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Abstract 

 

    The convergence of q- homotopy analysis method (q-HAM) is studied in the 

present paper. It is proven that under certain conditions the solution of the equation: 

�1	 � 	����	�∅��, ��� � 		���� � ����∅��, ��� � 0  associated with the original 

problem exists as a power series in �.So,under a special constraint the q-homotopy 

analysis method does converge to the exact solution of nonlinear problems. An error 

estimate is also provided. The theorems outlined in the paper shows that the 

convergence of the q- homotopy analysis method is more accurate than the 

convergence of the homotopy analysis method (HAM). Illustrative examples are 

presented to illustrate the effectiveness of the theoretical results. 
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 1. Introduction 
 

    In a series of papers[3-14], Liao developed and applied the homotopy analysis 

method(HAM) to deal with a lot of nonlinear problems. The HAM provides a simple 

way to ensure the convergence of a solution in a series form under certain conditions. 

The Homotopy Analysis Method (HAM) is based on homotopy, a fundamental 

concept in topology. Briefly, in HAM, one constructs a continuous mapping of an 

initial guess approximation to the exact solution of the problems to be considered. An 

auxiliary linear operator is chosen to construct such kind of continuous mapping and 

an auxiliary parameter is used to ensure convergence of the solution series. The 

method enjoys great freedom in choosing initial approximation and auxiliary linear 

operator.In 2004, Liao published the book [15] in which he summarized the basic 

ideas of the homotopy analysis method and gave the details of his approach both in the 

theory and on a large number of practical examples. 

    M. A. El-Tawil and S.N. Huseen [2] proposed a method namely q-homotopy 

analysis method (q-HAM) which  is a more general method of HAM.The essential 

idea of this method is to introduce a homotopy parameter, say �, which varies from 0 

to 1 �⁄  , � � 1 and a nonzero auxiliary parameter �. At � � 0, the system of equations 

usually has been reduced to a simplified form which normally admits a rather simple 

solution. As � gradually increases continuously toward 1 �⁄ , the system goes through 

a sequence of deformations, and the solution at each stage is close to that at the 

previous stage of the deformation. Eventually at � � 1 �⁄ , the system takes the 

original form of the equation and the final stage of the deformation gives the desired 

solution. 

 

  

2. The q-Homotopy Analysis Method 
 

  To illustrate the basic ideas of the q-homotopy analysis method (q-HAM), consider 

the nonlinear boundary value problem 

 

������ � 0	; � ∈ Ω	,							� ����, ��
��� � 0	; � ∈ �                                                       (1) 

 

where ��� defined over the region Ω  is the function to be solved under the boundary 

constraints in B defined over the boundary �  of Ω  . The q- homotopy analysis 

technique defines a homotopy ∅��, �� ∶ 	!	 " 	 �0, #
$� 	→ 	!	 so that  

 

&�∅, �� � 	 �1	 � 	����	�∅��, ��� � 		���� � ����∅��, ��� � 0                              (2) 
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where � ∈ �0, #
$�, � � 1  denotes the so-called embedded parameter, � ' 0  is an 

auxiliary parameter, 	  is a suitable auxiliary linear operator, �  is an initial 

approximation of equation (1) satisfying exactly the boundary conditions . It is 

obvious from equation (2) that 

 

&�∅, 0� � 		(∅��, 0�) � 		���,			&�∅, #
$� 	� *

$ 	��∅��, #
$��                                         (3) 

 

As � moves from 0 to  1 �⁄ , ∅��, �� moves from ���� to ���. In topology, this called 

a deformation and 	�∅��, ��� 	� 		��� and ��∅��, ��� are said to be homotopic. The 

solution of equation (2) exists as a power series in � as we proved in theorem 3.1. 

