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1. Introduction. The "invariance principles" of probability theory [l ; 2 ; 5 ]

are mathematically of the following form : a sequence of stochastic processes

{x,(n)(ü>)} induces a sequence of measures \pn) on some suitable topological

function space S, and one proves that the measures converge weakly to a

measure corresponding to a limiting process. Weak convergence of measures

means here that

(1) lim    I   fdpn =   Í   fdp

for all bounded continuous real-valued functions / on 5. This is equivalent

to the condition that

(2) lim £,\f(xT)\ = £{/(*«)},
n—* »

where £iX) is the distribution function of the random variable X,f( ) is a

real-valued function 5 continuous almost everywhere (p), and the limit is

in the sense of the usual weak convergence of distributions. Equation (2) is

usually the real center of interest, for many " limit-distribution theorems"

are implicit in it.

It is clear that for given {pn} and p, the better theorem of this kind would

be the one in which (2) is proved for the larger class of functions /.In this

paper we shall show that certain known "invariance principles" can under

some hypotheses be improved by considerably enlarging the class of functions

for which (2) holds. This will be done by considering spaces S other than the

customary ones. For example, in studying convergence to the Wiener process,

it is usual to let S be the space (denoted 6) of continuous functions with the

uniform topology. However, this choice does not fully exploit the pleasant

properties of the Wiener path-functions, which are not only continuous but

also Holder continuous of any order up to 1/2. Therefore we shall attempt to

use spaces Lipa in place of 6 as the function-space 5. When weak convergence

can be established using such spaces, the class of functionals for which (2) is

known to hold becomes much larger than before.

To carry out the idea sketched above it is necessary to have a criterion

which guarantees that the sample functions of a stochastic process are a.s.
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Holder continuous. We shall use that given by Loève in [4, p. 519]. It is

shown there that if {xt} is a separable process, then the condition

(3) E{ I Xt+At- xt\a} á C\ At\1+t>,       a,ß>0,

which was shown by Kolmogorov to be sufficient for continuity of sample

functions, is actually sufficient for Holder continuity of any order less than

ß/a. This fact suggests the task of improving a theorem of Prokhorov [5].

In this theorem it is assumed that the finite-dimensional distributions of a

sequence of processes {x,(n)} converge to those of a process {xt}, and that

condition (3) holds for each {x,w } with the constants a, ß and C independent

of re. The processes {xf1'} and {x¡} then induce measures pn and p on Q such

that pn—>p weakly. Here we prove that 6 may be replaced by Lip7 for any

7 <ß/a with a corresponding enlargement of the class of functionals for which

(2) holds. In the context of Donsker's original "invariance principle" [2], our

result implies that if Donsker's assumptions are strengthened by requiring

the existence of even order moments beyond the second, the conclusion can

also be strengthened in the manner described above. An application concern-

ing the convergence of Gaussian processes is also given.

2. Preliminaries. Let Lipa be the space of all real-valued functions x<

defined for ¿£[0, l] with Xo = 0 and such that

II I Xt+At — Xt | .        .
(4) \\xt\\a = sup-¡-¡-h max \ xt\   <   °°.

I At\a

Let D" he the derivative of order a, defined as Dl1"" where P~a is the Liou-

ville fractional integration operator; let Ga be the space of functions xt (again

with Xo = 0) with continuous ath derivatives and

(5) l|xi|r = max I Daxt\  + max \ xt\ .

The main fact we shall need about these spaces is the following :

Lemma 1. A set Q of functions which is bounded in Lip„ is precompact in Qß

and in hipß for any ß such that 0^ß<a.

Proof. According to a theorem of Hardy and Littlewood [3], if x(£Lip«

and 0^/3<a then P^xt£LipaH3. Furthermore, xt can be recovered by apply-

ing the integral P, and this integral is continuous under uniform, and hence

under Lip„_^ convergence. The operator Dß mapping Lipa into Lip„_^ is thus

closed; by the closed graph theorem it is continuous. The set Daxt, where x¡

is in the set Q which is bounded in Lip«, is therefore bounded in Lip„_^.

