# ON $L^{1}$ CONVERGENCE OF CERTAIN COSINE SUMS 

JOHN W. GARRETT ${ }^{1}$ AND ČASLAV V. STANOJEVIĆ


#### Abstract

Rees and Stanojević introduced a new class of modified cosine sums $\left\{g_{n}(x)=\frac{1}{2} \sum_{k=0}^{n} \Delta a(k)+\sum_{k=1}^{n} \sum_{j=k}^{n} \Delta a(j) \cos k x\right\}$ and found a necessary and sufficient condition for integrability of these modified cosine sums. Here we show that to every classical cosine series $f$ with coefficients of bounded variation, a Rees-Stanojević cosine sum $g_{n}$ can be associated such that $g_{n}$ converges to $f$ pointwise, and a necessary and sufficient condition for $L^{1}$ convergence of $g_{n}$ to $f$ is given. As a corollary to that result we have a generalization of the classical result of this kind. Examples are given using the well-known integrability conditions.


Theorem A gives a necessary and sufficient condition for a sine series with coefficients of bounded variation and converging to zero to be the Fourier series of its sum, or equivalently, for its sum to be integrable. Theorem B shows that if such a series is a Fourier series then its convergence is "good", that is, convergence in the $L^{1}$ metric.

Theorem A [1]. Let $f(x)=\sum_{n=1}^{\infty} b(n) \sin n x$ where $\Delta b(n) \geqslant 0[\Delta b(n)$ $=b(n)-b(n+1)]$ and $\lim _{n \rightarrow \infty} b(n)=0$. Then $f \in L^{1}[0, \pi]$ or, equivalently, $\sum_{n=1}^{\infty} b(n) \sin n x$ is the Fourier series of $f$ if and only if $\sum_{n=1}^{\infty}|\Delta b(n)| \log n<\infty$.

Theorem B [1]. Let $f(x)$ be as in Theorem A. If $f \in L^{1}[0, \pi]$ then $\sum_{k=1}^{n} b(k) \sin k x$ converges to $f$ in the $L^{1}$ metric.

There is no known analogue of Theorem A for the cosine series. Theorems C and D only give sufficient conditions for the cosine series to be the Fourier series of its sum.

In what follows we will denote by $C$ the cosine series

$$
\frac{1}{2} a(0)+\sum_{n=1}^{\infty} a(n) \cos n x
$$

where $\lim _{n \rightarrow \infty} a(n)=0$ and $\sum_{n=1}^{\infty}|\Delta a(n)|<\infty$. Partial sums of $C$ will be denoted by $S_{n}(x)$, and $f(x)=\lim _{n \rightarrow \infty} S_{n}(x)$.

Theorem C [1]. If $\sum_{n=1}^{\infty}|\Delta a(n)| \log n<\infty$, then $f \in L^{1}[0, \pi]$ or, equivalent$l y, C$ is the Fourier series of $f$.

Theorem D [1]. If $\sum_{n=1}^{\infty}\left|\Delta^{2} a(n)\right|(n+1)<\infty$, then $f \in L^{1}[0, \pi]$ or, equivalently, $C$ is the Fourier series of $f$.

[^0]Theorem E is related to Theorem B. It shows that the classical cosine series is not as "well behaved" as the classical sine series.

Theorem E [1]. If $\sum_{n=1}^{\infty}\left|\Delta^{2} a(n)\right|(n+1)<\infty$, then $S_{n}$ converges to $f$ in the $L^{1}$ metric if and only if $\lim _{n \rightarrow \infty} a(n) \log n=0$.

Rees and Stanojević introduced a new type of cosine sum and obtained a necessary and sufficient condition for integrability of its limit.

Theorem F [2]. Let

$$
g_{n}^{*}(x)=\sum_{k=1}^{n}\left[\frac{a(k)}{2}+\sum_{j=k}^{n} a(j) \cos k x\right]
$$

where $\lim _{n \rightarrow \infty} a(n)=0$ and $\Delta a(n) \geq 0$. Then
(i) $g^{*}(x)=\lim _{n \rightarrow \infty} g_{n}^{*}(x)$ exists for $x \in(0, \pi]$, and
(ii) $g^{*} \in L^{1}[0, \pi]$ if and only if $\sum_{n=1}^{\infty} a(n)<\infty$.

This paper proves an analogue of Theorem B for this type of cosine sum. Indeed, these modified cosine sums approximate their limit "better" than the classical cosine series since they converge in the $L^{1}$ metric to their limit when the classical cosine series may not.

Lemma 1. Let

$$
\bar{g}_{n}(x)=\frac{1}{2} \sum_{k=0}^{n} \Delta a(k)+\sum_{k=1}^{n} \sum_{j=k}^{n} \Delta a(j) \cos k x .
$$

Then $\lim _{n \rightarrow \infty} g_{n}(x)=f(x)$, for $x \in(0, \pi]$.
It will be shown in the proof of this lemma that

$$
g_{n}(x)=S_{n}(x)-a(n+1) D_{n}(x)
$$

We prefer the form given in the lemma, however, since it emphasizes better its use in [2].

