ON L¹ CONVERGENCE OF CERTAIN COSINE SUMS

JOHN W. GARRETT¹ AND ČASLAV V. STANOJEVIĆ

ABSTRACT. Rees and Stanojević introduced a new class of modified cosine sums $\{g_n(x) = \frac{1}{2} \sum_{k=0}^n \Delta a(k) + \sum_{k=1}^n \sum_{j=k}^n \Delta a(j) \cos kx\}$ and found a necessary and sufficient condition for integrability of these modified cosine sums. Here we show that to every classical cosine series f with coefficients of bounded variation, a Rees-Stanojević cosine sum g_n can be associated such that g_n converges to f pointwise, and a necessary and sufficient condition for L^1 convergence of g_n to f is given. As a corollary to that result we have a generalization of the classical result of this kind. Examples are given using the well-known integrability conditions.

Theorem A gives a necessary and sufficient condition for a sine series with coefficients of bounded variation and converging to zero to be the Fourier series of its sum, or equivalently, for its sum to be integrable. Theorem B shows that if such a series is a Fourier series then its convergence is "good", that is, convergence in the L^1 metric.

THEOREM A [1]. Let $f(x) = \sum_{n=1}^{\infty} b(n) \sin nx$ where $\Delta b(n) \ge 0$ [$\Delta b(n) = b(n) - b(n+1)$] and $\lim_{n\to\infty} b(n) = 0$. Then $f \in L^1[0,\pi]$ or, equivalently, $\sum_{n=1}^{\infty} b(n) \sin nx$ is the Fourier series of f if and only if $\sum_{n=1}^{\infty} |\Delta b(n)| \log n < \infty$.

THEOREM B [1]. Let f(x) be as in Theorem A. If $f \in L^1[0,\pi]$ then $\sum_{k=1}^{n} b(k) \sin kx$ converges to f in the L^1 metric.

There is no known analogue of Theorem A for the cosine series. Theorems C and D only give sufficient conditions for the cosine series to be the Fourier series of its sum.

In what follows we will denote by C the cosine series

$$\frac{1}{2}a(0) + \sum_{n=1}^{\infty} a(n)\cos nx$$

where $\lim_{n\to\infty} a(n) = 0$ and $\sum_{n=1}^{\infty} |\Delta a(n)| < \infty$. Partial sums of C will be denoted by $S_n(x)$, and $f(x) = \lim_{n\to\infty} S_n(x)$.

THEOREM C [1]. If $\sum_{n=1}^{\infty} |\Delta a(n)| \log n < \infty$, then $f \in L^1[0, \pi]$ or, equivalently, C is the Fourier series of f.

THEOREM D [1]. If $\sum_{n=1}^{\infty} |\Delta^2 a(n)|(n+1) < \infty$, then $f \in L^1[0,\pi]$ or, equivalently, C is the Fourier series of f.

© American Mathematical Society 1976

License or copyright restrictions may apply to redistribution; see https://wwwbologi.ournal-terms-of-use

Received by the editors October 21, 1974 and, in revised form, January 9, 1975.

AMS (MOS) subject classifications (1970). Primary 42A20, 42A32.

Key words and phrases. L^1 convergence of cosine sums.

¹ Portions of these results appear in a doctoral thesis of John W. Garrett at the University of Missouri-Rolla in 1974.

Theorem E is related to Theorem B. It shows that the classical cosine series is not as "well behaved" as the classical sine series.

THEOREM E [1]. If $\sum_{n=1}^{\infty} |\Delta^2 a(n)|(n+1) < \infty$, then S_n converges to f in the L^1 metric if and only if $\lim_{n\to\infty} a(n)\log n = 0$.

Rees and Stanojević introduced a new type of cosine sum and obtained a necessary and sufficient condition for integrability of its limit.

THEOREM F [2]. Let

$$g_n^*(x) = \sum_{k=1}^n \left[\frac{a(k)}{2} + \sum_{j=k}^n a(j) \cos kx \right]$$

where $\lim_{n\to\infty} a(n) = 0$ and $\Delta a(n) \ge 0$. Then

(i) $g^*(x) = \lim_{n \to \infty} g^*_n(x)$ exists for $x \in (0, \pi]$, and (ii) $g^* \in L^1[0, \pi]$ if and only if $\sum_{n=1}^{\infty} a(n) < \infty$.

This paper proves an analogue of Theorem B for this type of cosine sum. Indeed, these modified cosine sums approximate their limit "better" than the classical cosine series since they converge in the L^1 metric to their limit when the classical cosine series may not.

