
mathematics of computation
volume 40, number 161
january 1983, pages 91-106

On Convergence of Monotone Finite Difference
Schemes With Variable Spatial Differencing

By Richard Sanders

Abstract. Monotone finite difference schemes used to approximate solutions of scalar con-
servation laws have the advantage that these approximations can be proved to converge to the
proper solution as the mesh size tends to zero. The greatest disadvantage in using such
approximating schemes is the computational expense encountered since monotone schemes
can have at best first order accuracy. Computation savings and effective accuracy could be
gained if the spatial mesh were refined in regions of expected rapid solution variation.

In this paper we prove that standard monotone difference schemes, (satisfying a fairly
unrestrictive CFL condition), converge to the "correct" physical solution even in the case
when a nonuniform spatial mesh is employed.

1. Introduction. We consider the scalar conservation law
d

(1.1) u,+ 2 /•(«)*, = 0,       «(x,0) = «„(*),
(=1

where x G R** and t > 0. Henceforth, we use the summation convention wherever
convenient. This equation frequently arises as a model equation in continuum
mechanics when the dissipative effects are neglected.

Classical solutions may not exist even for smooth initial data. A weak solution of
(1.1) is a bounded measurable function such that for all op G C0DO(Rd X R+ )

(1.2) f        u<p,+fi(u)<pxdxdt = 0,        lim\\u(x,t)-u0(x)\\Li(Ki)-0.
•Vxr+ ' no

Solutions of (1.2) are not necessarily unique. For physical reasons, the limit solution
of the viscous equation as viscosity tends to 0 is sought. This solution, assuming it
exists, must satisfy for all cp G Cx(Wi X R+ ), <p > 0 and all real numbers c

(1.3) -(        |«-c|v, + sgn(ii-c)(/.(«)-/.(c))Vjt(dx<//<0.•/R''XR +

(1.3) is called the entropy condition. Solutions of (1.3) are called entropy solutions.
Kruzkov has shown in [5] that two solutions of (1.3) satisfy

(1.4) ll«(x,/,) -©(*, OH L'OB')* M-K.O -«(JC.'oJIIl'O*)
for all /j > t0. Hence, condition (1.3) guarantees the uniqueness of solutions of (1.2).
All classical solutions satisfy the entropy condition.

We extend the work of Crandall-Majda [1] and Kuznetsov [6]. We shall show how
approximate solutions obtained from monotone finite difference schemes using
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92 RICHARD SANDERS

nonuniform spatial differencing converge in the L1 topology to the unique entropy
solution of ( 1.2). We require essentially no restriction on the spatial grid other than
it be a Cartesian product of partitioned coordinate axes. A sharp Lx rate of
convergence is also shown for these approximate solutions.

I would like to thank S. Osher for his gracious assistance during the preparation of
this paper.

2.1. Definitions and Statements of Theorems. To simplify the analysis we restrict
ourselves to two space dimensions. We lose no generality by doing this.

Partition R2 as follows:

R2=UÜM,

where ilJk = [xj, xj+x) X [yk, yk+x). As a measure of refinement call

8 = max(diam(¿?. k)),

where Bjk is the smallest ball containing Q.>t. Let Ax- =\xj+x — x¡\ and Ayk =
\yk+x — yk | . Define the step function

vs(x,t) = ujk(t)

when rEQ.j.
Now consider the spatial difference operator:

(2.1) Dx(F(vs(x, t))) = j^A+x Fx{ujk(t), Uj_hk(t))

+ ^A+F2(iiM(/),«M_,(0)

when x G Q¡ k. We use the notation A+ , A+ to denote the forward difference
operator in the x, y direction. The numerical flux, F¡(x, y), i = 1,2, is assumed to be
locally Lipschitz continuous in both arguments. We require that Dx(F(vs)) be
monotone and consistent, that is for i = 1,2:

1.    F¡(x, y)    is nonincreasing in x,

(2.2) 2.   Fj(x, y)   is nondecreasingin>>,

3.   Ft(u, «)=/(«)•
The initial data of (1.1) is discretized via the averaging operator Ts,

(2.3) Ts(u0)(x) =j^—.-f   u0(s)ds

when x E Q.>t. Throughout this paper we assume u0(x) E V D Lx n BV.