 

∅��, �� � ���� , �#��� , �--��� , ⋯ � ∑ 0���1
02� �0                                      (4) 

 

The appropriate solutions of the coefficients 0���  in (4) can be found from the 

homotopy deformation equations, see [2]. Hence, the approximate solution of equation 

(1) can be readily obtained as 

 

��� � 	 lim6→7
8

∅��, �� � ∑ 90��, �� �1
02� ∑ 0���	�#

$�
01

02�                                      (5) 

 

  It was found that the auxiliary parameters �  and �  can adjust and control the 

convergence region and rate of homotopy series solutions. It should be noted that in 

the case of � � 1, in equation (2) the standard homotopy analysis method ( HAM) can 

be reached. 

 

 

3. Main Result  
 

Theorem 3.1: The solution of equation (2) together with equation (1) exists as a 

power series in�, i.e.  ∅��, �� � ∑ ∅0���1
02� �0 If the nonlinear operator preserves on 

the power series in�. 

 

Proof: 

At � � 0, then 	�∅��, 0�� � 	���,  hence ∅��, 0� � � � ∅�. 

At � ∉ ;0, #
$<  and using Picard approximations we have: 

 

�1	 � 	����	�∅#��, ��� � 		�∅��� � ����∅�� � 0 

 

Therefore 
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∅#��, �� � ∅� , �
1 � �� �		=#���∅��� � ∅� , ��1 , �� , ����- , ⋯ ��			=#���∅��� 

             	� ∅� , ∑ ∅#
>1

>2# ����> 
 

Where ∅#
> ��� � �>=#	�		=#���∅���	 

 

∅-��, �� � ∅� , �
1 � �� �		=#���∅#�� 

 
													

														� ∅� , ��1 , �� , ����- , ⋯ ��			=#?∑ @#
A1

A2� �AB 
           			� ∅� , �			=#�@#

��� , �			=#�@#
# , �@#

���- , �			=#�@#
- , �@#

# , �-@#
���C , 

               		�			=#�@#
C , �@#

- , �-@#
# , �C@#

���D , ⋯ , �			=#�@#
0=# , �@#

0=- ,
																			�-@#

0=C , ⋯ ,	�0=#@#
���0 , ⋯ 

          				� ∅� , ∑ ∅-
A���1

A2# �A 

 

Where ∅-
A��� � �		=# ∑ �A=#=>@#

>A=#
>2�  and  ��∅#��, ��� � ∑ @#

A1
A2� �A. 

Proceeding in this way, the m-th approximation ∅E��, �� is given by: 

 

∅E��, �� � ∅� , ∑ ∅E
A ���1

A2# �A  

 

Where ∅E
A ��� � �		=# ∑ �A=#=>@E=#

>A=#
>2�  and ��∅E=#��, ��� � ∑ @E=#

A1
A2� �A. 

Now, if  limE→1 ∅E> ��� � ∅> ��� then: 

 limE→1 ∅E��, �� � ∑ �limE→1 ∅E
A ����A1

A2� � ∑ ∅A����A � ∅��, ��1
A2�   

 which is a power series in �. 
 

Theorem 3.2. Suppose that F ⊂ ! be a Banach space denoted with a suitable norm 
‖. ‖. Assume also that the initial approximation ���� remains inside the ball of the 

solution ��� . Taking I ∈ !  be a constant, then for a prescribed value of �  and 

	0 J I J � , If 

‖90K#��, ��‖ L M
$ ‖90��, ��‖ for all N , 

Then the series solution ∑ 90��, �� �∞

02� ∑ 0���	�#
$�

0
∞

02�  is convergent over the 

domain of definition of �. 

 

Proof: 

   In compliance with the ratio test for the power series in � , the proof is clear. 

However, in order to give an estimate to the error of q-homotopy analysis method, we 

give the whole proof here. 
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   Let  OA��, �� denote the sequence of partial sum of the series (5), we need to show 

that OA��, �� is a Cauchy sequence in F. For this purpose, consider, 

POAK#��, �� � OA��, ��P � P9AK#��, ��P L I
� P9A��, ��P 

                                      L �M
$�

-
P9A=#��, ��P L ⋯ �M

$�
AK#

‖9���, ��‖                         (6) 