LEMMA 1. Let

$$\hat{g}_n(x) = \frac{1}{2} \sum_{k=0}^n \Delta a(k) + \sum_{k=1}^n \sum_{j=k}^n \Delta a(j) \cos kx.$$

Then $\lim_{n\to\infty} g_n(x) = f(x)$, for $x \in (0, \pi]$.

It will be shown in the proof of this lemma that

$$g_n(x) = S_n(x) - a(n+1)D_n(x).$$

We prefer the form given in the lemma, however, since it emphasizes better its use in [2].

PROOF. Denoting the Dirichlet kernel by $D_n(x)$ we get

$$\lim_{n \to \infty} g_n(x) = \lim_{n \to \infty} \left[\frac{1}{2} \sum_{k=0}^n \Delta a(k) + \sum_{k=1}^n \sum_{j=k}^n \Delta a(j) \cos kx \right]$$
$$= \lim_{n \to \infty} \left[\frac{a(0)}{2} + \sum_{k=1}^n a(k) \cos kx - a(n+1)D_n(x) \right]$$
$$= \lim_{n \to \infty} \left[S_n(x) - a(n+1)D_n(x) \right] = f(x),$$

 $x \in (0,\pi]$ since $\lim_{n\to\infty} S_n(x) = f(x)$ and $\lim_{n\to\infty} a(n+1)D_n(x) = 0$, x $\in (0, \pi].$

THEOREM 1. Let g_n be as defined in Lemma 1. Then g_n converges to f in the L_{α}^1 metric if and only if given $\epsilon > 0$ there exists $\delta(\epsilon) > 0$ such that $\int_0^{\delta} \left| \sum_{k=n+1}^{\infty} \Delta a(k) D_k(x) \right| < \varepsilon \text{ for all } n \ge 0.$

PROOF. For the "if" part let $\varepsilon > 0$. Then there exists $\delta > 0$ such that License of copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

$$\begin{aligned} \int_{0}^{\delta} \left| \sum_{k=n+1}^{\infty} \Delta a(k) D_{k}(x) \right| &< \varepsilon/2 \text{ for all } n \geq 0. \text{ Then} \\ \int_{0}^{\pi} \left| f - g_{n} \right| &= \int_{0}^{\pi} \left| \sum_{k=n+1}^{\infty} \Delta a(k) D_{k}(x) \right| \\ &= \int_{0}^{\delta} \left| \sum_{k=n+1}^{\infty} \Delta a(k) D_{k}(x) \right| + \int_{\delta}^{\pi} \left| \sum_{k=n+1}^{\infty} \Delta a(k) D_{k}(x) \right| \\ &< \frac{\varepsilon}{2} + \sum_{k=n+1}^{\infty} \left| \Delta a(k) \right| \int_{\delta}^{\pi} \left| D_{k}(x) \right| \\ &\leq \frac{\varepsilon}{2} + \sum_{k=n+1}^{\infty} \left| \Delta a(k) \right| \int_{\delta}^{\pi} \csc \frac{1}{2}x \\ &= \frac{\varepsilon}{2} + \sum_{k=n+1}^{\infty} \left| \Delta a(k) \right| [-2 \log|\csc \delta/2 - \cot \delta/2|] < \varepsilon \end{aligned}$$

for sufficiently large *n* since $\sum_{k=0}^{\infty} |\Delta a(k)| < \infty$.

For the "only if" part, let $\varepsilon > 0$. Then there exists an integer M such that $\int_0^{\pi} |f(x) - g_n(x)| < \epsilon/2 \text{ if } n \ge M. \text{ That is, } \int_0^{\pi} |\sum_{k=n}^{\infty} \Delta a(k) D_k(x)| < \epsilon/2 \text{ if } n \ge M. \text{ Now if } \sum_{k=0}^{M} |\Delta a(k)| = 0, \text{ then for } n > M, \int_0^{\pi} |\sum_{k=n}^{\infty} \Delta a(k) D_k(x)|$ $< \epsilon/2 < \epsilon$ and, for $0 \le n \le M$,

$$\int_0^{\pi} \left| \sum_{k=n}^{\infty} \Delta a(k) D_k(x) \right| = \int_0^{\pi} \left| \sum_{k=M+1}^{\infty} \Delta a(k) D_k(x) \right| < \varepsilon/2 < \varepsilon.$$

