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ON CONVERGENCE OF SUBSPACES GENERATED BY
DILATIONS OF POLYNOMIALS. AN APPLICATION TO BEST
LOCAL APPROXIMATION

FABIAN E. LEVIS AND CLAUDIA V. RIDOLFI

ABSTRACT. We study the convergence of a net of subspaces generated by
dilations of polynomials in a finite dimensional subspace. As a consequence, we
extend the results given by Zé and Cuenya [Advanced Courses of Mathematical
Analysis II (Granada, 2004), 193-213, World Scientific, 2007] on a general
approach to the problems of best vector-valued approximation on small regions
from a finite dimensional subspace of polynomials.

1. INTRODUCTION

Suppose that {a;} is a data set. These data are values of a function and its
derivatives at a point. If we want to approximate these data using a polynomial of
degree at most [, which will be the best algorithm to use? A Taylor polynomial of
degree [ is probably the most natural procedure to use.

The problem of finding an optimal algorithm to approximate a finite number
of data corresponding to a function is developed in the best local approximation
theory.

In 1934, Walsh proved in [II] that the Taylor polynomial of degree [ for an
analytic function f can be obtained by taking the limit as ¢ — 0 of the best
Chebyshev approximation to f from II' on the disk |z| < e. This paper was the
first association between the best local approximation to a function f from II' in 0
and the Taylor polynomial for f at the origin. However, the concept of best local
approximation has been introduced and developed more recently by Chui, Shisha,
and Smith in [2]. Later, several authors [3] [4, [5] 6] [8, 9] 10, 12] have studied this
problem.

We consider a family of function seminorms {||-||c }c>0, acting on Lebesgue mea-
surable functions F': B C R — R* where B is the unit ball centered at the origin
in R™. We will use the notation F¢(z) = F(ex) and || F||¥ = | F*¢||e. Forl € NU{0},
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we will denote by II' the class of algebraic polynomials in n variables of degree at
most I, and TI, the set {P = (p1,...,px) : ps € I'}.

Let A be a subspace of I, and let {P.}.~¢ be a net of best approximants to F'
from A with respect to || - ||, i.e.,

|F — P|? <|[F—P|", forall Pe A (1.1)

If the net {P.}c~o has a limit in A as ¢ — 0, this limit is called the best local
approzimation to F from A in 0. According to , we observe that PS is a
polynomial in

A“:={P°:Pec A} CII} (1.2)
of best approximation to F'¢ by elements of the class A€, with respect to the semi-
norm || - |le. We write it briefly as P € Pye (F€). Note that A€ is a subspace

generated by dilations of polynomials in A.

From now on, we assume the following properties for the family of function

seminorms || - |, 0 <e < 1.

(1) For F = (f1,..., fx) and G = (¢1,...,9k), we have ||F|lc < |G|, for every
€ > 0, whenever |fs| < |gs|, s=1,...,k.

(2) If 1 is the function F(z) = (1,...,1), we have ||1| < oo, for all € > 0.

(3) For every F € Cy(B), we have |F|l¢ — ||F|lo, as € — 0, where Cy(B) is the
set of continuous functions F : B C R® — R*. Moreover, || - ||o is a norm on
Ck(B).

An important point to note here is that there exist positive constants C =

C(m, k) and e(m, k) such that for every 0 < € < e(m, k),

1
ZIPlo < 1Pl < CIIPlo,  for every P e 11y (13)

[13, Proposition 3.1].

In order to give an example of norms || - |, 0 < e < 1, with the properties
(1)—(3), we recall a definition of convergence of measures given in [6]. See also [I]
for the notion of weak convergence of measures in general.

Definition 1.1. Let p., 0 < e <1, be a family of probability measures on B. We
say that the measures p. converge weakly in the proper sense to the measure pg if
we have

[ f@dn@) = [ f@duo). fe ).
B B
and po(B’) > 0 for any ball B’ C B.

The assumption on the measure pg implies that

1
P
1Pl =172y = ( [ 17

is actually a norm on Cy(B) for e = 0 and 1 < p < oo, where || - || stands for any
monotone norm on R*. We use a monotone norm on R¥ to ensure property (1) for
the family of seminorms || - ||, 0 <e < 1.

