ON CONVERGENCE OF SUBSPACES GENERATED BY DILATIONS OF POLYNOMIALS. AN APPLICATION TO BEST LOCAL APPROXIMATION

FABIÁN E. LEVIS AND CLAUDIA V. RIDOLFI

ABSTRACT. We study the convergence of a net of subspaces generated by dilations of polynomials in a finite dimensional subspace. As a consequence, we extend the results given by Zó and Cuenya [Advanced Courses of Mathematical Analysis II (Granada, 2004), 193–213, World Scientific, 2007] on a general approach to the problems of best vector-valued approximation on small regions from a finite dimensional subspace of polynomials.

1. INTRODUCTION

Suppose that $\{a_j\}$ is a data set. These data are values of a function and its derivatives at a point. If we want to approximate these data using a polynomial of degree at most l, which will be the best algorithm to use? A Taylor polynomial of degree l is probably the most natural procedure to use.

The problem of finding an optimal algorithm to approximate a finite number of data corresponding to a function is developed in the best local approximation theory.

In 1934, Walsh proved in [11] that the Taylor polynomial of degree l for an analytic function f can be obtained by taking the limit as $\epsilon \to 0$ of the best Chebyshev approximation to f from Π^l on the disk $|z| \leq \epsilon$. This paper was the first association between the best local approximation to a function f from Π^l in 0 and the Taylor polynomial for f at the origin. However, the concept of best local approximation has been introduced and developed more recently by Chui, Shisha, and Smith in [2]. Later, several authors [3, 4, 5, 6, 8, 9, 10, 12] have studied this problem.

We consider a family of function seminorms $\{\|\cdot\|_{\epsilon}\}_{\epsilon>0}$, acting on Lebesgue measurable functions $F: B \subset \mathbb{R}^n \to \mathbb{R}^k$, where B is the unit ball centered at the origin in \mathbb{R}^n . We will use the notation $F^{\epsilon}(x) = F(\epsilon x)$ and $\|F\|_{\epsilon}^* = \|F^{\epsilon}\|_{\epsilon}$. For $l \in \mathbb{N} \cup \{0\}$,

²⁰¹⁰ Mathematics Subject Classification. Primary 40A05, 41A10, 41A65.

Key words and phrases. Convergence of subspaces; Best local approximation; Abstract norms; Homogeneous dilations.

This paper was partially supported by Universidad Nacional de Río Cuarto (grant PPI 18/C472), Universidad Nacional de La Pampa, Facultad de Ingeniería (grant Resol. Nro. 165/18), and CONICET (grant PIP 112-201501-00433CO).

we will denote by Π^l the class of algebraic polynomials in *n* variables of degree at most *l*, and Π^l_k the set $\{P = (p_1, \ldots, p_k) : p_s \in \Pi^l\}$.

Let \mathcal{A} be a subspace of Π_k^l and let $\{P_{\epsilon}\}_{\epsilon>0}$ be a net of best approximants to F from \mathcal{A} with respect to $\|\cdot\|_{\epsilon}^*$, i.e.,

$$\|F - P_{\epsilon}\|_{\epsilon}^{*} \le \|F - P\|_{\epsilon}^{*}, \quad \text{for all } P \in \mathcal{A}.$$

$$(1.1)$$

If the net $\{P_{\epsilon}\}_{\epsilon>0}$ has a limit in \mathcal{A} as $\epsilon \to 0$, this limit is called the *best local* approximation to F from \mathcal{A} in 0. According to (1.1), we observe that P_{ϵ}^{ϵ} is a polynomial in

$$\mathcal{A}^{\epsilon} := \{ P^{\epsilon} : P \in \mathcal{A} \} \subset \Pi_k^l \tag{1.2}$$

of best approximation to F^{ϵ} by elements of the class \mathcal{A}^{ϵ} , with respect to the seminorm $\|\cdot\|_{\epsilon}$. We write it briefly as $P^{\epsilon}_{\epsilon} \in \mathcal{P}_{\mathcal{A}^{\epsilon},\epsilon}(F^{\epsilon})$. Note that \mathcal{A}^{ϵ} is a subspace generated by dilations of polynomials in \mathcal{A} .