If $\sum_{k=0}^{M} |\Delta a(k)| \neq 0$, let $\delta = \varepsilon/2M \sum_{k=0}^{M} |\Delta a(k)|$. For $n \geq M$,

$$\int_0^{\delta} \left| \sum_{k=n}^{\infty} \Delta a(k) D_k(x) \right| \leq \int_0^{\pi} \left| \sum_{k=n}^{\infty} \Delta a(k) D_k(x) \right| < \varepsilon/2 < \varepsilon.$$

For $0 \leq n < M$,

$$\begin{split} \int_0^{\delta} \left| \sum_{k=n}^{\infty} \Delta a(k) D_k(x) \right| &\leq \int_0^{\delta} \left| \sum_{k=n}^{M-1} \Delta a(k) D_k(x) \right| + \int_0^{\delta} \left| \sum_{k=M}^{\infty} \Delta a(k) D_k(x) \right| \\ &\leq \int_0^{\delta} \sum_{k=n}^{M-1} k \left| \Delta a(k) \right| + \int_0^{\pi} \left| \sum_{k=M}^{\infty} \Delta a(k) D_k(x) \right| \\ &< \delta \sum_{k=0}^{M-1} k \left| \Delta a(k) \right| + \frac{\varepsilon}{2} \\ &\leq \delta M \sum_{k=0}^{M-1} \left| \Delta a(k) \right| + \frac{\varepsilon}{2} < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon. \end{split}$$

So given $\varepsilon > 0$ there exists $\delta > 0$ such that $\int_0^{\delta} |\sum_{k=n}^{\infty} \Delta a(k) D_k(x)| < \varepsilon$ for all $n \geq 0.$

If $\lim_{n\to\infty} \int_0^{\pi} |f(x) - g_n(x)| = 0$, it is clear that $f \in L^1[0,\pi]$.

$$\int_0^{\pi} |f(x)| \le \int_0^{\pi} |f(x) - g_n(x)| + \int_0^{\pi} |g_n(x)| < \infty$$

 $\begin{array}{l} \text{since } g_n(x) \text{ is a finite cosine sum.} \\ \text{License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use} \\ \text{COROLLARY 1.} If for & \varepsilon > 0 & there & exists & \delta(\varepsilon) > 0 & such \end{array}$ that $\int_0^{\delta} |\sum_{k=n}^{\infty} \Delta a(k) D_k(x)| < \varepsilon \text{ for all } n \ge 0, \text{ then } S_n \text{ converges to } f \text{ in the } L^1 \text{ metric } if \text{ and only if } \lim_{n \to \infty} a(n) \log n = 0.$

Proof. Using g_n as defined in Lemma 1, we get

$$\begin{split} \int_0^{\pi} |f(x) - S_n(x)| &= \int_0^{\pi} |f(x) - g_n(x) + g_n(x) - S_n(x)| \\ &\leq \int_0^{\pi} |f(x) - g_n(x)| + \int_0^{\pi} |g_n(x) - S_n(x)| \\ &= \int_0^{\pi} |f(x) - g_n(x)| + \int_0^{\pi} |a(n+1)D_n(x)| \end{split}$$

Also

$$\begin{split} \int_0^{\pi} |a(n+1)D_n(x)| &= \int_0^{\pi} |g_n(x) - S_n(x)| \\ &\leq \int_0^{\pi} |f(x) - S_n(x)| + \int_0^{\pi} |f(x) - g_n(x)|. \end{split}$$

Since $\int_0^{\pi} |a(n+1)D_n(x)|$ behaves like $a(n+1) \log n$ for large values of *n*, and $\lim_{n\to\infty} \int_0^{\pi} |f(x) - g_n(x)| = 0$, the corollary is proved.

The following examples show that known sufficient conditions for integrability of the limit of a cosine series are also sufficient for the L^1 convergence of g_n to that limit, since they imply the necessary and sufficient condition from Theorem 1.