Proof. Denoting the Dirichlet kernel by $D_{n}(x)$ we get

$$
\begin{aligned}
\lim _{n \rightarrow \infty} g_{n}(x) & =\lim _{n \rightarrow \infty}\left[\frac{1}{2} \sum_{k=0}^{n} \Delta a(k)+\sum_{k=1}^{n} \sum_{j=k}^{n} \Delta a(j) \cos k x\right] \\
& =\lim _{n \rightarrow \infty}\left[\frac{a(0)}{2}+\sum_{k=1}^{n} a(k) \cos k x-a(n+1) D_{n}(x)\right] \\
& =\lim _{n \rightarrow \infty}\left[S_{n}(x)-a(n+1) D_{n}(x)\right]=f(x)
\end{aligned}
$$

$x \in(0, \pi]$ since $\lim _{n \rightarrow \infty} S_{n}(x)=f(x)$ and $\lim _{n \rightarrow \infty} a(n+1) D_{n}(x)=0, x$ $\in(0, \pi]$.
Theorem 1. Let $g_{n}$ be as defined in Lemma 1 . Then $g_{n}$ converges to $f$ in the $L^{1}$ metric if and only if given $\varepsilon>0$ there exists $\delta(\varepsilon)>0$ such that $\int_{0}^{\delta}\left|\sum_{k=n+1}^{\infty} \Delta a(k) D_{k}(x)\right|<\varepsilon$ for all $n \geq 0$.

$\int_{0}^{\delta}\left|\sum_{k=n+1}^{\infty} \Delta a(k) D_{k}(x)\right|<\varepsilon / 2$ for all $n \geq 0$. Then

$$
\begin{aligned}
\int_{0}^{\pi}\left|f-g_{n}\right| & =\int_{0}^{\pi}\left|\sum_{k=n+1}^{\infty} \Delta a(k) D_{k}(x)\right| \\
& =\int_{0}^{\delta}\left|\sum_{k=n+1}^{\infty} \Delta a(k) D_{k}(x)\right|+\int_{\delta}^{\pi}\left|\sum_{k=n+1}^{\infty} \Delta a(k) D_{k}(x)\right| \\
& <\frac{\varepsilon}{2}+\sum_{k=n+1}^{\infty}|\Delta a(k)| \int_{\delta}^{\pi}\left|D_{k}(x)\right| \\
& \leq \frac{\varepsilon}{2}+\sum_{k=n+1}^{\infty}|\Delta a(k)| \int_{\delta}^{\pi} \csc \frac{1}{2} x \\
& =\frac{\varepsilon}{2}+\sum_{k=n+1}^{\infty}|\Delta a(k)|[-2 \log |\csc \delta / 2-\cot \delta / 2|]<\varepsilon
\end{aligned}
$$

for sufficiently large $n$ since $\sum_{k=0}^{\infty}|\Delta a(k)|<\infty$.
For the "only if" part, let $\varepsilon>0$. Then there exists an integer $M$ such that $\int_{0}^{\pi}\left|f(x)-g_{n}(x)\right|<\varepsilon / 2$ if $n \geq M$. That is, $\int_{0}^{\pi}\left|\sum_{k=n}^{\infty} \Delta a(k) D_{k}(x)\right|<\varepsilon / 2$ if $n \geq M$. Now if $\sum_{k=0}^{M}|\Delta a(k)|=0$, then for $n>M, \int_{0}^{\pi}\left|\sum_{k=n}^{\infty} \Delta a(k) D_{k}(x)\right|$ $<\varepsilon / 2<\varepsilon$ and, for $0 \leq n \leq M$,

$$
\int_{0}^{\pi}\left|\sum_{k=n}^{\infty} \Delta a(k) D_{k}(x)\right|=\int_{0}^{\pi}\left|\sum_{k=M+1}^{\infty} \Delta a(k) D_{k}(x)\right|<\varepsilon / 2<\varepsilon .
$$

If $\sum_{k=0}^{M}|\Delta a(k)| \neq 0$, let $\delta=\varepsilon / 2 M \sum_{k=0}^{M}|\Delta a(k)|$. For $n \geq M$,

$$
\int_{0}^{\delta}\left|\sum_{k=n}^{\infty} \Delta a(k) D_{k}(x)\right| \leq \int_{0}^{\pi}\left|\sum_{k=n}^{\infty} \Delta a(k) D_{k}(x)\right|<\varepsilon / 2<\varepsilon .
$$