It follows from the above that the /3th derivatives of the functions in the

bounded set Q form an equicontinuous family, and hence a precompact one

in the topology of uniform convergence. It is, however, easy to see that this in

turn means that Q itself is precompact in the topology of Qß, the first part of

the lemma.
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The second part follows from the first together with the fact that the

identity mapping is continuous from Qß into Lip^. To see this, note that the

identity is always closed, so if QßCYipß the closed graph theorem does the rest.

But XtCQß means that 71_3x¡GCiCLipi, and by the theorem in [3] used

above, we obtain xí = 7)1_0(71-%í)GLipJs, q.e.d.

We turn next to conditions ensuring that a family of measures on Lip«

is precompact. The basic fact here is a theorem due to Prokhorov [5 ] relating

precompactness of measures on a space to compactness of sets in the space.

This result states that a family 7V7 of probability measures on the Borel sets

of a complete separable metric space 5 is weakly precompact if and only if for

every e there exists a compact set K,CS such that

(6) suppiS - Kt) ^ e.
veM

Now let 5 be Lipa for some 0<a<l. Combining Lemma 1 with the theorem

described above we have

Lemma 2. If for every e>0 there exists rj>0 and B < « such that

(7) inf p{x, G Lip„: ||x,||a+, g 73} jg 1 — «,
WM

then the family M of measures is precompact with respect to weak convergence.

Suppose that {x,in)} is a sequence of stochastic processes, ¿G[0, l], and

that the finite-dimensional distribution functions approach limits as n—* <x>.

Suppose also that each process {xj"'} induces a measure pn on Lipa(2), and

that these measures form a precompact family. Then since a measure on

Lip« is uniquely determined by the measures of finite-dimensional cylinder

sets, the measures pn must have a weak limit. These remarks together with

Lemma 2 will be applied in the next section.

3. The strengthened "invariance principle." The main result of this paper

is (as announced in the introduction) an improved version of Theorem 2.1 of

[5]:
Theorem. Let {x,(n)}, tC[0, l], x0 = 0 be a sequence of separable stochastic

processes satisfying condition (3) with a, ß and C independent of n. Suppose

also that the finite-dimensional distributions of {x,(n)} converge to limits as n—> °°.

Then there exists a process {xt} whose finite-dimensional distribution are these

limits, whose path-functions belong a.s. to Lip7 for every y<ß/a, and such that

(8) lim £{fix?})} = £{/(*«)}

(2) It is enough to know that the path-functions belong a.s. to Lipa, in view of the fact

that the <r-field of sets generated by the cylinder sets plus Lipa itself contains all the Borel sets in

Lipa.
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for every functional f which is continuous at almost all points of hipy for some

y<ß/a (with respect to the measure induced by the process {xt}).

Proof. Choose y<ß/a; by the result from [4] quoted in the introduction

the sequence {xtin)} then induces a sequence of probability measures on Lip7.

Moreover, these measures concentrate all their mass on the subspace Lip7+„

provided that y + r] <ß/a too. We now appeal to the proof rather than merely

the conclusion of Loève's theorem which provides a lower bound for

Fi{\\x(;%+^b}.

Indeed, the fact that x,(n)£Lip7+, a.s. shows that this probability goes to one

as 73—> oo for each re; the important point now is that the method of proving

this contains implicitly an estimate depending only on a, ß and C and hence

uniform in re. We can therefore apply Lemma 2 and conclude that the se-

quence of measures of the processes {x,<n)} is precompact in the weak topol-

ogy of Lip7. The remarks following Lemma 2 and the equivalence of (1) and

(2) complete the proof.