Theorem I. (The method of lines.) The solutions of the infinite system of differential
equations

^ + Dx(F(vs)) = 0,       vs(x,0) = Ts(u0)(x),

converge in L°°(L'(R2); [0, T]), as positive 8 tends to 0, to the unique entropy satisfying
solution of (\.\).
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CONVERGENCE OF FINITE DIFFERENCE SCHEMES 93

We may also discretize in time. Define At" =\tn+x — t"\ and partition R2 X R+
as follows:

R2XR+=   (J Qj,k,
j, k, n

where iij k = Sljk X [/", t"+1). As a measure of refinement call

5= max(diam(5y';A:)).

Define the time difference operator

D,(vs(x, t)) = At u^/At"

when (x, t) E QJk.

Theorem II. (Fully implicit difference scheme.) The solutions of the difference
scheme

Dt(vs(x, t)) + Dx(F{vs(x, t"+x))) = 0,       vs(x,0) = Ts(u0)(x)

converge in L°°(L'(R2); [0, T]), as positive 8 tends to 0, to the unique entropy satisfying
solution o/(l.l).

The explicit difference scheme poses a technical difficulty not yet encountered. The
method of lines and the fully implicit difference scheme both have infinite domains
of dependence. The explicit scheme does not. We therefore must attach an additional
restriction on the size of the ratios, At"/Axj and At"/Ayk to guarantee that the
numerical domain of dependence contains the domain of dependence of the dif-
ferential equation. This restriction is commonly called the CFL condition.

Define

Ax = max{At"/Ax{),       Ay = max(At"/Ayk)
j,n k,n

and for -|| u01| L» < x, y, w, z < || u0 IIL» define

Hr(x, y) =\ Ft(x, w) - F,(y, w) | +| Ft(z, x) - Ft(z, y) |
for /' = 1,2. The CFL condition is equivalent to requiring that
(2.4) AxHxw"z'(x, y) + A>H2w>'z*(x, y) <\x -y\ .

Theorem III. (Explicit difference scheme.) Suppose (2.4) is satisfied uniformly as
positive 8 tends to 0. Then the solutions of the difference scheme

(2.5) D,(vs(x,t)) + Dx(F(vs(x,t"))) = 0,       vs(x,0) = Ts(u0)(x)

converge in L0O(Lx(R2); [0, T]), as positive 8 tends to 0, to the unique entropy satisfying
solution o/ (1.1).

We also have an Lx rate of convergence for these approximate solutions.

Theorem IV. (Rate of convergence.) Let vs(x, t) be obtained from the schemes of
Theorem I, Theorem II or Theorem III. Then for T> r, > t0 > 0 we have

\\u(x,tx) -v8(x, Oll/Jotf)« ll"(-x,'o) -ü«(^.'o)IIz.i(r2) + Kfti'
where u(x, t) is the unique entropy satisfying solution of(l.l).K depends linearly on the
variation of the initial data and \ tx — t0 \ .

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



94 RICHARD SANDERS

2.2. Examples. We show that two popular explicit finite difference schemes satisfy
conditions (2.2) and (2.4). To simplify the analysis we assume the flux function, f(u),
isC1 for all |«|< II«0II i-

The Lax-Friedrichs scheme utilizes the numerical flux

(2.6) F(uj,uj_x)=X-(f(uJ) +f(uJ_x))-jK(uj-uJ_x),

where A = max, „(At"/AXj). If

(2.7) A|/'(«)|<1

for all | u | < Il «g II z,°°>tnen (2-2) is easily verified for (2.6). Also

AH»*(x, y) = A/2\(f(x) - f(y)) - l/A(x-y) \
+ A/2\(f(x) - f(y)) + l/A(x -y)\ ,

and (2.7) shows that

AHwz(x, y) = A/2(2/A \x - y\) =\x - y\ .

The Engquist-Osher scheme utilizes the numerical flux

(2.8) *■(«,,«,-,) =/-(«,) +r («,-,)
where/ ~ denotes the increasing, decreasing part of/—or more precisely

r(u)= fUmax(f'(s),0)ds+f(0),
Jo

f-(u) = fUmin(f'(s),0)ds.
Jo

One can easily verify that (2.8) satisfies (2.2). By virtue of (2.7) we also have that

AH^(x, y) = A(\r (x) - r (y)\ +\f-(x) - f~(y)\)
= A\(r(x)-f-(x))-(r(y)-f-(y))\
<|x — y I .

3. Preliminaries. In this section we state and prove a convergence theorem
assuming the approximate solutions satisfy some basic inequalities. In Section 4,
these inequalities are established for the schemes of Theorems I, II and III. We also
prove two lemmas, Lemmas 3.3 and 3.4, which are fundamental in obtaining these
estimates. The proofs of Lemmas 3.1 and 3.2 are given in Appendix II.