EXAMPLE 1. Let $\sum_{n=1}^{\infty} |\Delta^2 a(n)|(n+1) < \infty$. Then g_n converges to f in the L^1 metric space. Denoting the Fejér kernel by $F_n(x)$, we get

$$\begin{split} \int_0^{\pi} |f(x) - g_n(x)| &= \int_0^{\pi} \left| \sum_{k=n+1}^{\infty} \Delta a(k) D_k(x) \right| \\ &= \int_0^{\pi} \left| \sum_{k=n}^{\infty} (k+1) \Delta^2 a(k) F_k(x) - (n+1) \Delta a(n) F_n(x) \right| \\ &\leq \sum_{k=n+1}^{\infty} (k+1) |\Delta^2 a(k)| \int_0^{\pi} F_k(x) + (n+1) |\Delta a(n)| \int_0^{\pi} F_n(x) \\ &\leq \pi \sum_{k=n}^{\infty} (k+1) |\Delta^2 a(k)| \end{split}$$

since $\int_0^{\pi} F_k(x) = \pi/2$ and

$$(n+1)|\Delta a(n)| = \sum_{k=n}^{\infty} (n+1)[|\Delta a(k)| - |\Delta a(k+1)|]$$

$$\leq \sum_{k=n}^{\infty} (n+1)|\Delta^2 a(k)| \leq \sum_{k=n}^{\infty} (k+1)|\Delta^2 a(k)|.$$

Since $\sum_{n=1}^{\infty} (n+1) |\Delta^2 a(n)| < \infty$, then $\lim_{n \to \infty} \int_0^{\pi} |f(x) - g_n(x)| = 0$. License EXAMPLETED: Interpretent in the L^1 metric space, for

$$\int_0^\pi |f(x) - g_n(x)| = \int_0^\pi \left| \sum_{k=n+1}^\infty \Delta a(k) D_k(x) \right|$$
$$\leq \sum_{k=n+1}^\infty |\Delta a(k)| \int_0^\pi |D_k(x)|.$$

Since $\int_0^{\pi} |D_k(x)|$ behaves like log k for large k, and $\sum_{k=1}^{\infty} |\Delta a(k)| \log k < \infty$, we get $\lim_{n\to\infty} \int_0^{\pi} |f(x) - g_n(x)| = 0$. As a corollary of this example we have the well-known Theorem E.

Theorems C and D can be combined as in the following lemma.

LEMMA 2. Let a(n) = b(n) + c(n) where $\sum_{n=1}^{\infty} |\Delta b(n)| \log n < \infty$, $\sum_{n=1}^{\infty} |\Delta^2 c(n)| (n+1) < \infty$, and $\lim_{n\to\infty} b(n) = \lim_{n\to\infty} c(n) = 0$. Then $f \in L^1[0,\pi]$.

It is interesting to note that in Lemma 2 we may have

$$\sum_{n=1}^{\infty} |\Delta a(n)| \log n = \sum_{n=1}^{\infty} |\Delta^2 a(n)|(n+1) = \infty.$$

EXAMPLE 3. Let f(x) be as in Lemma 2. Then g_n converges to f in the L^1 metric. This follows from Examples 1 and 2, writing a(n) = b(n) + c(n).

Stanojević combined Theorems C and D in a different way.

THEOREM G [3]. Let $a(n) = \alpha(n)\beta(n)$ where $\sum_{n=1}^{\infty} |\Delta\alpha(n)| < \infty$, $\sum_{n=1}^{\infty} |\Delta^2\beta(n)|(n+1) < \infty$, $|\beta(n)| \le M$, and $\sum_{n=1}^{\infty} |\beta(n)\Delta\alpha(n)|\log(n) < \infty$. Then $f \in L^1[0,\pi]$.

EXAMPLE 4. Let f(x) be as in Theorem G. Then g_n converges to f in the L^1 metric. We get

$$\int_0^{\pi} |f(x) - g_n(x)| \le M \sum_{k=n}^{\infty} |\beta(k)\Delta\alpha(k)| \log k$$
$$+ N \sum_{k=n}^{\infty} (k+1)\{|\alpha(k+1)\Delta^2\beta(k)| + |\Delta\alpha(k+1)\Delta\beta(k+1)|\}.$$

Since both series converge, we have $\lim_{n\to\infty} \int_0^{\pi} |f(x) - g_n(x)| = 0$.

References

1. N. K. Bari, *Trigonometric series*, Fizmatgiz, Moscow, 1961; English transl., Macmillan, New York, 1964, vol. II, pp. 201–204. MR 23 #A3411; 30 #1347.

2. C. S. Rees and Č. V. Stanojević, Necessary and sufficient conditions for integrability of certain cosine sums, J. Math. Anal. Appl. 43 (1973), 579–586. MR 48 #794.

3. Č. V. Stanojević, On integrability of certain trigonometrical series, Srpska Akad. Nauka. Zb. Rad. 55 Mat. Inst. 6 (1957), 53-57. (Serbo-Croation) MR 20 #203.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF MISSOURI-ROLLA, ROLLA, MISSOURI 65401