Rev. Un. Mat. Argentina, Vol. 61, No. 1 (2020)



CONVERGENCE OF SUBSPACES AND BEST LOCAL APPROXIMATION 51

Let F be in C(B); it is readily seen, by using the definition of weak convergence
of measures, that there exists ¢g = €o(F) > 0 such that if ||F||c = ||[F| zr(u.) = 0,
for some 0 < € < ¢, then I’ = 0. Moreover we have that |[F|. = [[F||1r(u.)
converges as € — 0 to the norm [|F|lg = ||F||pr(,,) if F € Cr(B).

For more examples of nets of seminorms fulfilling conditions (1)—(3), we refer
the reader to [13].

We say that F : B C R® — R” has a Taylor polynomial of degree m at 0 if there
exists P € 117" such that

|IF— P||f =o0(e™), ase—D0.

It is well known that if a Taylor polynomial exists, it is unique [I3, Proposition
3.3]; we denote it by T,, = T, (F). We write F' € t™ if the function F' has
the Taylor polynomial of degree m at 0. Moreover, if F' € t" and T,,(F) =
ngm Cox®, then the Taylor polynomial of degree I < m for F at 0 is given
by Ti(F) = 324 <; Caz® [13 Proposition 3.5], where a = (a1, ..., an) € R" with
a; > 0and |a| = a3 + ag + -+ + a,. We set 9*F(0) for the vector a!C, with
al = arlas! . .. oy

The problem of best local approximation with a family of function seminorms
{Il - lle }e>o0 satisfying (1)—(3) was considered in [I3] for two types of approximation
class A fulfilling II'* ¢ A C IT} and
(cl) A= A, for each € > 0, or
(c2) if P € Aand Tp,41(P) =0, then P =0.

Firstly, the authors studied the asymptotic behavior of a normalized error func-
tion as € — 0 [I3}, Theorems 4.2 and 4.5]. Secondly, they showed that there exists
the best local approximation to F' in 0 and is associated with a Taylor polynomial
for F'in 0 [I3, Theorem 5.1]. In particular, if A = II}* and F' € t", they proved
that P. — T,,(F) as € — 0 [I3, Theorem 3.1].

In this work we generalize the results found in [13], without the restrictions (c1)
or (c2) given above. For this, it is essential to study the convergence of the net
{A} as e — 0.

This paper is organized as follows. In Section 2, we investigate the asymptotic
behavior of {A4°}. In Section 3, we study the asymptotic behavior of the error
function e =™~ !(F, — P.)¢ for a suitable integer, and we show some results about
the best local approximation in the origin which generalizes those of [13].

2. ASYMPTOTIC BEHAVIOR OF THE NET {.A°}

In this section, we study the asymptotic behavior of the net {4} given in (1.2)).
We begin with the following definition.

Definition 2.1. Let A C I} be a subspace. We say that P € liH(l) A€ if there
€E—>
exists a net {P.} C A such that lin(1) |IP — Pfllo = 0. We denote B = 1in(1J A°.
€ €—>

Remark 2.2. If A C er is a subspace, then the sets A¢ and B are also subspaces
of qu. Furthermore, if A° = A, for all € > 0, we have that B = A.
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Next, we show a simple example of A¢ = A.

Example 2.3. Set n = 3 and A = span{(z1, x1 + 22 + 3,27 +23)}. Then, clearly
we obtain A€ = span{(ex1, e(x1 + 2 + 23), €2(23 + 23))} = A.

Proposition 2.4. Let A be a subspace of polynomials such that II}* C A for some
m € NU{0} and k € N. Then II* C A€ for all e > 0. Moreover, II]* C B.

Proof. Set Ry i(z) = 2%, |a| <m, 1 <i <k, where {e;}¥_, is the canonical basis
of R¥. Then

{Rait o] <m,1<i<k} (2.1)
is a basis of the space II7*. Since A° is a subspace, we have R, ; = ﬁRgz € A",
and so II? C A€, for all ¢ > 0. Finally, using the definition of B, we obtain
I C B. O

From now on, for any Lebesgue measurable function F : B C R* — RF we
denote T_1(F) = 0.

Proposition 2.5. Let A be a subspace of Hﬁc and let 0 < s+ 1 < be an integer.
If P € A satisfies Ts(P) =0 and Ts41(P) # 0, then Ts41(P) € B.