From now on, we assume the following properties for the family of function seminorms $\|\cdot\|_{\epsilon}$, $0 \le \epsilon \le 1$.

- (1) For $F = (f_1, \ldots, f_k)$ and $G = (g_1, \ldots, g_k)$, we have $||F||_{\epsilon} \leq ||G||_{\epsilon}$, for every $\epsilon > 0$, whenever $|f_s| \leq |g_s|, s = 1, \ldots, k$.
- (2) If 1 is the function F(x) = (1, ..., 1), we have $||1||_{\epsilon} < \infty$, for all $\epsilon > 0$.
- (3) For every $F \in C_k(B)$, we have $||F||_{\epsilon} \to ||F||_0$, as $\epsilon \to 0$, where $C_k(B)$ is the set of continuous functions $F : B \subset \mathbb{R}^n \to \mathbb{R}^k$. Moreover, $||\cdot||_0$ is a norm on $C_k(B)$.

An important point to note here is that there exist positive constants C = C(m,k) and $\epsilon(m,k)$ such that for every $0 < \epsilon \leq \epsilon(m,k)$,

$$\frac{1}{C} \|P\|_0 \le \|P\|_{\epsilon} \le C \|P\|_0, \quad \text{for every } P \in \Pi_k^m \tag{1.3}$$

[13, Proposition 3.1].

In order to give an example of norms $\|\cdot\|_{\epsilon}$, $0 \leq \epsilon \leq 1$, with the properties (1)–(3), we recall a definition of convergence of measures given in [6]. See also [1] for the notion of weak convergence of measures in general.

Definition 1.1. Let μ_{ϵ} , $0 \le \epsilon \le 1$, be a family of probability measures on B. We say that the measures μ_{ϵ} converge weakly in the proper sense to the measure μ_0 if we have

$$\int_{B} f(x) \, d\mu_{\epsilon}(x) \to \int_{B} f(x) \, d\mu_{0}(x), \quad f \in C_{1}(B).$$

and $\mu_0(B') > 0$ for any ball $B' \subset B$.

The assumption on the measure μ_0 implies that

$$||F||_{\epsilon} = ||F||_{L^{p}(\mu_{\epsilon})} = \left(\int_{B} ||F||^{p} d\mu_{\epsilon}\right)^{\frac{1}{p}}$$

is actually a norm on $C_k(B)$ for $\epsilon = 0$ and $1 \le p < \infty$, where $\|\cdot\|$ stands for any monotone norm on \mathbb{R}^k . We use a monotone norm on \mathbb{R}^k to ensure property (1) for the family of seminorms $\|\cdot\|_{\epsilon}$, $0 \le \epsilon \le 1$.

Let F be in $C_k(B)$; it is readily seen, by using the definition of weak convergence of measures, that there exists $\epsilon_0 = \epsilon_0(F) > 0$ such that if $||F||_{\epsilon} = ||F||_{L^p(\mu_{\epsilon})} = 0$, for some $0 < \epsilon \leq \epsilon_0$, then F = 0. Moreover we have that $||F||_{\epsilon} = ||F||_{L^p(\mu_{\epsilon})}$ converges as $\epsilon \to 0$ to the norm $||F||_0 = ||F||_{L^p(\mu_0)}$ if $F \in C_k(B)$.

For more examples of nets of seminorms fulfilling conditions (1)-(3), we refer the reader to [13].