For $0 \leq n<M$,

$$
\begin{aligned}
\int_{0}^{\delta}\left|\sum_{k=n}^{\infty} \Delta a(k) D_{k}(x)\right| & \leq \int_{0}^{\delta}\left|\sum_{k=n}^{M-1} \Delta a(k) D_{k}(x)\right|+\int_{0}^{\delta}\left|\sum_{k=M}^{\infty} \Delta a(k) D_{k}(x)\right| \\
& \leq \int_{0}^{\delta} \sum_{k=n}^{M-1} k|\Delta a(k)|+\int_{0}^{\pi}\left|\sum_{k=M}^{\infty} \Delta a(k) D_{k}(x)\right| \\
& <\delta \sum_{k=0}^{M-1} k|\Delta a(k)|+\frac{\varepsilon}{2} \\
& \leq \delta M \sum_{k=0}^{M-1}|\Delta a(k)|+\frac{\varepsilon}{2}<\frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon .
\end{aligned}
$$

So given $\varepsilon>0$ there exists $\delta>0$ such that $\int_{0}^{\delta}\left|\sum_{k=n}^{\infty} \Delta a(k) D_{k}(x)\right|<\varepsilon$ for all $n \geq 0$.

If $\lim _{n \rightarrow \infty} \int_{0}^{\pi}\left|f(x)-g_{n}(x)\right|=0$, it is clear that $f \in L^{1}[0, \pi]$.

$$
\int_{0}^{\pi}|f(x)| \leq \int_{0}^{\pi}\left|f(x)-g_{n}(x)\right|+\int_{0}^{\pi}\left|g_{n}(x)\right|<\infty
$$

since $g_{n}(x)$ is a finite cosine sum.
$\int_{0}^{\delta}\left|\sum_{k=n}^{\infty} \Delta a(k) D_{k}(x)\right|<\varepsilon$ for all $n \geq 0$, then $S_{n}$ converges to $f$ in the $L^{1}$ metric if and only if $\lim _{n \rightarrow \infty} a(n) \log n=0$.

Proof. Using $g_{n}$ as defined in Lemma 1, we get

$$
\begin{aligned}
\int_{0}^{\pi}\left|f(x)-S_{n}(x)\right| & =\int_{0}^{\pi}\left|f(x)-g_{n}(x)+g_{n}(x)-S_{n}(x)\right| \\
& \leq \int_{0}^{\pi}\left|f(x)-g_{n}(x)\right|+\int_{0}^{\pi}\left|g_{n}(x)-S_{n}(x)\right| \\
& =\int_{0}^{\pi}\left|f(x)-g_{n}(x)\right|+\int_{0}^{\pi}\left|a(n+1) D_{n}(x)\right|
\end{aligned}
$$

Also

$$
\begin{aligned}
\int_{0}^{\pi}\left|a(n+1) D_{n}(x)\right| & =\int_{0}^{\pi}\left|g_{n}(x)-S_{n}(x)\right| \\
& \leq \int_{0}^{\pi}\left|f(x)-S_{n}(x)\right|+\int_{0}^{\pi}\left|f(x)-g_{n}(x)\right|
\end{aligned}
$$

Since $\int_{0}^{\pi}\left|a(n+1) D_{n}(x)\right|$ behaves like $a(n+1) \log n$ for large values of $n$, and $\lim _{n \rightarrow \infty} \int_{0}^{\pi}\left|f(x)-g_{n}(x)\right|=0$, the corollary is proved.

The following examples show that known sufficient conditions for integrability of the limit of a cosine series are also sufficient for the $L^{1}$ convergence of $g_{n}$ to that limit, since they imply the necessary and sufficient condition from Theorem 1.

Example 1. Let $\sum_{n=1}^{\infty}\left|\Delta^{2} a(n)\right|(n+1)<\infty$. Then $g_{n}$ converges to $f$ in the $L^{1}$ metric space. Denoting the Fejér kernel by $F_{n}(x)$, we get

$$
\begin{aligned}
\int_{0}^{\pi}\left|f(x)-g_{n}(x)\right| & =\int_{0}^{\pi}\left|\sum_{k=n+1}^{\infty} \Delta a(k) D_{k}(x)\right| \\
& =\int_{0}^{\pi}\left|\sum_{k=n}^{\infty}(k+1) \Delta^{2} a(k) F_{k}(x)-(n+1) \Delta a(n) F_{n}(x)\right| \\
& \leq \sum_{k=n+1}^{\infty}(k+1)\left|\Delta^{2} a(k)\right| \int_{0}^{\pi} F_{k}(x)+(n+1)|\Delta a(n)| \int_{0}^{\pi} F_{n}(x) \\
& \leq \pi \sum_{k=n}^{\infty}(k+1)\left|\Delta^{2} a(k)\right|
\end{aligned}
$$

since $\int_{0}^{\pi} F_{k}(x)=\pi / 2$ and

$$
\begin{aligned}
(n+1)|\Delta a(n)| & =\sum_{k=n}^{\infty}(n+1)[|\Delta a(k)|-|\Delta a(k+1)|] \\
& \leq \sum_{k=n}^{\infty}(n+1)\left|\Delta^{2} a(k)\right| \leq \sum_{k=n}^{\infty}(k+1)\left|\Delta^{2} a(k)\right|
\end{aligned}
$$