Proof. For each € > 0 we define Q. = -£+ € A. Since T,(P) = 0, it follows that
I Tesr (P) — Qg = LWt @B 8o || T,,4(P) — <l = o(1) as € — 0, and
thus T4 (P) € B. O

The following sets will be needed throughout the paper. Let A4 be a non-zero
subspace of Hﬁc. We define

A=A and A]:{PGAT](P)ZO}7fOI‘OS]§l (22)
We note that
A; C A;, whenever i < j.
Since 4; C {P € II} : Tj(P) = 0} = {0}, we have
{j:0<j<land A; # A} #0 and {j:0<j<land A; ={0}} #0.
Set
so=min{j:0<j <land A; # A}
and
ro=min{j:0<j<land A; = {0}}.
It is easy to see that 0 < sg < rg <1, and
so,ro€{jiso<j<roand A; C A; 1} =:J.
We can now formulate our main result which describes the limit set B.

Theorem 2.6. Let A be a non-zero subspace of HZ. Then B is a subspace of II}°
isomorphic to A. Furthermore, under the above notation the following holds:

(a) if so < rg and J\ {ro} = {so,...,sn} with s; < s;y1 for N > 0, then B =
TTo (ASN)@TSN (SSN) ®T5N—1(SSN—1)@. : '@Tso (Sso)f where Asq‘, @Ssi = Asi—l?
0<i<N;
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(b) if sop =g, then B =T, (A).

Proof. (a) Assume sy < rg. Since every subspace of A;, ,, 0 < i < N, has a
complement, there exists a subspace Sy, C A,, , such that

Ay, &8s, =As,_,, 0<i<N. (2.3)
In consequence,
A=A,y OS5y ®Ssp_, & ®Ss,. (2.4)

As S;, CA,, ,,0<i<N,and A,,_1 = A,,, we obtain

Y iaize, T2 Qe S, 0<i<N;
Qz) = - . (255)
Z|a\251\7+1 g S!(O)xa’ if Q € ASN7

where sy41 = ro. Let T; : S5, — II}' be a linear operator defined by T;(P) =
T,,(P), 0 < i < N, and Tny1 : A — ILY' Dbe the linear operator given by
Tny1(P) = Tsy . (P). We claim that

(i) T; is an injective operator, 0 < i < N + 1.

. N

(ii) TSN+1 (Asy) N Zi:o T, (Ss;) = {0}.

N

(iii) If N > 0 then T, (Ss,) N <T5N+1(A5N) + D im0,z Tsi(SSi)) = {0} whenever

1 #1.

Indeed, let 0 < ¢ < N. If Ty, (P) = Ts,(Q) for some P,Q € S;,, then P — Q €
Ag,NS,. So (2.3) implies that P = Q. On the other hand, if T, (P) = T§,,(Q)
with P,Q € A, then P — Q € A,,,, = {0}, which proves (i). To prove (ii) we
consider Q41 € A,y and Q; € S, such that P =T, (Qn41) = Zf\;o T, (Qq).
From (2.5 we see that

o N
T @viw= 3 L9000 d S r@)emy. (26

lo|=sn+1 o i=0
Therefore P = 0. Now, let Qn41 € A5, and Q; € S, be such that
N
P=T,(Q)="Tey.,(Qns1) + > To(Qi). (2.7)
i=0,i£1

From (2.5)) it follows that

aaQi (O) « .
TSi(Qi)le s 0<i<N.
According to (2.6) and (2.7) we have P = 0, and (iii) is proved. Using (i)—(iii), we
deduce that the subspace

T3N+1 (ASN) + TSN (SSN) =+ TSN—l (SSN—I) + TSO (Ss())
is a direct sum isomorphic to A. The proof concludes by proving

B= TSN+1(ASN) @ TSN (SSN) D TSN—1(SSN—1) DD TSo (SSO)'
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We observe that if P € S, \ {0}, then Ty, (P) # 0 and T,,—1(P) = 0 by (2.3)). So,
Proposition implies that Ts,(P) € B. On the other hand, if P € A, \ {0}, we
get Ts (P) = 0 Moreover, we have T, ,, (P) # 0. In fact, on the contrary, we see