Let [vs(x, t)} be a family of approximate solutions. Suppose that
1. \\vt(x,t)\\û(Kl)<Ku
2. sup|A|>0(l/| h \)\\vs(x + h,t)- vs(x, Oil L'tf) < K2,
3. || vs(x, t + t) - vs(x, Oil ¿.a*) < K3(\ t | +8),
4. ||t)8(x, OH/.»(»<) ̂#4,

where Kx through K4 are constants independent of 8 and t *z T. Further suppose
that for all tp G C000(Rd X R+ )

5. lim^o/^xR. vs<pt + f(vs)<px dx dt = 0,
and for cp > 0 and all real numbers c

6. lims^0 - /R¿XR+1 vs - c | <p, + sgn(u5 - c)(f(vs) - f,(c))yx dx dt =£ 0.
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CONVERGENCE OF FINITE DIFFERENCE SCHEMES 95

We then have

Proposition 3.1. Let [vs(x, t)} satisfy 1 through 6 above. Also suppose that
vs(x, 0) tends to u0(x) in V(Rd) as 8 tends to 0. Then lims^0 vs(x, t) exists in L}oc(Rd)
on any bounded strip, t E [0, T], and the limit is the unique entropy satisfying weak
solutions of

u, + ft(u)x, = 0,       u(x,0) = u0(x).

To prove Proposition 3.1 we use two lemmas.

Lemma 3.1. Let [vs(x, t)} be an infinite family of scalar functions defined on
Rd X R+, where 8 is positive and tends to 0. Suppose {vs} satisfies 1,2, and 3 of
Proposition 3.1. Then [vs(x, t)} contains a uniformly convergent subsequence in
Ljoc(R'') on any bounded interval [0, T],

Lemma 3.2. Suppose {vs(x, t)} satisfies 1 through 5 of Proposition 3.1. Further
suppose that vs(x, 0) tends to u0(x) in Lx(Rd) as 8 tends to 0. Then every sequence of
{vs(x, 0} has a subsequence converging in L°°(L\oc(Rd); [0, T]) to a weak solution of

(1.2).
Proof of Proposition 3.1. Lemma 3.1 and Lemma 3.2 show every sequence of

{vs(x, 0) has a bounded convergent subsequence in L00(L\oc(Rd); [0, T]) to a weak
solution of (1.2). This result, along with condition 6 of the proposition and the
bounded convergence theorem, shows that the limit solution satisfies (1.3). (1.3)
implies uniqueness. Therefore every sequence {vs}, 8 tending to 0, has a convergent
subsequence to a unique limit, proving every sequence converges.

It follows from Proposition 3.1 that the entropy satisfying solution of (1.2) must
satisfy estimates 1 through 4.

Lemma 3.3. Recall the definition of Ts(u); see Eq. (2.3). If vs(x) = Ts(u)(x), we
have

I- K(*)Hl'<r*) < II«(*)H/.'(**). vs(x) -* u(x) in Lx(Rd) as 8 - 0,
and furthermore if u(x) EBV.

2. VaT(vs(x)) < Var( «(*))•

Proof. We first prove 1. Using (2.3), we see that

\\Ts(u)\\L^2 f (t^T f \»(*)\ ¿s) dx = 2 f \"(s)\ ds = \\u\\ L¡.

If <o G C0(Rd), it is clear that Ts(u) converges to w in Lx(Rd) as 8 tends to 0.
Therefore, since Ts is linear,

\\Ts(u) - ii||£. < ||7¿(w) - w||£i + ||7¿(u - »)||Li + llw - «||£,

<'HT«(«)-«llz.' +2||«-«||Li.
The desired result is now immediate.

To prove 2 we lose no generality by assuming d = 2. In this case it is easy to see
that for fixed y such that yk < y < yk+,

(3.1) Varx(vs(x, y))Ayk = 2 I vs(xJ+x, y) - vs(Xj, y) | Ayk.
j

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



96 RICHARD SANDERS

Using (2.3), this becomes

j
where

('"j {u{ZJ+uy)-u(iJ,y))dtdy
yk     o

^yk =b/t+i -yk\.    ¿,: = ÍX/+I + (i - 0*y

Using the triangle inequahty and exchanging the order of summation and integra-
tion, we can bound the above quantity by

(3.2) fk+,fl\arx(u(x,y))dtdy.
Jyk    Jo

Summing Eqs. (3.1) and (3.2) on k, we obtain

fVaix(vs(x, y)) dy < C ¡\axx(u(x, y)) dydt = ¡Vavx(u(x, y)) dy.
jr j0 jr jR

A symmetric argument completes the proof.