We say that $F: B \subset \mathbb{R}^n \to \mathbb{R}^k$ has a Taylor polynomial of degree m at 0 if there exists $P \in \Pi_k^m$ such that

$$||F - P||_{\epsilon}^* = o(\epsilon^m), \text{ as } \epsilon \to 0.$$

It is well known that if a Taylor polynomial exists, it is unique [13, Proposition 3.3]; we denote it by $T_m = T_m(F)$. We write $F \in t^m$ if the function F has the Taylor polynomial of degree m at 0. Moreover, if $F \in t^m$ and $T_m(F) = \sum_{|\alpha| \le m} C_\alpha x^\alpha$, then the Taylor polynomial of degree $l \le m$ for F at 0 is given by $T_l(F) = \sum_{|\alpha| \le l} C_\alpha x^\alpha$ [13, Proposition 3.5], where $\alpha = (\alpha_1, \ldots, \alpha_n) \in \mathbb{R}^n$ with $\alpha_i \ge 0$ and $|\alpha| = \alpha_1 + \alpha_2 + \cdots + \alpha_n$. We set $\partial^{\alpha} F(0)$ for the vector $\alpha! C_\alpha$ with $\alpha! = \alpha_1! \alpha_2! \ldots \alpha_n!$.

The problem of best local approximation with a family of function seminorms $\{\|\cdot\|_{\epsilon}\}_{\epsilon>0}$ satisfying (1)–(3) was considered in [13] for two types of approximation class \mathcal{A} fulfilling $\Pi_k^m \subset \mathcal{A} \subset \Pi_k^l$ and

(c1) $\mathcal{A}^{\epsilon} = \mathcal{A}$, for each $\epsilon > 0$, or

(c2) if $P \in \mathcal{A}$ and $T_{m+1}(P) = 0$, then P = 0.

Firstly, the authors studied the asymptotic behavior of a normalized error function as $\epsilon \to 0$ [13, Theorems 4.2 and 4.5]. Secondly, they showed that there exists the best local approximation to F in 0 and is associated with a Taylor polynomial for F in 0 [13, Theorem 5.1]. In particular, if $\mathcal{A} = \prod_{k}^{m}$ and $F \in t^{m}$, they proved that $P_{\epsilon} \to T_{m}(F)$ as $\epsilon \to 0$ [13, Theorem 3.1].

In this work we generalize the results found in [13], without the restrictions (c1) or (c2) given above. For this, it is essential to study the convergence of the net $\{\mathcal{A}^{\epsilon}\}$ as $\epsilon \to 0$.

This paper is organized as follows. In Section 2, we investigate the asymptotic behavior of $\{\mathcal{A}^{\epsilon}\}$. In Section 3, we study the asymptotic behavior of the error function $\epsilon^{-m-1}(F_{\epsilon} - P_{\epsilon})^{\epsilon}$ for a suitable integer, and we show some results about the best local approximation in the origin which generalizes those of [13].

2. Asymptotic behavior of the Net $\{\mathcal{A}^{\epsilon}\}$

In this section, we study the asymptotic behavior of the net $\{\mathcal{A}^{\epsilon}\}$ given in (1.2). We begin with the following definition.

Definition 2.1. Let $\mathcal{A} \subset \Pi_k^l$ be a subspace. We say that $P \in \lim_{\epsilon \to 0} \mathcal{A}^{\epsilon}$ if there exists a net $\{P_{\epsilon}\} \subset \mathcal{A}$ such that $\lim_{\epsilon \to 0} ||P - P_{\epsilon}^{\epsilon}||_0 = 0$. We denote $\mathcal{B} = \lim_{\epsilon \to 0} \mathcal{A}^{\epsilon}$.

Remark 2.2. If $\mathcal{A} \subset \Pi_k^l$ is a subspace, then the sets \mathcal{A}^{ϵ} and \mathcal{B} are also subspaces of Π_k^l . Furthermore, if $\mathcal{A}^{\epsilon} = \mathcal{A}$, for all $\epsilon > 0$, we have that $\mathcal{B} = \mathcal{A}$.

Next, we show a simple example of $\mathcal{A}^{\epsilon} = \mathcal{A}$.