SN+1

that P € A, , = {0}. Proposition now gives Ty, (P) € B. Therefore,
T9N+1 (ASN) S TSN (SSN) D TSN—l (SSN—l) DD Tgo (Sso) C B.
On the other hand, if P € B, there exists {P.} C A such that

lim [|P — P<|jo = 0. (2.8)
e—0

Let dyt1 = dim(As,) and d; = dim(Ss,), 0 < i < N. We take {vl}lN+1 and
{wi}%, bases of Ay, and S, respectively. It is easy to check that for each
0<e<l, {e_sN“vl}fgl“ is a basis of A,y and {e*w;}%, is a basis of Sj,,
0 < i < N. According to , we have that there exist real numbers D; . and
Cir,c such that

dNi1

P = § SN+1Dlevl+ zrewzr
=1 i=0 r=1

From (2.5) it follows that

v(x) = Z wxo‘ and  w;,(x) = Z Mw“. (2.9)

a! a!
la|>s N1 la|>s;
So,
dn41
i) = 3 Duee @0+ 35" Come*rut (2)
i=0 r=1
dNH 0%y, pihr 0%v;(0)
-y . Yy 2O +ZD16 Yo el Z 0 e
al
=1 lal=sn+1 \Oé|>SN+1
N 4
: 0%w; C0%w;r (0
15 3) MM JRATUNED 3) S SRCERA RS
i=0 r=1 la|=s; i=0 r=1 la|>s; o
Consequently
€ ! & a wlT(O) @
CIEED S T e
1=0 r=1 |(1‘_91
Jj—1 d;
) D SEELATIUR
2y '
i=0 r=1 si<|o|<s; o
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if0<j<N,and

d .
5 o u(0) o, N\ 9 wir(0)
ToaB)@) =3 Dre D =2+ Y Cine D —ia
=1 lal=sn11 ' i=0 r=1 lo|=s; ’
N d
: _ . 0%w; (0)
X laf—s; ¥ Tr\Y)
15 3) DTS SR AU
=0 r=1 si<|a|<sn+1

From (2.9) it follows that

0%v,(0) 0“w, - (0)
Tonr (Vo)) = Z a'( z* and Ty, (wj,)(x) = Z *ma
|a|:sN+1 ’ “X':Sj '
Thus, a straightforward computation yields
do
Teo(PE) (@) =D CoreTeo (wo.r) (), (2.10)
r=1
Jj—1 d;
0%w; (0
T (P @) = Ty (P)(a) + 03 G 3 ctss 82000
=0 r= s, al<s; @
1=0 1 jo1<]|a|<s; (211)
d;
+ D CimeTs,; (wjr)(x)
r=1
if 1 <j <N, and
dni1
TSN+1 (Pee)(x) = TSN (P:)(x) + Z DLETSN-H (Ug)(.’ﬂ)
=1
»3 C jal—s; 97 Wir (0) o 212
T 30 IV DIl U
i=0 r=1 SN<|Q|SSN+1

From (2.8) and (2.10), we deduce that T, (PS)(x) = Zg‘):l CoreTsy(wor)(z) is

convergent as ¢ — 0. Since {T,(wo,)}% , is a basis of Ty, (Ss,), there are real
numbers Cy,, 1 < r < dp, such that Cy,. — Cp, as € — 0. According to (2.8)

and (2.11)) it follows that Zf;l Ch.r,eTs, (w1 ,)(x) is convergent as € — 0. Hence,
there are real numbers C ., 1 < r < dj, such that Cy, . — C; , as € = 0, because
{Ts, (wi,)}L, is a basis of T, (Ss,). Similarly, as {Tsy,, ()}, is a basis of

Topiy (Asy) and {Ty, (wi, )}, is a basis of Ty, (Ss,), 0 < i < N, ([2.8) and (2.10)~
(2.12)) show that there are real numbers D; and C;, such that D;. — D; and
Cire— Ci, as e » 0. In consequence,

a N d;
P= Z DTy, () + Z (Z CirTs, (wzr)> )
=1 =0 =1

and so P € TSN+1 (ASN) D TSN (SSN) D TSN—I(SSN—I) DD TSo (SSO)'
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(b) Now assume sg = 7o, i.e., As, = {0}. Then A has the form (2.4) with N = 0,
As, = {0} and S5, = A. An analysis similar to the proof of (a) shows that T, is
an isomorphism and B = Ty, (Ss,) = T, (A). O

The following corollary follows immediately from the proof of Theorem

Corollary 2.7. Let A be a non-zero subspace of II... Then lim A = B for any
n—roo
sequence {e,} of the net € | 0.

Remark 2.8. B is isomorphic to Ty, (A).

Corollary 2.9. Let s > m+1 and let A =TI P As_1 be such that Ay = {0}. Then
B =17 & Ts(As—1) and the linear operator T : A — II; given by T'(P) = Ts(P)
defines an isomorphism between A and B.