For every Q, R ∈ �, R � Q, making use of (6) and the triangle inequality successively, 

we have, 

POA��, �� � O>��, ��P
� P�OA��, �� � OA=#��, ��� , �OA=#��, �� � OA=-��, ��� , ⋯					
, �O>K#��, �� � O>��, ���P 

                        L POA��, �� � OA=#��, ��P , POA=#��, �� � OA=-��, ��P , ⋯ ,
																											‖O>K#��, �� � O>��, ��‖ 

                        L �M
$�

A
‖9���, ��‖ , �M

$�
A=#

‖9���, ��‖ , ⋯ , �M
$�

>K#
‖9���, ��‖ 

                =�M
$�

>K#
‖9���, ��‖ ∑ �M

$�
EA=>=#

E2� � #=�S
8�

TUV

#=S
8

�M
$�

>K#
‖9���, ��‖   (7) 

Since 0 J I J � and  � � 1 , we get from (7) 

 

limA,>→1POA��, �� � O>��, ��P � 0                                                                                (8)  

 

 Therefore, OA��, �� is a Cauchy sequence in the Banach space F, and this implies that 

the series solution (5) is convergent.  

   It should be noted that, the series solution ∑ 90��, �� �∞

02� ∑ 0���	�#
$�

0
∞

02�  is 

divergent if 

‖90K#��, ��‖ W $
M ‖90��, ��‖ for all N 

 

Remark 3.3: As special case, If � � 1 in above theorem , then we get the same result 

of theorem (1) in [16]. 

Theorem Theorem Theorem Theorem 3333.4.4.4.4:::: Assume that the series solution ∑ 9A��, �� �∞

A2� ∑ A��� 	�#
$�

A
∞

02� is 

convergent to the solution ��� for a prescribed value of �. If the truncated series 

                              ∑ 9A��, �� �X
A2� ∑ A���	�#

$�
AX

A2�   

is used as an approximation to the solution ��� of problem (1), then an upper bound 

for the error, YX��� is estimated as 

  

                         YX��� L �S
8�

Z[7

#=S
8

‖9���, ��‖                                                                  (9)                                                             
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Proof: 

Since the series ∑ 9A��, �� �X
A2� ∑ A���	�#

$�
AX

A2�  is an approximation to the solution 

��� ,then: 

��� � lim
A→1

OA ��, �� 

Where OA��, �� denote the sequence of partial sum of the series 

∑ 9A��, �� �X
A2� ∑ A���	�#

$�
AX

A2�   

Making use of the inequality (7) of Theorem (3.2), we immediately obtain 

 

‖��� 	� OX��, ��‖ L �S
8�

Z[7

#=S
8

‖9���, ��‖                                                                    (10) 

 

Remark 3.5: As special case, If � � 1 in above theorem , then we get the same result 

of theorem (3) in [16]. 

It should be noted that as � increases the upper bound for the error (YX� is decrease, 

hence the convergence of q-HAM is faster than the convergence of HAM (q-HAM ; 

� � 1�. 

 

 

4. Illustrative Examples 
 

Example 4.1: Consider the nonlinear differential equation 

                            
��
�� � -	,					�0� � 1                                             (11) 

We choose ���� � 1	and the linear operator 	�∅��, ��� � �∅��,6�
��  . 

We define a nonlinear operator as:  

 

��∅��, ��� � �∅��,6�
�� � ∅-��, ��, 

 

Now the solution of equation (2) together with equation (11) for \ � 1 becomes: 

 

∅E��, �� � � , 6*
#=$6 	=#���∅E=#��  

 

Hence: 

 

∅#��, �� � 1 � ��� � ����2 � ��2��3 � ��3��4 � ��4��5 , a���6  
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∅-��, �� � 1 � ��� , ����� � � , ����2 , ��2�2�� � ��2� , 2�2��2 � �3�3

3 � �3 ,
																							��3�2�2� � ��3� , 3�2�2�2 � �3��3��4 , ��4�2�3� � ��4� , 4�2�3�2 �
																							2�3�2�3��5 , a���6  