Example 2.3. Set n = 3 and $\mathcal{A} = \text{span}\{(x_1, x_1 + x_2 + x_3, x_1^2 + x_2^2)\}$. Then, clearly we obtain $\mathcal{A}^{\epsilon} = \text{span}\{(\epsilon x_1, \epsilon(x_1 + x_2 + x_3), \epsilon^2(x_1^2 + x_2^2))\} = \mathcal{A}$.

Proposition 2.4. Let \mathcal{A} be a subspace of polynomials such that $\Pi_k^m \subset \mathcal{A}$ for some $m \in \mathbb{N} \cup \{0\}$ and $k \in \mathbb{N}$. Then $\Pi_k^m \subset \mathcal{A}^{\epsilon}$ for all $\epsilon > 0$. Moreover, $\Pi_k^m \subset \mathcal{B}$.

Proof. Set $R_{\alpha,i}(x) = x^{\alpha}e_i$, $|\alpha| \le m, 1 \le i \le k$, where $\{e_i\}_{i=1}^k$ is the canonical basis of \mathbb{R}^k . Then

$$\{R_{\alpha,i} : |\alpha| \le m, 1 \le i \le k\}$$

$$(2.1)$$

is a basis of the space Π_k^m . Since \mathcal{A}^{ϵ} is a subspace, we have $R_{\alpha,i} = \frac{1}{\epsilon^{|\alpha|}} R_{\alpha,i}^{\epsilon} \in \mathcal{A}^{\epsilon}$, and so $\Pi_k^m \subset \mathcal{A}^{\epsilon}$, for all $\epsilon > 0$. Finally, using the definition of \mathcal{B} , we obtain $\Pi_k^m \subset \mathcal{B}$.

From now on, for any Lebesgue measurable function $F : B \subset \mathbb{R}^n \to \mathbb{R}^k$ we denote $T_{-1}(F) = 0$.

Proposition 2.5. Let \mathcal{A} be a subspace of Π_k^l and let $0 \leq s + 1 \leq l$ be an integer. If $P \in \mathcal{A}$ satisfies $T_s(P) = 0$ and $T_{s+1}(P) \neq 0$, then $T_{s+1}(P) \in \mathcal{B}$.

Proof. For each $\epsilon > 0$ we define $Q_{\epsilon} = \frac{P}{\epsilon^{s+1}} \in \mathcal{A}$. Since $T_s(P) = 0$, it follows that $\|T_{s+1}(P) - Q_{\epsilon}^{\epsilon}\|_0 = \frac{\|(T_{s+1}(P) - P)^{\epsilon}\|_0}{\epsilon^{s+1}}$. So $\|T_{s+1}(P) - Q_{\epsilon}^{\epsilon}\|_0 = o(1)$ as $\epsilon \to 0$, and thus $T_{s+1}(P) \in \mathcal{B}$.

The following sets will be needed throughout the paper. Let \mathcal{A} be a non-zero subspace of Π_k^l . We define

$$A_{-1} := \mathcal{A} \text{ and } A_j := \{ P \in \mathcal{A} : T_j(P) = 0 \}, \text{ for } 0 \le j \le l.$$
 (2.2)

We note that

 $A_j \subset A_i$, whenever i < j.

Since $A_l \subset \{P \in \Pi_k^l : T_l(P) = 0\} = \{0\}$, we have

 $\{j: 0 \le j \le l \text{ and } A_j \ne \mathcal{A}\} \ne \emptyset \text{ and } \{j: 0 \le j \le l \text{ and } A_j = \{0\}\} \ne \emptyset.$

Set

$$s_0 = \min\{j : 0 \le j \le l \text{ and } A_j \ne \mathcal{A}\}$$

and

$$r_0 = \min\{j : 0 \le j \le l \text{ and } A_j = \{0\}\}.$$

It is easy to see that $0 \le s_0 \le r_0 \le l$, and

$$s_0, r_0 \in \{j : s_0 \le j \le r_0 \text{ and } A_j \subsetneq A_{j-1}\} =: J.$$

We can now formulate our main result which describes the limit set \mathcal{B} .