Lemma 3.4. Suppose vs(x) is a piecewise constant function on Rd defined by
»»(*) = ujl,.JdwhenxG 0,„...¿- Then

sup ttt\\vs(x + h)~ vs(x)\\L*(Ri) < Var(e,(*)).
|A|>0 I" I

Proof.  It  again  suffices  to  assume d = 2.  Let  e^ = inî(Axj)  where Ax =
\xj+x— X:\ . For any positive number h we can set

h = (l + e)ex,
where / is an integer and 0 < 6 < 1. Using the triangle inequahty, we have

(3.3) f\vs(x + h,y)-vs(x,y)\dx

<lf\ vs(x + ex, y) - vs(x, y) \ dx

+ / | vs(x + 6ex, y) - vs(x, y) | dx.

Now observe that for yk < y < yk+,

\vs(x + 6ex, y) -vs(x,y)\dx

- J I uJ,k - uj,k \dx+ j | uJ+Xk - ujk | dx
Xj xJ+i-0ex

= 0Ex\Uj+\,k-Uj,k\  ■

Using this identity, (3.3) becomes

/ I »»(* + h, y) - vs(x, y)\dx^(l + 0)ex2 \ «,+ ,,* - ujk \ .
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Multiplying this by Ayk and summing on k, we obtain

f \vs(x + h, y) -vs(x,y)\dxdy

<h2\ «/+i,* - uj,k I kyk = ft ( V**x(v>(x, y)) dy.
j, k J*

Treating y in a similar manner gives

/   \vs(x + hx,y + h2)-vs(x,y)\dxdy
JR2

<Uhxêx\\fVaTx(vs(x,y))dy+\\h2êy\\fVai-y(vs(x,y))dx

^\\hxêx + h2êy\\VaT(vs(x,y)).

Dividing by \\hxêx + h2êy \\ and taking the supremum over | h |> 0 gives the desired
result.

4.1. Proof of Theorem I. For a fixed mesh, the long time existence and uniqueness
of the solution of

(4.1) ^ + Dx(F(v8)) = 0,       vs(x,0) = Ts(u)

is easily obtained by Picard iteration and the following maximum principle.
I. Maximum Principle.

min(us(x,0)) < vs(x, t) < max(us(x,0)).

Proof. For fixed t let m = max(Uj k(t)). Using (2.1) along with conditions (2.2), we
find that dm/dt < 0. This shows the maximum of vs(x, t) is nonincreasing. A
similar argument shows the minimum of vs(x, t) is nondecreasing.

As well as showing long time existence and uniqueness this gives 4 of Proposition
3.1. Next, we verify that the other conditions of Proposition 3.1 are satisfied by
vs(x, t).

II. L1 Boundedness. To show 1 of Proposition 3.1 multiply (4.1) by Ax-, Ayk and
4>j<k where \pJk = sgn(uj k(t)). Sum onj to obtain

.(4-2)   jt2\uM\AxjAyk = -£ Ax+ Fx(-, ■ )^J¡kAyk - 2 ^ F2(-, • )^kAXj
j j j

which is true in the sense of distributions. Since Ax Fx(0,0) = 0, we have

-2KFx(-,-)tM = -2K(FA-,-)-Fx(o,o))tM.
j j

Summing by parts and adding and subtracting Fx(Q,Uj_x k), this becomes

2{Fi(Uj,k>»j-i,k) - FA°> uj-\,k))(^j,k ~ 4>j-\,k)
j

+ 2 (*,(0, uj-hk) - Fx(0,0))(iM - »/-._,,,).
j

Each term of the above sums can be seen to be nonpositive by virtue of 1 and 2 of
(2.2). Therefore the first term on the right-hand side of (4.2) is nonpositive.
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98 RICHARD SANDERS

Eliminate this term, sum the result on k and repeat the same argument to obtain

5ll«.(*,0llL' = ^2l«M|A*yAÄ<0.
j,k

This estimate along with Lemma 3.3 shows

\\vg(x,t)\\Ll< ||ii0(x)||£i

for all t > 0.
III. Variation Boundedness. This is the single most important estimate we obtain.

At no time is the solution assumed to be translation invariant. Hence, a similar
argument applies with few modifications to problems in which the flux functions are
explicit functions of x and t.