Suppose that {£<, t=l, 2, • • • } is a sequence of independent random

variables with mean 0 and unit variance. Let x,tn) be a continuous "random

broken line" function on [0, l] defined by

M        &+•••+&
Xt     = -

Bi/i

when t = i/n, i = 0, 1, • ■ • , re, and by linear interpolation between these

points for other /; also let {x(} be Wiener process. Then Donsker's theorem

[2 ] is equivalent to the assertion (under the additional hypothesis that the £,•

are identically-distributed) that (8) holds for functionals which are continu-

ous in the uniform topology at almost all (Wiener measure) points of C. By

contrast, our theorem has the following.

Corollary 1. 7re the above situation, if the random variables £¿ have bounded

2pth moments for some integer p>i, then (8) holds for any functional which is

continuous in the topology of Lip7 a.e. (Wiener) on Lip7/or some y<(p — \)/2p.

Proof. To apply the theorem, it is only necessary to verify (3) ; let us first

consider intervals [0, i/n]. Then

E(\Xi/n-Xo        ) = El-    =-=0(t»),
\ np /        np

where 0( ) depends on the moments of £¿ but not on re. This relation is easily

extended to hold also for other intervals, so that (3) is satisfied with a = 2p

and ß = p — l and the corollary follows. Note that if all moments are finite,

any y<l/2 will do; this is close to the most that can be expected since
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Wiener paths are not Holder continuous of order 1/2.

It may be remarked that the moment assumption in the above result is

indispensable. For example, suppose that

(9) Pr( | £¿ |   > x) = x~s for large x,

so that absolute moments of order less than 5 exist, but not those of greater

order. Now for the processes {x,(B>} we have constructed,

(10) Pr(||*,(,°||„ > 73) ̂  Primax | fc|   > Bn^2-\

The right-hand side of (10), however, if (9) holds is

1   -   {l   -   5W-d/2-«)5}n;

which tends to one for all 73 as n—>=° unless (1/2— a)ô2:l. Clearly if the

probability in (10) goes to one weak convergence in the Lipa topology cannot

hold, so we do not always have such convergence unless moments of order at

least 2(1 — 2a)~l are finite.

It is also easy to obtain from our theorem a result about convergence of

Gaussian processes. Let {x,(n)}, tE [0, l], »—1, 2, •• -, be a sequence of

real, separable Gaussian stochastic processes; suppose that

(11) E[xt     ]   =  Pnit), E[x,n Xt     ]   =   Pnis,  t),

where x< — Xj — p„it). Convergence of finite-dimensional distributions is

assured by assuming that

(12) lim ßnit) = pit), lim p„(s, /) = p(s, t)
n—»w n—* °o

exist for each s and tin [0, l]. We then have

Corollary 2. Under these conditions, suppose that there exist constants

£G(0, 2] and A, B< » such that for t, t+AtE[0, l],

(13) \pnil+ At) - pnil)\   è A\ A/|f'2;

(14) | pnit, t) - 2p.it, t+At) + Pnit + At,t+ At)\  g 731 At | «.

Then there is a separable Gaussian process {xt} with mean function pit), co-

variance pis, t) and paths belonging a.s. to Lipy for every 7<£/2, and (8) holds

for every functional f which is continuous in the topology of LipT a.e. i\xt}

measure) for some y <£/2.

Proof. To apply our theorem, it is only necessary to verify that the

processes {x, } satisfy (3), uniformly in n, lor numbers a and ß such that

ß/a is arbitrarily close to £/2. In fact, let a = 2p where p is a positive integer.

Then
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nz\        c-r/    (n) («MlM/iP    _.   j-ffj«) Jn)2p-.l/2p r       ,.,      . ,.
(15) £[(xi+i<  -   X«     )     J ^  E[(Xt+At —  Xt     )     j +   [Pn(t+  t)   — Pn(t)\

by the Minkowski inequality. Now x¡+m~*« is a normal random variable

with mean 0 and variance given by the left-hand side of (14). It follows that

the 2^th moment equals 0(\ Af |ip) uniformly in t and Af. Using this and (13)

in (15), we obtain

(16) E[(xt+At - xt   )   J=C|Af|    ,

where C is independent of re. Therefore (3) holds with ß/a=(Cp — l)/2p,

which is close to ij/2 if p is large.
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