∅C��, �� � 1 � ��� , ����� � � , ����2 � ����� � � , ���2�3 , 1
3 ����9�2� � 9��2 �

																							3�3 , 18�2�� , 9��2� � 3�3�2 � 9�2��2 , 2�3�3��4 � 1
6 ����36�2�2 ,

																							24��3 , 6�4 � 72�2�2� � 24��3� , 2�4�2 , 24�3��2 , 36�2�2�2 � 3�4�3 �
																							16�3��3 , 2�4�4���5 , a���6  

∅D��, �� � 1 � ��� , ����� � � , ����2 � ����� � � , ���2�3 , ����� � � ,
���3�4 �	 1

15 ���60�3�� , 90�2�2� , 60��3� , 15�4� � 180�3��2 � 180�2�2�2 �
60��3�2 , 30�4�3 , 180�3��3 , 90�2�2�3 � 40�4�4 � 60�3��4 , 13�4�5���5 , a���6  

⋮  
∅E��, �� � 1 , �� ∑ ��1�>��� � � , ���Q�1�QE

>2# , a���\,1  

 

Now: 

 

limE→1 ∅E��, �� � 1 , �� ∑ ��1�>��� � � , ���Q�1�Q1
>2#   

 

Which is a power series in �. 
 

Example 4.2: Consider the nonlinear partial differential Burger’s equation  

 

� , g � gg	,				�h, 0� � 2h                                                                       (12) 

 

That has been found to describe various kind of phenomena, such as a mathematical 

model of turbulence and the approximate theory of the flow through a shock wave 

traveling in a viscous fluid [1]. 

 

The exact solution of this problem is known to be 

 

�h, �� � -g
#K-�                                                                                                      (13) 

 

For q- HAM solution we choose the linear operator : 

 

            	�∅�h, �; ��� � i∅�g,�;6�
i�                                                                                (14) 

 

with the property : 

 

           	�j#� � 0,    
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where  j# is constant. Using initial approximation    ��h, �� � 2h ,  

we define a nonlinear operator as  

 

��∅�h, �; ��� � k∅�h, �; ��
k� , ∅�h, �; �� k∅�h, �; ��

kh � k-∅�h, �; ��
kh-  

 

We construct the zero order deformation  equation: 

 

�1 � ���	�∅�h, �; �� � ��h, ��� � ����∅�h, �; ���. 
 

The \�* order deformation equation is: 

 

	�E�h, �� � NEE=#�h, ��� � �!E�E=#
l �h, ���                                                    (15) 

 

with the initial conditions for \ � 1  

 

E�h, 0� � 0                                                                                                              (16) 

 

where: 

 

          NE � m0																\ L 1
�						n��oIpQqo  

 

and 

 

!E�E=#
l �h, ��� � 1

�\ � 1�!
kE=#��∅�h, �; ���

k�E=# ⎹62� 

                            � i�tU7�g,��
i� , ∑ >�h, ��	 i

ig E=#=>�h, �� � iu

igu E=#�h, ��E=#
>2�  

 

Now the solution of equation  (12) for \ � 1 becomes 

 

     E�h, �� � NEE=#�h, �� , � v !E�E=#
l �h, q��wq , j# 

 

where the constant of integration  j# is determined by the initial conditions (16). 

Then, the components of the solution using q- HAM are: 

 

E�h, �� � 4���� , ��1 , 2���\�1h ,     for  \ � 1,2,3, … 

 

Hence the series solution expression by q- HAM can be written in the form: 
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�h, �; �; �� ≌ 9X�h, �; �; �� � ∑ >�h, �; �; �� �#
$�

>
	X

>2�                                           (17) 

 

Equation (17) is an approximate solution to the problem (12) in terms of the 

convergence parameters �	z�w		� . To find the valid region of � , the �-curves given 

by the 10
th

 order q-HAM approximation at different values of h	, �	z�w	� are drawn in 

figures (1,2,3and 4). These figures show the interval of  �  at which the value of 

9#��h, �; �� is constant at certain values of  h	, � and � .We choose the horizontal line 

parallel to h � zhQq	��� as a valid region which provides us with a simple way to 

adjust and control the convergence region of the series solution (17). From these 

figures , the valid intersection region of � for the values of h	, �	z�w	� in the curves  

becomes larger as � increase. Figure (5) show the �-curves given by the 30
th

 order q-

HAM approximation at different values of h	, � with  � � 100 . 

