence iS* c o)~ strictly, and it is then easy to 

see that  o)~-eS*(x) has the stated property. 

11. Proof of Theorem (c), completed 

Let us again consider formula (5.3) for s* (x), x fixed not in E. We have used 

the covering ~((n,o)*_l);k), -< * * bk--~Cn(o)-l) <bk-1. Since all cn(o)oo), [c,,[ ~>bk+3, are coeffi- 

cients in Pk+3(x; r it follows from Proposition 1 and (Fa) in Section 8 that  

(n; * "~ F* o)-1) e ~+3. The remainders in (5.3) therefore are O(b~-l). 
We write o)*(x)=o)~ and p~=(n[o)~'],o)~). If b~_l>C*(p~)>~b~, then l<k. If  

P~ q $'*+3, we can make the construction ~(p~: l) and the remainders will be O(b~_l). 
If  P0 r ~+a, we construct p~' and n 1 according to Proposition 2 and ~, r and m ac- 

cording to Proposition 3. We write, using ~(~*;m) only on o)~, 

�9 x - - $  *r x - - $  

By the estimate (10.9) for ~ and (10.4) and (10.13), the left side integral differs in 

modulus from the corresponding integral in (5.3) by O(ba-1). Since x belongs to the 

middle half of e5*, o)~ and ~*(x), it follows that  

< 2 H* < 2 b _l 

since x~T*. A similar inequality holds for R~(x) since o)~-&*(x) satisfies (10.12)so 

that  Const. bz_lA(x) is a majorant also of R~(x). Finally we observe that  unless 

[eS*(x)[ =2~r2 -u+l, which case is easy, since / is of degree N, 

e *  (n[(~* (x)], (~* (x))/> b m _ l .  

We can therefore repeat the argument and obtain, as in the proof of Theorem (a), 

s*(x)= ~ (O(b~)+O(bs))+~/~s-~O, eoO, 
tffi L(e) 

for all x~E, mE-+O, e~O. Since no estimates depend on N, Theorem (c) is proved. 

12. Theorem (b) 

As mentioned before, it seems clear that  sn(x) converges a.e. also i f / E L  p, p > 1. 

We shall therefore only outline the proof of (b). 
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Let  N be fixed and define in this case the exceptional sets as in (c) by the in- 

equalities, n ~< 2 N, 

T*: H* (x) > b~-i ; 

respectively, U*: A(x) > bFfll. 

As in the proof of (a) we allow the construction ~(p*; 1), bl ~< C* (p*) < bi-1 for all pairs 

p* for which 1 is such that  bz-1 < (log N) -k, where /c is a suitable constant depending 

on p (/E L~). As in the proof of (a), it follows from the Hausdorff-Young inequality that  

the corresponding exceptional set has measure O(N-2). 
If  bt-1 >/(logN) -k, we have to select certain pairs p = (n, co) for which we allow 

the construction. For  oJ00 we include all n such that  [cnl >~b~. The set (p}--(I)z, being 

defined for Iw]~>2~2-~, we include p ' - - (n ' , o / ) l eo ' l=2z~2  -'~1 if 

Ic(p';/)l~bz and ][eoln'-]o/]nl>bFKleol (12.1) 

holds for every (n, co)E qbl with cod co'; K is a suitable constant. 

We now consider functions ~(x), ]x[<4zc, of the form 

~(x)=e~~ ~ '~,  xeeo, (n, eo)e(I)z, 

where for fixed ~ the different eo's do not  intersect and are maximal with respect to 

this property. From the separation (12.1) it follows that  this system is "almost"  or- 

thogonal. From this we obtain L" estimates by a standard interpolation. I t  is then 

easy to define a set X* for the set (I)l as we did for Fz in (b). 

By  the above construction, we have for each (n[eo*],eo*)=p* with C*(p*)>~bz a 
~*E(I)z, as in Proposition 3, such that  

[ ~[eo*] - n[w*] [ < Const. b~- K = b. 

Since x ~ S*, [s~ - sn] =O(log 1/b) and summing this for bl 1> (log N) -k, we obtain the 

desired estimate. 
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