Theorem 2.6. Let \mathcal{A} be a non-zero subspace of Π_k^l . Then \mathcal{B} is a subspace of $\Pi_k^{r_0}$ isomorphic to \mathcal{A} . Furthermore, under the above notation the following holds:

(a) if $s_0 < r_0$ and $J \setminus \{r_0\} = \{s_0, \dots, s_N\}$ with $s_i < s_{i+1}$ for N > 0, then $\mathcal{B} = T_{r_0}(A_{s_N}) \oplus T_{s_N}(S_{s_N}) \oplus T_{s_{N-1}}(S_{s_{N-1}}) \oplus \dots \oplus T_{s_0}(S_{s_0})$, where $A_{s_i} \oplus S_{s_i} = A_{s_{i-1}}$, $0 \le i \le N$;

(b) if $s_0 = r_0$, then $\mathcal{B} = T_{r_0}(\mathcal{A})$.

Proof. (a) Assume $s_0 < r_0$. Since every subspace of $A_{s_{i-1}}$, $0 \le i \le N$, has a complement, there exists a subspace $S_{s_i} \subset A_{s_{i-1}}$ such that

$$A_{s_i} \oplus S_{s_i} = A_{s_{i-1}}, \quad 0 \le i \le N.$$
 (2.3)

In consequence,

$$\mathcal{A} = A_{s_N} \oplus S_{s_N} \oplus S_{s_{N-1}} \oplus \dots \oplus S_{s_0}.$$
 (2.4)

As $S_{s_i} \subset A_{s_{i-1}}$, $0 \le i \le N$, and $A_{r_0-1} = A_{s_N}$, we obtain

$$Q(x) = \begin{cases} \sum_{|\alpha| \ge s_i} \frac{\partial^{\alpha} Q(0)}{\alpha!} x^{\alpha}, & \text{if } Q \in S_{s_i}, \ 0 \le i \le N; \\ \sum_{|\alpha| \ge s_{N+1}} \frac{\partial^{\alpha} Q(0)}{\alpha!} x^{\alpha}, & \text{if } Q \in A_{s_N}, \end{cases}$$
(2.5)

where $s_{N+1} = r_0$. Let $T_i : S_{s_i} \to \Pi_k^{s_i}$ be a linear operator defined by $T_i(P) = T_{s_i}(P)$, $0 \le i \le N$, and $T_{N+1} : \mathcal{A} \to \Pi_k^{s_{N+1}}$ be the linear operator given by $T_{N+1}(P) = T_{s_{N+1}}(P)$. We claim that

- (i) T_i is an injective operator, $0 \le i \le N+1$.
- (ii) $T_{s_{N+1}}(A_{s_N}) \cap \sum_{i=0}^N T_{s_i}(S_{s_i}) = \{0\}.$
- (iii) If N > 0 then $T_{s_l}(S_{s_l}) \cap \left(T_{s_{N+1}}(A_{s_N}) + \sum_{i=0, i \neq l}^N T_{s_i}(S_{s_i})\right) = \{0\}$ whenever $l \neq i$.

Indeed, let $0 \leq i \leq N$. If $T_{s_i}(P) = T_{s_i}(Q)$ for some $P, Q \in S_{s_i}$, then $P - Q \in A_{s_i} \cap S_{s_i}$. So (2.3) implies that P = Q. On the other hand, if $T_{s_{N+1}}(P) = T_{s_{N+1}}(Q)$ with $P, Q \in A$, then $P - Q \in A_{s_{N+1}} = \{0\}$, which proves (i). To prove (ii) we consider $Q_{N+1} \in A_{s_N}$ and $Q_i \in S_{s_i}$ such that $P = T_{s_{N+1}}(Q_{N+1}) = \sum_{i=0}^N T_{s_i}(Q_i)$. From (2.5) we see that

$$T_{s_{N+1}}(Q_{N+1})(x) = \sum_{|\alpha|=s_{N+1}} \frac{\partial^{\alpha} Q_N(0)}{\alpha!} x^{\alpha} \quad \text{and} \quad \sum_{i=0}^N T_{s_i}(Q_i) \in \Pi_k^{s_N}.$$
(2.6)