Since $\sum_{n=1}^{\infty}(n+1)\left|\Delta^{2} a(n)\right|<\infty$, then $\lim _{n \rightarrow \infty} \int_{0}^{\pi}\left|f(x)-g_{n}(x)\right|=0$.
 metric space, for

$$
\begin{aligned}
\int_{0}^{\pi}\left|f(x)-g_{n}(x)\right| & =\int_{0}^{\pi}\left|\sum_{k=n+1}^{\infty} \Delta a(k) D_{k}(x)\right| \\
& \leq \sum_{k=n+1}^{\infty}|\Delta a(k)| \int_{0}^{\pi}\left|D_{k}(x)\right|
\end{aligned}
$$

Since $\int_{0}^{\pi}\left|D_{k}(x)\right|$ behaves like $\log k$ for large $k$, and $\sum_{k=1}^{\infty}|\Delta a(k)| \log k<\infty$, we get $\lim _{n \rightarrow \infty} \int_{0}^{\pi}\left|f(x)-g_{n}(x)\right|=0$. As a corollary of this example we have the well-known Theorem E.

Theorems C and D can be combined as in the following lemma.
Lemma 2. Let $a(n)=b(n)+c(n) \quad$ where $\quad \sum_{n=1}^{\infty}|\Delta b(n)| \log n<\infty$, $\sum_{n=1}^{\infty}\left|\Delta^{2} c(n)\right|(n+1)<\infty$, and $\lim _{n \rightarrow \infty} b(n)=\lim _{n \rightarrow \infty} c(n)=0$. Then $f$ $\in L^{1}[0, \pi]$.

It is interesting to note that in Lemma 2 we may have

$$
\sum_{n=1}^{\infty}|\Delta a(n)| \log n=\sum_{n=1}^{\infty}\left|\Delta^{2} a(n)\right|(n+1)=\infty
$$

Example 3. Let $f(x)$ be as in Lemma 2. Then $g_{n}$ converges to $f$ in the $L^{1}$ metric. This follows from Examples 1 and 2, writing $a(n)=b(n)+c(n)$.

Stanojevic combined Theorems C and D in a different way.
Theorem G [3]. Let $a(n)=\alpha(n) \beta(n) \quad$ where $\quad \sum_{n=1}^{\infty}|\Delta \alpha(n)|<\infty$, $\sum_{n=1}^{\infty}\left|\Delta^{2} \beta(n)\right|(n+1)<\infty,|\beta(n)| \leq M$, and $\sum_{n=1}^{\infty}|\beta(n) \Delta \alpha(n)| \log (n)<\infty$. Then $f \in L^{1}[0, \pi]$.

Example 4. Let $f(x)$ be as in Theorem G. Then $g_{n}$ converges to $f$ in the $L^{1}$ metric. We get

$$
\begin{aligned}
\int_{0}^{\pi} \mid f(x) & -g_{n}(x)\left|\leq M \sum_{k=n}^{\infty}\right| \beta(k) \Delta \alpha(k) \mid \log k \\
& +N \sum_{k=n}^{\infty}(k+1)\left\{\left|\alpha(k+1) \Delta^{2} \beta(k)\right|+|\Delta \alpha(k+1) \Delta \beta(k+1)|\right\}
\end{aligned}
$$

Since both series converge, we have $\lim _{n \rightarrow \infty} \int_{0}^{\pi}\left|f(x)-g_{n}(x)\right|=0$.

## References

1. N. K. Bari, Trigonometric series, Fizmatgiz, Moscow, 1961; English transl., Macmillan, New York, 1964, vol. II, pp. 201-204. MR 23 \# A3411; 30 \# 1347.
2. C. S. Rees and Č. V. Stanojević, Necessary and sufficient conditions for integrability of certain cosine sums, J. Math. Anal. Appl. 43 (1973), 579-586. MR 48 \#794.
3. Č. V. Stanojević, On integrability of certain trigonometrical series, Srpska Akad. Nauka. Zb. Rad. 55 Mat. Inst. 6 (1957), 53-57. (Serbo-Croation) MR 20 \#203.

[^0]:    Received by the editors October 21, 1974 and, in revised form, January 9, 1975.
    AMS (MOS) subject classifications (1970). Primary 42A20, 42A32.
    Key words and phrases. $L^{1}$ convergence of cosine sums.
    ${ }^{1}$ Portions of these results appear in a doctoral thesis of John W. Garrett at the University of Missouri-Rolla in 1974.

