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STUDIA MATHEMATICA, T. XLIV. (1972)

On convergence of Fourier series of funetions

of generalized bounded variation
by

DANIEL WATERMAN (Syracuse, N. Y.)

Abstract. Various classes of functions of generalized hounded variation are
introduced by assuming the finiteness of Y| F{Ial/Ans Ay # 02, {I,} nonoverlapping
intervals. The Fourier series of functions of one class, the fimetions of harmonic bounded
varialion. (HBV), converge everywhere and converge uniformly on closed intervals
of continuity. This result is best pessible in that each larger class contains a eon-
tinvous funciion whose Fourier series diverges at a point. The functions of @-bounded
variation with complementary function ¥ satisfying Y¥(1ljn) < co, as considered
by Salem, are contained in HBY, ag are the functions with logarithmically integrable
Bapach indicatrix considered by Garsia and Sawyer. However, all these conditions
are contained in the test of Lebesgue. An example of an application to absolute con-
vergence of Fourier ‘series is given.

In this note we iniroduee various classes of functions of generalized
bounded variation. We show that the Fourier series of funetions of one
class, the functions of harmownic bounded varialion, converge everywhere
and eonverge uniformly on each closed interval of 'eoutinuity. This result
i3 bext possible in the sense that each larger class contains a eontinnons
funetion whose Fourier series diverges at a point. The functions of
@-bounded variation in the sense of L., G, Young satisfying the Salem con-
dition, E¥(1/n) < oo, where ¥ is the complementary function, are included
in this clags of functions of harmenic bounded variation, as are the functions
with logarithmicadly integrable Banach indieatrix comsidered by Garsia
and Sawyer. We show, however, that all these conditions are confained
in the test of Lebesgue. The notions of generalized bounded variation con-
sidered here have ofher applications, and an indication of such an ap-
plieation to absolute convergence of Fourier series is given.

1. Let us suppose that f is a real function defined on an interval
[a,b]. {I,} will denote a sequence of non-overlapping intervals I,
= [a,, b0,] = [@,b] and we write f{I,) = f(b,)—f{a,). We let A denote
& non-decreasing sequenee of real numbers 4, > 0 such that £1/2, diverges.
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DEriNITION. A funetion f is said to be of A-bounded variation (ABV)
if for every {I,} we have

(L) o < o5

~be

for 4 = {n}, i.e.,
DT n < oo,

we say that f iy of harmonic bounded variation (HBV).

We note that ABV functions share many of the properties of BV
functions as, for example,

1. ABV funetions are bounded;

2. The discontinuities of a ABV function are simple and, therefoxe,
afi- most denumerable:

3. The Helly selection theorem holds for ABV funections.
It may be shown readily that the following are equivalent:

(i) fis a ABV function;

(ii)y There is an M < oo such that for every {L.}, M If(L)/h, < M;
1

(tii) There is an M < oo such that for every finite collection {I,},

N
, g [f (o) [ < M.
If feABV, we may now define the A-variation,

V(z) = sup | 2 oAl

n=1,2,..., %

I,} such that \JI, < [a, @]},

where #ela,b]. Clearly V{z) is a non-decreasing function, and we
may show that V is comsinuous at @ point if and only if f is continu-
ous there.

It is easily seen that ABV is a Banach space with the norm

1l = if(e

Let us now suppose that @ and ¥ are two functions complementary

N+V(B).

=
in the sense of W. H. Young, i.e., @(2) = [ ¢(t)df, where ¢ is continuous,
b g
strictly increasing, and ¢(0) = 0, and ¥(z) = j T(f)dt. A function f on

0
[@, b] was said by L. 0. Young [8] to be of @$-bounded variation if thers
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1s an M < oo such that, for every partition a — By < &y < vur < &y, = by

we have
n-1

S B —fladl) < 2

The least sueh M is known as the d-variation of 7
Salem [7] showed that if a confinuous function f is of @-BV und

2 ¥(1/n) < e, then the Tourier series of f converges uniformly. It has
1

been shown by Baernstein [1] that if 25?(1 [n) = oo, then there is a con-
tinuous @-BY function whose Fourier series diverges at a poink, answering
& question raised by Goffman and Waterman [5].

‘We note that the above definition of $-BV is unnecessarily restrictive.
Suppose we assume merely that @ is convex, P{z) = o{z) a8 2 — 04,
D(x)jx — o0 38 © > oo, and G0) = 0. Let

¥(z) = sup{zy —B(y): y > 0}.
Then we have
< @)+ Fly),

which iz Young’s inequality.

With & satisfying these requirements, we may now define the P-va-
ration as above. In the following, a function f will be said to be of $-BV
if for some k > 0, the function Xf has finite ®-variation. This class has
been thoroughly studied by Musielak and Orliez [6].