Therefore P = 0. Now, let $Q_{N+1} \in A_{s_N}$ and $Q_i \in S_{s_i}$ be such that

$$P = T_{s_l}(Q_l) = T_{s_{N+1}}(Q_{N+1}) + \sum_{i=0, i \neq l}^N T_{s_i}(Q_i).$$
(2.7)

From (2.5) it follows that

$$T_{s_i}(Q_i) = \sum_{|\alpha|=s_i} \frac{\partial^{\alpha} Q_i(0)}{\alpha!} x^{\alpha}, \quad 0 \le i \le N.$$

According to (2.6) and (2.7) we have P = 0, and (iii) is proved. Using (i)–(iii), we deduce that the subspace

$$T_{s_{N+1}}(A_{s_N}) + T_{s_N}(S_{s_N}) + T_{s_{N-1}}(S_{s_{N-1}}) + \dots + T_{s_0}(S_{s_0})$$

is a direct sum isomorphic to \mathcal{A} . The proof concludes by proving

$$\mathcal{B} = T_{s_{N+1}}(A_{s_N}) \oplus T_{s_N}(S_{s_N}) \oplus T_{s_{N-1}}(S_{s_{N-1}}) \oplus \cdots \oplus T_{s_0}(S_{s_0}).$$

We observe that if $P \in S_{s_i} \setminus \{0\}$, then $T_{s_i}(P) \neq 0$ and $T_{s_i-1}(P) = 0$ by (2.3). So, Proposition 2.5 implies that $T_{s_i}(P) \in \mathcal{B}$. On the other hand, if $P \in A_{s_N} \setminus \{0\}$, we get $T_{s_N}(P) = 0$. Moreover, we have $T_{s_{N+1}}(P) \neq 0$. In fact, on the contrary, we see that $P \in A_{s_{N+1}} = \{0\}$. Proposition 2.5 now gives $T_{s_{N+1}}(P) \in \mathcal{B}$. Therefore,

$$T_{s_{N+1}}(A_{s_N}) \oplus T_{s_N}(S_{s_N}) \oplus T_{s_{N-1}}(S_{s_{N-1}}) \oplus \cdots \oplus T_{s_0}(S_{s_0}) \subset \mathcal{B}.$$

On the other hand, if $P \in \mathcal{B}$, there exists $\{P_{\epsilon}\} \subset \mathcal{A}$ such that

$$\lim_{\epsilon \to 0} \|P - P_{\epsilon}^{\epsilon}\|_{0} = 0.$$
(2.8)

Let $d_{N+1} = \dim(A_{s_N})$ and $d_i = \dim(S_{s_i})$, $0 \le i \le N$. We take $\{v_l\}_{l=1}^{d_{N+1}}$ and $\{w_{ir}\}_{r=1}^{d_i}$ bases of A_{s_N} and S_{s_i} , respectively. It is easy to check that for each $0 < \epsilon \le 1$, $\{\epsilon^{-s_{N+1}}v_l\}_{l=1}^{d_{N+1}}$ is a basis of A_{s_N} and $\{\epsilon^{-s_i}w_{ir}\}_{r=1}^{d_i}$ is a basis of S_{s_i} , $0 \le i \le N$. According to (2.4), we have that there exist real numbers $D_{l,\epsilon}$ and $C_{i,r,\epsilon}$ such that

$$P_{\epsilon} = \sum_{l=1}^{d_{N+1}} \epsilon^{-s_{N+1}} D_{l,\epsilon} v_l + \sum_{i=0}^{N} \sum_{r=1}^{d_i} \epsilon^{-s_i} C_{i,r,\epsilon} w_{ir}.$$