To obtain 2 of Proposition 3.1 one should observe that

|a>m = -aí(^a^i(..-)h-¿f2(-,-)).

Multiply this by Ayk and \pJk where ^Jk = sgn(uJ+Xk — uJk). Summing on/, we
have

(4.3) |2|aî«m|Aa =-2a:(^a:f,(.,.) + a;f2(.,.)^m.

Summing by parts, the right-hand side of (4.3) becomes

(4.4) 2 ^K f,(., •)(*,,* - *j-uk)-2K K F2(-,-Hj,k.
j      j j

As before
a: f,(-, o(*M-*,-,,*) <o.

So we see the first term of (4.4) is nonpositive. Sum on k and make a similar
observation on the second term to obtain

jt2\Kuj,k\Ayk<0.
j.k

A symmetric argument shows

f 2|A,+ «M|A*,..<0.j.k
This, together with Lemma 3.3, shows

Var(us(x,0)<Var(Mo(x)).
Using Lemma 3.4 completes the proof.

IV. Continuity in Time. For any conservation law with Lipschitz continuous fluxes,
Lipschitz continuity in time follows immediately from variation boundedness. We
see this for the method of lines by integrating (4.1) from t to t + t. Since Ft(x, y) is
Lipschitz continuous, the triangle inequality gives us

\vs(x,t + T)-vs(x,t)\AXjAyk

<K2 /'+iT|(| A; «,_m I Ayk + | A^ «m_, I) Axjdt.
1 = 0   '

Summing on/ and k gives condition 3 of Proposition 3.1.
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V. Weak Solution. The proof of 6 of Proposition 3.1 is similar to the proof of the
Lax-Wendroff theorem, [8], and will be omitted.

VI. Entropy Solution. To show 7 of Proposition 3.1 we make use of the inequality

K [(F,(-, • ) - Fx(c, c)Hy>J < A," (F,(-, • ) - Fx(c, c))^k

where \¡/jk = sgn(uj k — c). Using this along with (4.1) gives

(4.5) ||«M -c\AxjAyk + A+X[(FX(-, ■) - F,(c, c))*M] AÄ

+Ay-[(F2(-,-)-F2(c,c))rj,J,k]áxj*0.

The remainder of the proof is identical to a continuous time version of the proof of
the Lax-Wendroff theorem.

This completes the proof of Theorem I.

4.2. Proofs of Theorems II and III. For the fully implicit scheme the proofs of
properties 4 through 6 of Proposition 3.1 are routine and will be omitted. Properties
1 and 2 are immediate from the proofs of Section 4.1 by noting that

2 | «;,r | AXjAyk = 2 W¡Xxy:kxAxjAyk
j, k j, k

< 2 ulk^txAxjAyk < 2 I u",k I ̂ Ayk,
j.k j,k

where \¡i"kx = sgn( «"£'). Property 3 follows directly from variation boundedness in
the same manner as before since

l|u8(x, t + t) - vs(x, Olli'
M-\

<   2   \\vs(x,t,+ x)-vs(x,t')\\l} + \\vs(x,tM)-vs(x,t + j)\\L}
i=N

<C(|t| +8).

So we see there are no difficulties extending the results of Section 4.1 to the fully
implicit difference scheme.

For the explicit finite difference scheme we restrict ourselves to one space
dimension to obtain the estimates of Proposition 3.1. The extension to higher
dimensions is similar to the proofs in Section 4.1. The proofs of the maximum
principle, continuity in time and weak limit solution are routine and will be omitted.
L1 boundedness and entropy satisfying limit solutions follow directly from an
inequality of Crandall and Majda [1].

Define
uV c = max(«, c),       u A c = min(«, c).

Crandall and Majda have shown for any real number c

(4.6) A+ | «; - c | Axj + A+ Fc(-, ■ )A/" < 0,

where

fc(- , ■ ) = f(«; v c, «;_, v c) - f(«; a c, «;_, a c).
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To see {ü8} is bounded in L1 sum (4.6) on/ and set c = 0. To see the limit solution
in entropy satisfying observe that

Fc(«,«) = sgn(«-c)(/(«)-/(c))

and continue in the manner of the proof of the Lax-Wendroff theorem.
We now need only show the variation remains bounded. Using (2.5) we have

(4.7) ax+«;+1=a:(«;-a,a:f(-,.)),

where Xy = Af/Axj. Multiply (4.7) by t///+1 where t///+1 = sgni«^,1 - uj+x) to
obtain

(4.8) | A," «;+1 1 = 1 Ax+ uj I + (y, - \j+xAJ+] + \Bj)(4>j'+l - *;)

- (XJ+iAJ+i + X,5,){*/+1 - */) - (At \j(Aj + Bj))y,

where

Aj = F(uj+X, uj) - f(«;, «;),     Bj = F{uj, «;) - f(«;, «;_,),

yj = (uJ+l-uj) + \jAj-\J+lBJ+l.