It iz elear that if {I,} is as before and fe®-BV with ¥ satisfying
Salem’s eondition, then for some % > 0, by Young’s inequality,

N N oo,
BN ifTlin < Zasm IfTL) H+Z P(lfn) < M+ Y P(Ajn) < oo,
1 1
and so feHBV,

Another generalization of bounded variation was given by Garsia
and Sawyer [2]. They restricted themselves to continmous funebions with
range [0, 1]. If n(y) is the Banach indicatrix of f, that is, the cardinality
of {z: f(x) =y} if this is finite and cc otherwise, they consider those
funetions such that

1

[ logn(y)dy < co.
L
They showed that these funetions too have uniformly convergent Fourier
geries. ]
Goffman [3] considered regulated functions, i.e., functions whose
discontinuities are simple and for which fiz) = [fiz+)+flz—)]. He
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“showed that if we replace the continuous functions by these, the conditions
imposed by Salem, as well as those of Garsia and Sawyer with a suitable
modification of the definition of n{y), then imply everywhere conver-
gence of the Fourier series. The principal tool here was a result of Goffman
and Waterman [4] on the everywhere convergence of Fourier series of
continuous functions. Using this result, which he observed held for regu-
lated functions as well, he showed that if the Fourier series of a regulated
function diverged at a point, then the function was not of harmenie bound-
ed variation (in our terminology) amd showed further that this implied
that the conditions of Salem and of Garsia and SBawyer would not be
satisfied.

We have indicated above why HBV includes $-BV with the restrietion

i‘o ¥(l/n) < oo. We turn now to the relation between HBYV and the con-

1
dition of Garsia and Sawyer.
Let fla) = limsupf(t) and f(z) = Hminff(#). A funetion is said to
> - bz

have an external salius if for some a, f(w)¢[f(=), fl@)]l. It is well-known
<

that the set of points at which an arbitrary function has an external
saltus is at most countable. Thus if our only interest was in the conver-
gence properties of Fourier series, there would be no loss in generality
in restricting ourselves to functions with no external saltus. Tt is easily
seen, in this case, that the property that f« ABV is independent of its values
at points of disecontinuity. We note, however, that the demonstration
of the fact that the condition of Garsia and Sawyer implies inclusion in
HBYV does not Tequire the assumption of no external saltus.

We shall use the following result.

Lmwora. Let {B;} be a sequence of p-measurable sels of o measure space
(%, o, u) and let S, =LmE; and S,,n =1,2,3,..., be the set of poinis
belonging to emactly n of the sets B;. If {a;} is a decreasing sequence of non-
negative real numbers, then

Dlau(B) < X uS( Y o) + Y a8
i 1 1 1

00

CoROLLARY. If u(Z) < oo, then ) (B} /i = oo implies that u(S,) # 0
00 1

or Du(S,)logn = oco.
1

Proof. If y; denotes the characteristic function of F;, we have,

for each ®eS,,

&

b
43

E & (0) <
1
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Hence

DanE) = [ Y o) due)

1 1

I Za,-z,-(m)dmw fwsﬁ,)

Sﬂa
A8 2 @ + }f-aimsw)-

Letting a; = 1/1, we have } a; ~logn; u(2) < co implies u(8,) < oo for
o 1 n n

every n. H;’,u(E‘-)/i = co and u(8,) =0, then ¥ u(8,)(}1/i)= oo, from
1 1

which the corollary follows immediately.

Let us now conaider & bounded function f on the interval [, b]. For
each & at which f is discontinuous, we adjoin to the graph of f the smallest
segment containing (x, f(#)), {», ()}, and (=, f{=}), and call the resulting
set . It is not difficult to see that # has the following ’

GENERATLIZED DARBOUX PROPERTY. If a<<w, < o< b and (2, Yo)
and (®y, y,) are in ¥, then for each y between y, and y, there is an e[y, 4]
such that (v, y)er.

We may now define a generalized Banaeh indiecatrix n(y) = n:(y)
to be the cardinality of {z: (x, z}e.#} if finite and oo otherwise. Let I be
the interval {y: (z, y}<f}. We will say that f saiisfies the Garsia-Sawyer
condition if [logn(y)dy < oco.

I

<

I
e “Mz

If f¢HBYV, but is bounded, there is {I,}, & sequence of non-overlap-
ping in {a, 5] such that 3 [f(L,})|/n = oo. Let I, = [a,, b,] and let E, be
1

the interval with endpoints f(a,) and f(b,). If y <8, then the generalized
Darboux property implies that #(y) > k. Thus

o0 o0 1
If logn(y)dy>;’m<sn)-1ogn+_§];m(sn) —

sinee Y m(H,)/n = oo and m(l) < co.
1

The corcllary above (proved otherwise) is due to Goffman [3], who
used it in & similar manner to show that a bounded regniated funection
satisfying the Garsia~Sawyer condition satisfies the Goffman—-Waterman
condition [4] for everywhere convergence of its Fourier series.