Proof. We first claim that T is an injective operator. Indeed, if T(P) = T'(Q) for
P,Q € A, then Ts(P—Q) =0and so P—Q € A,. Since A, = {0}, we have P = Q.
Since A is isomorphic to T'(A), the proof concludes by proving B = I} &
Ts(As—1) = Ts(A).
Let A; be the sets defined in . Since

{O}ZAS _,Cl_Asfl ::AmgAmfl - QAOQ-A,
then A4 = As—l (5] Bm D Bm—l D--- D Bo, where Ai (S5 Bl = Ai—l, 0 <171 < m.
Therefore II}* is isomorphic to B,, @ --- @ By. On the other hand, since sq = 0,
ro=sand J\ {ro} ={0,1,...,m}, by Proposition (a),
B=Ts(As—1) ® Tn(Bm) ® - & Ty(Bo).
From the proof of Theorem we obtain that B,, ® --- @ By is isomorphic to
T (Bm) @ - -- & To(By), and consequently II7* is isomorphic to Ty, (By,) 6 - -+ &

To(Bo) C IIP. Hence, T,,,(Bp,) & & Ty(Bo) =11} and so B =T (A1) @I =
Ts(As—1) @ Ts(I1) = T (A). O

3. AN APPLICATION TO BEST LOCAL APPROXIMATION

Let {P.} be a net of best approximants to F' from .4 with respect to || - ||¥, and
let E. be the error function
Fe— p*
6erl

Ee(F) =
If F €t™t! then
FC =T, + emtt 1

where Ry, 1 = %, | RS, i1lle = o(1), and T3y, 41 is the Taylor polynomial of F

of degree m + 1 at 0. Moreover,
AP € Pac (AF€) and P+ PS€ Py ((P+F)), forPeA

The following proposition may be proved in much the same way as [13, Propo-
sition 4.1]. However, we repeat the proof for completeness.
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Proposition 3.1. Let A be a non-zero subspace of I\, with I > m, and let {P.} be
a net of best approzimants of F from A with respect to ||-||7. If F € t™* T, € A
and ¢mi1 = Ty1 — T, then

Ee(F) = ¢m+1 + an+1 - PA5,6(¢m+1 + anJrl)a
where || R, 1|le = o(1) as e = 0.

FeiT:n,-%—l

Proof. Since Ry, ;1 = ——=1—, then
b g FThn T -Th P -Thy,
Pma1 + By = Ty — T + em+l gm+l em+1
€ €
P -T
61’n—|—1

As T,, € A, we have

€ € Fe - Tfn - Tf”
Gm+1 + Rm+1 - PAﬁe(ﬁbm-i-l + Rm-i-l) - S emtl Face (Gmﬂ)

Fe— p*

Next, we give a new result about the asymptotic behavior of the error without
the conditions (cl1) or (¢2), which generalizes Theorems 4.2 and 4.5 of [I3].

Theorem 3.2. Let A be a non-zero subspace of 1L with | > m. If F € ™!
Tm € A and Qbm—o—l = Tm+1 — Tm, then

[Ee(F)|le — Igléfg |¢m+1 — Pllo, ase—0.

Proof. By Proposition [3.1

Ee(F) = ¢mir1 + an+1 - PA5,6(¢m+1 + an+1)7 (3.1)
where ||Rf, 1]l = o(1) as e = 0. We first prove
O < . _ . .
T E(F)ll < o [901— Pl (32)

In fact, let P € B. By the definition of B, there exists a net {Q.} C A such that
1P — Q%o — 0, as € — 0. In consequence, ||P — Q|| = o(1), as e = 0, by (1.3)).
Since Q¢ € A° and ||Ry, ,|le = o(1), from (3.1]) we obtain

IE(F)lle < lomr + B — Qclle < ll@mir — Qclle +0(1), ase—0. (3.3)

By Property (3), ||¢m+1—Plle = [|¢m+1— Pllo, as € = 0. Hence, using the triangle
inequality we have

léms1 = Qclle = l¢m+1 = Pllol < [l[¢mi1 — Qclle = lom+1 — Plle
+ll¢m+1 = Plle = |pm+1 — Pllol
< ||1P = Qclle + llom+1 — Plle = lloms1 — Pllo| = o(1)

as € — 0. Now, according to (3.3) we get (3.2).
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58 F. E. LEVIS AND C. V. RIDOLFI