Figure (6) show the comparison between 	9#�  of HAM and 	9#�  of q-HAM using 

different values of � with the exact solution (13), which indicates that the speed of 

convergence for q-HAM with  � W 1 is faster in comparison with � � 1.  

The Absolute errors of the 10
th

 order solutions q-HAM approximate at h � 1 using 

different values of � W 1 compared with 10
th

 order solutions HAM approximate at 

h � 1  are calculated by the formula 

 

Absolut Error� {|g}~� � }��M}g{                                                                          (18) 

 

 

Figures (7,8,9 and 10) show that the series solution obtained by HAM is more accurate 

at �0 J � L 0.4�  but at larger �  the series solutions obtained by q-HAM at � W 1 

converge  faster than � � 1(HAM). 

 

   It should be noted that	limE→1
|�t[7|
|�t| � |� , ��1 , 2��| J �. Thus, in accordance 

with Theorem 3.2, this holds for the values of  
=#
- J � J =-$=*

-*  . It is clear that 

for the prescribed values of	�, the range of � increase with the increasing of	�. 
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Figure ���  : �  - curve for the HAM (q-HAM; 	� � ��  approximation solution �����, �; ��  of 

problem (12) at different values of �	���	�. 

 

 

 

 

 

 

 
Figure ��� : � - curve for the ( q-HAM;	� � �� approximation solution �����, �; �� of problem 

(12) at different values of �	���	�. 
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Figure ��� : � - curve for the ( q-HAM;	� � ��� approximation solution �����, �; ��� of problem 

(12) at different values of �	���	�. 

 

 

 

 

 

 
Figure ���  : �  - curve for the ( q-HAM; 	� � ����  approximation solution �����, �; ����  of 

problem (12) at different values of �	���	�. 
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Figure ���  : �  - curve for the ( q-HAM; 	� � ����  approximation solution �����, �; ����  of 

problem (12) at different values of �	���	�. 

 

 

 

 

 

 
Figure (6): Comparison between ��� of HAM (q-HAM �� � ���  and q-

HAM( � � �, ��, ��, ��, ����  with the exact solution of (12) at � � �  with ( � � ��. �, � �
��. ��, � � ��, � � ���. �, � � ���. �, � � ����.  
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Figure ���: The Absolute error of  ��� of q-HAM (� � �, � � ��� for problem (12) at � J � L
�. � and � � � using � � ��. �	���	� � ���. �. 

 

 

 

 

 

 

 

 

 
Figure ���: The Absolute error of  ��� of q-HAM (� � �, � � ��� for problem (12) at �. � J � L
�. � and � � � using � � ��. �	���	� � ���. �. 
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Figure ���: The Absolute error of  ��� of q-HAM (� � �, � � ���� for problem (12) at � J � L
�. � and � � � using � � ��. �	���	� � ���. 

 

 

 

 

 

 

 

 

 
Figure ���� : The Absolute error of  ���  of q-HAM (� � �, � � ����  for problem (12) at 

�. � J � L �. � and � � � using � � ��. �	���	� � ���. 

It should be noted that the absolute error is highly decreased when modifying the 

solution by taking more terms into consideration. Figures (11,12) illustrate this fact. 
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5. Conclusion 
 

    In this paper, the q-homotopy analysis method has been analyzed with an aim to 

investigate the conditions which result in the convergence of the generated homotopy 

solutions of the nonlinear problems. The theorems provided here, have proved that the 

solution of  the zeroth-order deformation equation  together with the original problem 

exists as a power series in � .So, if specific values are assigned to the auxiliary 

parameters in the q-homotopy analysis method, then the approximate homotopy results 

successfully converge to the exact solution, and the upper bound for the error is 

decreasing as q is decreased. 
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