A review of the above considerations shows that the following result
may be established.
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TumoreM 1. G) If fe@-BY and Z¥(1/i,) < oo, then f<ABY.
ii) If the range of f is contained in & finite snterval I -and Lix) is
k2

a finite-valued increasing funciion such that L(n) ~ 2 1[h; as n — oo,
1
then
fL(n(y))dy< o0
T

implies that feABYV.

9, Tn thiz section we establish our result on the relation be-
tween HBV and the Lebesgue test. We use the conventional notation

h
p(t) = gu(B) = {flo+1) +flo—)—2f (@)}, D(h) = Py(h) =f I (8} 2.
[
The Lebesgue test can be stated as follows ([93, vol. I, p. 65):
The Fourier series of f converges to f(x) at every point & af which

fl@?(i — o+ g0

O(R) = o(h}), as n = mfn >0,

and the convergence 1s uniform over any closed interval of conbinuity where
the second condition is satisfied umiformly.

When we consider the ease of convergence at a point of simple discon-
tinuity, it is clear that we must take f{&) = 3{f(z+0}+f(x—0)} in the
test and in the definition of ¢,{?).

Our principal regult is the following.

TaeoREM 2. If f is a fumction of harmonic boundod varigiion, then
f satisfies the condition of Lebesgue al each point and satisfies the second
condition uniformly over amy dlosed interval of continuity.

Before we pass to the proof of this resulf, we turn to a simpler ques-
tion, in what sense is this best possible, for which we have the following
answer,

TeroreEM 3. If ABY o HBV properly, then there is a conlinuous
fe ABY whose Fourter series diverges al a point.

Proof. There exists a,“0 such that ) a,/3, converges, but 3 a,/n
n 1 1
diverges. Let b, = 3 a;/A;. Let f,(z) be defined in [0,2x] to be g for
. 1 . -
(25— D) = AW B < (T D)%, =1, ...

series of a function f at the point 0, then

] ,n-+1, and 0 elsewhere. ‘;J.‘hen-
in ABV, [Ifull = byyi. I 8,(f) denotes the nth partial sum of the Fourier.

Fourier series of functions of generglized bounded variation
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o
STNIIEEDY AT g
k=0 Fmj(n+d)
2 On 11y, U o
= (21 1 S]Il(’ll—"-}‘-i)

i)
Aa+i

_—2@/(9@—1 >— ) agfi.

nl

Thus |8, = —
bn+1 1
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Z a;[f — oo a8 n —> oo, which jmplies that there is

an feABYV guch that {8, (f)} does not converge. Note that the continuous
functions of 4-bounded variation themselves form a Banach space, since
convergence in ABV implies uniform convergence. The functions f, used
above can ba moditied 50 as to be continuous withont excessively compli-

cating the argument, thus yielding the desired result.
‘We now return to the previous result.
Proof of theorem 2

. We consider first the case of uniform con-

vergence and sappose thab f is continuons at each point of [e, d]. Let

Lin, ) = f}q)m(t —g (- rjn]-—-dz

w

If we assume that f does not satisfy the second condition of Lebesgue’s
test uniformly on [¢, 4], then without loss of generality we may assume
that Oe[e, d] and that there exists 2,0, #, / oc, and a > 0 such thab

L{ng, ry) > a for every k.
Now

[ T
Lin,a) = [ [ = Laln, 2, )+ Duln, @, 6),
T a
and
117
Ly(n, 2, 8) 4—5-7;{J (@40 —f (@ £ )|
a

+ [ \fla—t)—fla—t—m/n)at}

< %{ti |f(B—f (b ) == 0fE) - B —-o0. "

Henee for a sequence 8, 0 there exists a subsequence oy, with u 8, 7 co

such that Lp(ng,, &, 8;) = 0.
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We suppose that {6} is fized and that {m,} and {m;,} are our original
sequences. Let my = [ d/m+11. Then mkr/nk> 85, My 7 o0, and

Ly (i Ty mymfng) 0 a8 & — oo,
For & sufficiently large, say k> %, we have

Safd < Ly (tg, T, ka'-'/Wfk)

oy, TR -1

1
“’f Z I‘Pﬂﬂk (84 i i) (sz(‘H- (¢+1) ﬂ/nk)i (b4 im fog ) at.
=1

Thus for some (0, m/n), We have

mp—1 1
3afd < “'“2 [ (O F /) ,%k(e.;.(@—l-l)w/mn (0+im )
. 1 h
S ) oo O imime) — g, (04 (+ 1)

d=1

ot 4(8) = sup {If(o+ ) ~F(o)l: W< s oe[o—my e, o el

Clearly 4 (k)0 a8 k- co. Choose k, >k such that A4(ky) < a/8. For
each j = 2,3, ..., choose k; > k;_; such that

ey

(i) ' (Z %) Al < af8.