The proof finishes by observing that

lim | Ee(F)|le > inf [|¢m+1 — Pllo- 3.4
tim [Ee(F)lle 2 tof [l6m+1 = Pllo (3-4)

Let € | 0 be a sequence such that liné |Ec(F)|le = im, || Ee(F)|.. We consider
e—

Pt € Pace(dme1 + RS, 1). We claim that there exist constants M, ey > 0 such
that

[Pello <M, 0<e< e. (3.5)
Indeed, as 0 € A® we get

1PElle < 1PE = (@ms1 + Ry i) lle + [[omir + Ry lle
< 2/ @mt1 + Byl (3.6)
< 2l pmtalle + 2l R lle,

for 0 < ¢ < 1. By Proposition and Property (3), we see that 2|¢m+1]e +
2||R5 41 lle = 2l @mallo, as € = 0. So, from (L.3) and (3.6), we obtain (3.5).

In consequence, there exists a subsequence of {Pf}, which is denoted in the
same way, and Py € Hﬁc such that P¢ — P uniformly on B, as ¢ — 0. Since
|||¢m+1 - P:He - H¢m+1 - P||0| < |||¢m+1 - P:He - ||¢m+1 - P||€| + |||¢m+1 _PHe -
I6ms1 = Pllol < 1P = Pellc + [l éms1 — Pllc = [ ms1 — Plol, using Property (3)
we get

[¢m+1 = Pllo = l[¢ms1 — Fllle +0(1), ase— 0.
We observe that P € B by Corollary 2.7 Therefore, by Proposition [3.1]

inf {|$mr1 = Qllo < l[m+1 = Pllo = l[dm+1 — Bl +o(1)

Qc
< mt1 + Bypq = Pllle + 1R le
= [|Ee(F)|e + ([ Rt lle-

So, jnf || $m+1 = Qllo < lim (IE (Pl + 1R 11 lle) = lim, o [ E(F)]|, and (3.4)
]

is proved.

The following result provides us with a useful and important property for a net
of best approximants to F' from A.

Theorem 3.3. Let A be a non-zero subspace of I\, with | > m, and let { P.} be a net
of best approzimants of F from A with respect to ||-||*. Assume F € t™ 1 T, € A
and ¢my1 = Tme1 — T If C is the cluster point set of the net {(P;_n#}, as

€ — 0, thenC # (. Moreover, each polynomial in C is a solution of the minimization
problem

mitt{|$m1 — Pllo- (3.7)
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CONVERGENCE OF SUBSPACES AND BEST LOCAL APPROXIMATION 59
Proof. We observe that
(F - Pe)e (Tm+1 — TM)E + (F — Tm-i-l)6 - (Pe - Tm)6
EG(F) = em+1 = em+1
mi1 — (Pe—Tm)° n (£ = Tpg)°
- 6m,—i—l 6m—‘,—l
_ (Pe - Tm)6 (F - Terl)6
= Pmt1 — em+1 em+l
Then
et — (Pe=Twm)* || _ II(F = Tony1)“[le
m—+1 em+1 em+1
(Pe — Tm)e ||(F — Tm+1)6||e
< |E(F). < qumﬂ JE T I T
and consequently,
P.—T,)¢
IB(F)]l. = H%H ~Eo D o), aseso,
since F' € t™*!. By Theorem
. . (Pe =T, )6
ot {|¢m+1 = Pllo = lim ‘ Pmy1 — Emiﬂm ) (3.8)

According to (1.3]), there exist constants eg, M > 0 such that

P.—-T,)¢
H¢m+1 - (em% <M,

0

for all 0 < € < €. The equivalence of the norms in ch implies that the net

{M is uniformly bounded on B. So, there exists a subsequence of

}0<6§50

} , which is denoted in the same way, and a polynomial P, such
0<e<eg

(P € Tm)e

P converges to Py, uniformly on B, as € — 0.
€

In consequence, C # ().