Summing on/, (4.8) becomes

(4.9)  2|a>;+M=2|aí«;i+2y,U/+1-^) + 2M^/-^-+.1)y y y
+2My(+rI-+;-i)-y

The last two terms on the right-hand side of (4.9) are nonpositive by 1 and 2 of (2.2).
Also

Yy+/=l«;+.-«;i-M^|-xy+1|^+I|

>l«7+1 - «71 -a/7""+"k>(«;+1, «;) ^ o,
so we have Y/(4'/+ ' ~~ >/'/) ^ 0- We conclude that

2|Ai«7+I|<2|AJ«7|.y y
This estimate together with Lemmas 3.3 and 3.4 completes the proof.

4.3 Proof of Theorem IV. In this section we state and offer an alternate proof of a
little known theorem of Kuznetsov [6]. We then apply this result to the difference
scheme of Theorem III. The application of Kuznetsov's result to the schemes of
Theorems I and II follows in a similar manner.

Lemma 4.1. Let w E H¡(Rd X R). Suppose the support of u is contained in {(x, t):
\x\< l,\t\< 1}. Define

U«-T~ TR^d'T)-TRl

Then
1        1

t0R,riiz.i,(R''xR) ** y y    Tí /      zJ|(R''XR)'
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Proof. Using the definition of uRT and the change of variables t/T -» /' and
x/R -* x' we have

Wur,tWl\ = f ,     If

from which the desired result is obvious.

Proposition 4.1 (Kuznetsov). Let vs(x, t) be an approximate solution of (1.1)
satisfying the stability conditions of Proposition 3.1, (conditions 1 through 4). If for all
nonnegative and symmetric u(x — x',t — t') E C™(Rd X R) and all bounded g(x', t')
G L00(L1(R'/); [0, T]) we have

(4.10) -f\ v8 - g\u, + sgn(ü8 - g)(/,(o4) -/,(g))«X/<fc
■'s

<c|r, - í0|S||(o||Li(R¿XR),       s = (Rd X [t0, ?,]) ,ds = dxdtdx'dt',

then for T>tx >t0>0,

\\u(x, tx) -ü8(x,/,)||li(R¿)< ll«(x,í0) -vs(x, t0)\\Li(Rl) + kJs ,

where u(x, t) is the unique entropy satisfying solution o/(l.l). K depends linearly on the
variation of the initial data and | tx — t0 \ .

Proof. Let m(x', t') be the unique entropy satisfying solution of (1.1). Let t>8(x, 0
be an approximate solution satisfying conditions 1 through 4 of Proposition 3.1 as
well as satisfying (4.10). Consider

(4.11) / = -/[| u - vs\ (<p, + T/.) + Fiu(vs)(<pXi + <px.)] ds,

where

Fiu(vt) = sgn(u8 - u)(f(vs) -/(«)),

s = (Rd X R+ )2, ds = dx dt dx' dt'.

If <jp is defined by ß(t, t') u(x — x',t — t'), where ß and w are smooth, nonnegative
functions, / becomes

- f[\u - vs\q>r + FiVs(u)(px,] ds,

~fß[\ « - «S I <°r + *}„(©,)»,] <&,

- /1 u — vs | yßrw ds.
•'s

Since «(x', i') is an entropy satisfying solution, (1.3) shows the first term above is
nonpositive. Therefore

(4.12) /< - (ß[\ u - v81 <o, + FlB(o,)«J ds - /| « - », | ß,a ds.
Js s

Also, for this choice of <p,

<Px, + 9x', = °' Wi + WC = °'

3to
3? 4 3to

9x'; o"x'a'i'<max|-,—jllwl
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which shows

(4.13) I=-[\u-vs\(ß, + ßt,)uds.

Combining (4.12) and (4.13) yields

(4.14) -f\u-vt\ß,.ads<- Jß[\ u-vg\a, + Fiu(vs)ax] ds.
^s s

Now let 6 be a nonnegative, symmetric, C0°°(R+ ) function having unit mass.
Define

9,

and

<'>=}«(;)

()={l,     tE[t0,tx],
X^xK'f     \o,    otherwise.