=1

Q) 20my 1) < Ly, s

Foreachj =1,2,3 , there is 6;¢(0, TE/'I’L ) such that, if (4, j) denotes
1qawkj(95+in/nk]_) zpmk7(6 +(@ +1) -rr/'nkj ], we have

'mkj—l

D #li, D)}t > 3ajd.

i=1
From (ii) we have

—1
"ij—l

> pli,fi<e/d forj>1.
=1
Thus
Mgy L
D el j)fi>8aj8  for j>1.
WLk_

To ¢(i,j)} correspond the intervals
I = Qg+ 0 imjmy @y, o+ 634 (141) /i ]
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and
Iy = ]:mki ~ b= (i +1) TE/”JaJ-, gy 6;— i"‘/”kj]é
we have s

(i, §) < ${fTHI+ Pf(L; )

All the intervals corresponding to ¢(¢,j), i iy, —1, are con-
tained in an interval of radius (mk +1) n/nk] amd center Z Condition. -
(i) imaplies that for each § = 2,3,..., these inbtervals overkia‘p at most -
two intervals ecorrespending 1:0“ tp( s 3—1), 1<€i< mkj._]—l. The mono-
tonicity of {#; } and condition (i) imply that these (at most) two intervals
are of the form I;; ., I;r” ; and also that If,j =2,3,..., over-
laps with none of the I, < j.

Let my =1. For each N =1,2,..., we have
~ ng-—l ~ mk—l 5
+SN~Z Z TG 1+Zl 2 < 1FE5)( > al.
1—’TL I*""!k 1 N

As noted above, the mtewa.ls I} in the sum 8% are non-overlapping.
If for each j =1, ..., N —1, we eliminate from Sy the at most two terms .
containing the intervals overlapping with intervals of the (j-+1)-st stage,
we make at most 2(N —1) deletions, and the sum after these deletions
will exceed

a
Sy —2N —
N 8

since 4(k,) < /8. In the above sums denote I by If and Iy by I;.
B {i,}, n =1, ..., m{N), denotes the indices of the terms remaining in
Sy after the deletions, then the intervals I; are non-overlapping. Since
i, 2= 1, We have

mk\/

5‘ —IF@) 1+)

i=1 nml

!f(lu\y | > Na,

which implies that one of these sums exceeds Naf2.

This argument is easily modified to include the pointwise case. The
first condition of Lebesgue is immediate for HBV funetions. If we assume
that the second condition does not hold at » = 0 and that f(0) =0,
then we proceed as above, setting 2, — 0 for all & and '

A(k) = sup{If ) —FE+R)1: 0 < b < wfmy,
[t 2+ R] = [—my w=fng, 0) U(0, myming T},

Condition (i) now implies that the intervals corresponding to q:(‘, 7) do
not overlap with any of the intervals corresponding to ¢(i',j') with |
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< i If we set If = If and I7 = Ij for my,  <é<omy,—1, we have
two sequences of non-overlapping intervals with the property
R o0
NI e D 1T 0 = oo
1 1
3. We now give an indieation of other applications of generalized
bounded variation by establishing a result on absolufe convergence of
Fourier series which generalizes a theorem of Zygmund ([9], vol. I, p. 241).
We note that in the following, ABV may be replaced by a less restrictive
requirement obtained by allowing {Z,} in the definition of variation to
Dbe replaced by a partition in the nsual sense, numbered in either direction.
Suppose now that f is continmous and of period 2x. As usual, we
set g, = (05 +b2)F and let w denote the moduius of continuity of f.
I feABV and V denotes its A-variation, them, letbing Ip = [2+
4(k—L)n/n, z-+krin], we have

EN (TN = Zw Ll fID) F @) A < Voo lm/N) Ag;
Thus - =
o } If (s + =) —flo—n ) de < 2nViyyo(x/N)
0
or
f} ehsinenn /3N < 1 Voo (w /) daye/ N -
Setting ¥ — 2, 1

Zv
3 D G <EVo(r2)2 7 Ay

2=l
Thus
2 Fil
D a2t Y ) <o Vretn2
eSS | PiaatES |
and so

. o

Z‘ on <9} V*Z‘ et (wf2") A

2 1

" Thie convergence of*the geriés on the right is equivalent fo that of

Dl ot (2nin)
1
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it the terms of this series are monotone decreasing from some point on.
If feHBYV, the convergence of that series is equivalent to that of

Z n et (x/n).

We have established the following result for continuous functions
of period 2m.

THEOREM 4, If fe ABV, then the Fourier series of I converges absolutely
if MAin o} (2nfn) is a convergent monotone series. If f ¢HBYV, then the
Fourier series of f converges absolutely if Zn‘* w(r[n) converges.
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