On the other hand, if Py € C, there is a sequence € | 0 such that (P‘é;# — P.
Since T,,, € A, we have P, —T,, € A, and so P, € B by Corollary 2.7} Finally, from
Property (3) and we conclude that

. . (Pe _T‘m)6
gfelfB |¢m+1 — Pllo = lg% H¢m+1 BT . = [[pm+1 — Polly
i.e., Py is a solution of (3.7). O

The following theorem is an extension of [I3, Theorem 5.1].
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Theorem 3.4. Let A be a non-zero subspace of I}, with | > m, and let {P.} be
a net of best approzimants of F from A with respect to || - ||f. Assume m +1 =
min{j:0<j <l and A; = {0}}, F € " with T,,, € A, and set ¢ppy1 = Trp1—
T If the minimization problem has a unique solution Py, then P. — T,,+ P,
where P € A is uniquely determined by the condition Ty, +1(P) = Py — Tp(P).

Proof. Since (3.7) has a unique solution Py, Theorem implies that

. (Pe_Tm)e _
e =

In consequence, 0%(P, — T,,)(0) — 0, || < m, and 0%(P. — T},,)(0) — 9*Py(0),
|a] = m+1, as € — 0. Therefore

Toni1(Pe = Tin)(z) = > mxa = R(z), z€B,ase—0. (3.9)

|a|=m+1

Let T : A — "' be the linear operator defined by T(P) = Ty i1(P). As Apy1 =
{0}, an analysis similar to that in the proof of Corollary shows that T is an
injective operator. Since T'(.A) is a closed subspace and {T,,+1(P. —Trn)} C T(A),
implies that there exists a unique P € A such that T),,41(P) = R. Hence
Tmt1(Pe—Tm—P) = 0ase — 0. As A1 = {0} we see that ||Q] := || Tm+1(Q)]lo
is a norm on A, and so P. — T,,, + P as ¢ — 0. Finally, by Theorem B C
7, and consequently Py — Ty, (Po) = Trny1(Po) — T (Py) = R. The proof is
complete. O

Remark 3.5. If A satisfies the condition (c2), then A =1I7" & A,,, with A,,41 =
{0}. By Corollary B =11} @ Tnt1(Ap) and each element P € A is uniquely
determined by T,,11(P). So, we can rewrite the problem in the following
(equivalent) form:

Q+Ug11'lik}”l@Am [¢m+1 = (Q + Trmy1 (U))lo- (3.10)

The following result has been proved in [I3], Theorem 5.1] and it is a consequence
of Theorem [3.41

Corollary 3.6. Let II* C A C IIY, be a non-zero subspace that satisfies the con-
dition (c2) and let {P.} be a net of best approximants of F from A with respect to
|-, Assume F € t™*1. If the minimization problem has a unique solution
Py, then P, — T,, + P, where P € A is uniquely determined by the condition
Tmnt1(P) = Py — T (Po).

In the following example we present a function F' € ()-_, t"™ such that T5(F) ¢
A and the net {T;(P.)} does not converge for the same i > m + 1.
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[N

1

Example 3.7. Set B = [-1,1], |G| = | [ |G(z)|*dz | , A= span{l,z? 2},
1

and F(x) =z. So

2

* 1 /
jGli: = | 3 [1G@Pd)

Ag = Ay = span{z?, 23}, Ay = span{x®} and A3 = {0}. Since Tj(2?) = 0, we
observe that the subspace A does not satisfy the condition (c¢2). Moreover, an
straightforward computation shows that
|F —Tollz _ V6 g ME=TIE _
= —c¢ an =
€V 3 €*
where Ty(z) = 0 and Ts(z) = z. In consequence, F' € t™ for all m € NU {0}, and

T5(F) ¢ A. Since [ (x — %xg) xidr = 0,i=0,2,3, then P.(z) = éﬁ is the

0, seN,

best approximant to F' from A with respect to || - ||¥. Therefore T;(P.)(x) — 0,

for ¢ = 0,1,2, but T3(P.)(x) does not converge, as ¢ — 0. So, the best local

approximation to F' from A in 0 does not exist, and

|F — P _ 2v6
€3 ~ 15€2
We now give another example which shows that the condition T}, € A is not

necessary for the existence of the best local approximation.

Example 3.8. Set B, ||| and F as in Example[3.7} and we consider the subspace
A = span{l,2%}. Tt is clear that Ay = A; = span{z?}, 42 = {0} and B = A.
Moreover, we have F' € t2, T} ¢ A, and A does not satisfy the condition (c2)

since T1(z?) = 0. As [ (z—0)a'dz = 0, i = 0,2, then P.(z) = 0 is the best

|EF) = |

— 00, ase—0.

—€
approximant to F' from A with respect to || - ||¥. Therefore, the polynomial 0 is the
best local approximation to F' from A in 0.
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