Let xe(0 be defined by the convolution

xÁt) = {xll0,h]*et)(t).

It is easily shown that xt(0 > 0, xE(0 e Q°(R+ ) and

jtxXt) = ee(t-t,)-et(t-tx).

In equality (4.14) set

ß(t,t') = xMxlf).
Sending e to 0, (4.14) becomes

(4.15)        f | u(x', tx) — vs(x, t) | to(x — x',t— tx) ds2
J*2

- j | u(x', t0) - vs(x, t) I u(x - x',t - t0) ds2 < F,

where

s2 = RdX (Rd X[t0,tx]),       ds2 = dxdx'dt

and

E = P P Í,    Jl « - »« I «i + F^io,)« 1 ds.
Jl0 Jt0 JRdXR'"- ,J

Now let to be a nonnegative, symmetric, C0°°(Ri' X R) function having unit mass.
Further suppose that

support(w) C (-R, R) X (-T, T),
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where T =£ (i, - /0). It is not hard to show that

f \ u(x', tQ ,) - vs(x, t) | <o(x - x',t - tox) ds2

1

103

~ 2 /) "^' '°^ ~ °'(x' ^ ' dx

< sup sup   /   I u(x + h, t) — u(x, t) | dx
t     \h\<RJ«1

+ sup   sup    /  I vs(x, / + t) — vs(x, t) I dx
t     0<T<TJKd

= Xx(u,R) + X,(vs,T).
This inequality along with inequahty (4.15) gives

(4.16)       \\u(x,tx)-vs(x,tx)\\LHRi)- II«(*,/„) -vs(x, /0)ll£>(■')

<\x(u,R) + \,(vs,T) + E/2.

Conditions 2 and 3 of Proposition 3.1 show that

Xx(u,R)^K2R,       \,(vs,T)^K3(T+8)

and (4.10) required that
E<c\tx - t0\8\\u\\Ll¡(ieiXR).

Therefore, with the aid of Lemma 4.1 we see that the right-hand side of (4.16) is
bounded by

K[R + 8/R + T+8/T].
Minimizing this quantity with respect to R and T gives the required result.

To obtain (4.10) of Proposition 4.1 the approximate solution must satisfy an
approximate entropy condition. This will become evident in the proof of Theorem
IV.

We need one further simple lemma.

Lemma 4.2. Let w G H¡(Rd X R). Then

\\u(x + h,t + t) - a(x, f)Hz,'(R.'xR)<(d'H +| t|)II«||£i(R¿XR).

Proof. By the completeness of H¡ we may assume u E C™(Rd X R), in which case

u(x, t + t) - a(x, t)=fjp(x,t+ t') dt'

and
h, 3w

}(x + h¡, t) - u(x, t)= j '=^,(x + x', t)dx'

This identity, the triangle inequality and exchanging the order of integration shows
that

r|T||| 3w\\a(x + h, t + t) - w(x, OU û < Í     ■£     dt' + f
Jo  II «'   /.' •'o

The final estimate is now easily seen.

i'M 3w
3x, dx'.
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Proof of Theorem IV. Let vs(x, t) be obtained from an explicit finite difference
scheme of the form (2.5) and suppose vs satisfies the approximate entropy condition
(4.6). Then t>8 satisfies condition (4.10) of Proposition 4.1.

We again lose no generality assuming d = 1. Let vs be a function of x, t and let g
be a function of x', t'. Define

Fg(vs) = sgn(vs-g)(f(vs)-f(g)).

Since t>8(x, 0 is piecewise constant

(4.17)       -/    [\v,-g\a, + Fg(vs)ax]ds
JsXs

= -/   2fJ.\u]-g\", + Fg(u!)o3x]dxdt
slJ,n   ®j

dx'dt',

where s = R X [t0, tx] and ds = dx dt dx'dt'. Integrating and applying the integral
version of the mean value theorem along with summing by parts shows the
right-hand side of (4.17) is equal to

/[ 2 K\ «7 - g I »fe - *'>'n+l - f) A*,

+ A+ Fg(u])a(xj+X - x', t" - t')At"  dx'dt',

where £, G [xp xj+x] and t" G [t", t"+x]. Adding and subtracting

<o(x,+ 1 - x',r"-t'),

this becomes

(4.18)     /2 ^XjIKI«7 -g\{<*{tj - x'>'"+1 - '')
sj.»

-u(xj+1 -x',rn-t'))] dx'dt'

+/ 2 [KI «7 - « I Ax,. + a: f,.(«;)a/"] w(x,+1 - x', t" - r) ¿x'*'.*y, «
The triangle inequality shows that the first term of (4.18) is bounded by

2 Ax,| A+ u," \f\ w(x' - ij, t' - t"+x) - u(x' - xJ+x, t' - r") | dx'dt'.
j."

Lemma 4.2 along with the continuity in time estimate, (condition 3 of Proposition
3.1), shows this quantity is bounded by
(4.19) *3(|^-/0|+S)-2ól<o||L,(RXR).

To estimate the second term of (4.18) recall the definition of Fc(-, •); see Eq.
(4.6). Adding and subtracting this, the second term of (4.18) becomes

(4.20) f 2 [A,+ I «," - g | Ax, + A+ Fg(uJ, «;_,)Ai"] • to(x' - x,+ 1, t' - r") dx dt
\ n

+ f2*t"K [Fg(uJ, uj) - Fg(u], uJ_x))-co(x' - x,+ 1, t' - r") dxdt.

3 /, n

yJ>n
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Inequahty (4.6) shows the first term above is nonpositive. Using the fact that the
variation of vs is bounded, we can bound the second term of (4.20) by

(4.21)     f2M"\Fg(uj,«7) - Fg(«;, «;_,)

i/i ¿UR'xR) 9/ +
l'îr^xr)

•|w(x' -Xy,t' -t") - w(x' - xj+x,t' - t")| dxdt

<2K-K2\tx-t0\ •5||W1|L,(RXR).

Combining (4.19) and (4.21) completes the proof.
We see the crucial part of the proof of Theorem IV was the utilization of the

approximate entropy condition in Eq. (4.20). The other schemes discussed also have
approximate entropy conditions; see Eq. (4.5). Therefore this result extends to the
method of lines and the imphcit finite difference scheme in a similar manner.

Appendix I. Definitions of Spaces and Norms. 1. The space ÇfiJR') is defined to
be the space of all compactly supported functions that have P continuous deriva-
tives.

2. The space Lx(Rd) is the completion of C^'(Rd) under the Lx norm.
3. The L\(Rd X R) seminorm is defined as

M
"xi   z.'(R'xR)

4. The space Hxx(Rd X R) is the completion of C^(Rd X R) under the norm

II / II ///(IT'XR) =  ll/llí.11(R¿XR) +  H / Il ¿.'(R^XR)-

5. The variation of a real-valued function defined on R2 is defined by

Var(/(x, y)) = fVarx(f(x, y)) dy + fvary(f(x, y)) dx

where Varxf(x, y) is the usual variation oîf(-,y). The extension of this definition
to higher dimensions is obvious.

Appendix II.
Proof of Lemma 3.1. Let {sk} be a countable dense subset of [0, T]. Inequalities 1

and 2 show there exists a subsequence of {u8}, say {vs }, such that vs(x,sx) -»
v(x, sx) in L{oc(R''); see [2]. Further, a Cantor diagonalization argument gives us a
subsequence that converges at every sk. For convenience, call this subsequence {vs}.
This is the required sequence.

Partition [0, T] into N intervals (/,, ti+x), where the /'s are selected from {sk} and
each interval has length less than e. From above we see that {t>8} is Cauchy at each
t¡, so

\\vgi(x,ti)-vg2(x,ti)\\<e   V8x,82<A(ti).
Let A = min(A(i,),...,A(tN)). Using 3 of Proposition 3.1 we have for any t in [0, T]

||ü8i(x,0 -Vg2(x,t)\\L,

< ||u8|(x, 0 - vSi(x, i,.)||£. + ||o8i(x, ',■) - vSi(x, i,.)||£l

+ ii«Í2(x, 0 -%(*>OHl'

<K3[2\t-t¡\ +8X +82] +£.
Choosing 8X,82< min(A, e) and \t¡ — t\< e completes the proof.
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Proof of Lemma 3.2. Since vs converges boundedly in L^, uniformly in the strip
[0, T], there exists a bounded subsequence that converges pointwise a.e. to v. <p is
compactly supported, therefore the bounded convergence theorem along with 5 of
Proposition 3.1 shows v is a weak solution. We also have, using 1, that

\\v(x,t) - U0(x)\\Li

< \\v(x,t) -vs(x,t)\\L, + \\vs(x,t) -u8(x,0)||L, + Ilu8(x,0) -M0(x)||L,

<e + K3(\t\ +8) + e,

which shows

lim||t;(x, 0 - "oi^)!! L1 = °-
no
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