From (2.5) it follows that

$$v_l(x) = \sum_{|\alpha| \ge s_{N+1}} \frac{\partial^{\alpha} v_l(0)}{\alpha!} x^{\alpha} \quad \text{and} \quad w_{ir}(x) = \sum_{|\alpha| \ge s_i} \frac{\partial^{\alpha} w_{ir}(0)}{\alpha!} x^{\alpha}.$$
(2.9)

So,

$$\begin{split} P_{\epsilon}^{\epsilon}(x) &= \sum_{l=1}^{d_{N+1}} D_{l,\epsilon} \epsilon^{-s_{N+1}} v_{l}^{\epsilon}(x) + \sum_{i=0}^{N} \sum_{r=1}^{d_{i}} C_{i,r,\epsilon} \epsilon^{-s_{i}} w_{ir}^{\epsilon}(x) \\ &= \sum_{l=1}^{d_{N+1}} D_{l,\epsilon} \sum_{|\alpha|=s_{N+1}} \frac{\partial^{\alpha} v_{l}(0)}{\alpha!} x^{\alpha} + \sum_{l=1}^{d_{N+1}} D_{l,\epsilon} \sum_{|\alpha|>s_{N+1}} \epsilon^{|\alpha|-s_{N+1}} \frac{\partial^{\alpha} v_{l}(0)}{\alpha!} x^{\alpha} \\ &+ \sum_{i=0}^{N} \sum_{r=1}^{d_{i}} C_{i,r,\epsilon} \sum_{|\alpha|=s_{i}} \frac{\partial^{\alpha} w_{ir}(0)}{\alpha!} x^{\alpha} + \sum_{i=0}^{N} \sum_{r=1}^{d_{i}} C_{i,r,\epsilon} \sum_{|\alpha|>s_{i}} \epsilon^{|\alpha|-s_{i}} \frac{\partial^{\alpha} w_{ir}(0)}{\alpha!} x^{\alpha}. \end{split}$$

Consequently

$$T_{s_j}(P_{\epsilon}^{\epsilon})(x) = \sum_{i=0}^{j} \sum_{r=1}^{d_i} C_{i,r,\epsilon} \sum_{|\alpha|=s_i} \frac{\partial^{\alpha} w_{ir}(0)}{\alpha!} x^{\alpha} + \sum_{i=0}^{j-1} \sum_{r=1}^{d_i} C_{i,r,\epsilon} \sum_{s_i < |\alpha| \le s_j} \epsilon^{|\alpha|-s_i} \frac{\partial^{\alpha} w_{ir}(0)}{\alpha!} x^{\alpha}$$

if $0 \leq j \leq N$, and

$$T_{s_{N+1}}(P_{\epsilon}^{\epsilon})(x) = \sum_{l=1}^{d_{N+1}} D_{l,\epsilon} \sum_{|\alpha|=s_{N+1}} \frac{\partial^{\alpha} v_l(0)}{\alpha!} x^{\alpha} + \sum_{i=0}^{N} \sum_{r=1}^{d_i} C_{i,r,\epsilon} \sum_{|\alpha|=s_i} \frac{\partial^{\alpha} w_{ir}(0)}{\alpha!} x^{\alpha} + \sum_{i=0}^{N} \sum_{r=1}^{d_i} C_{i,r,\epsilon} \sum_{s_i < |\alpha| \le s_{N+1}} \epsilon^{|\alpha|-s_i} \frac{\partial^{\alpha} w_{ir}(0)}{\alpha!} x^{\alpha}.$$

From (2.9) it follows that

$$T_{s_{N+1}}(v_{\ell})(x) = \sum_{|\alpha|=s_{N+1}} \frac{\partial^{\alpha} v_{\ell}(0)}{\alpha!} x^{\alpha} \quad \text{and} \quad T_{s_j}(w_{j,r})(x) = \sum_{|\alpha|=s_j} \frac{\partial^{\alpha} w_{j,r}(0)}{\alpha!} x^{\alpha}.$$

Thus, a straightforward computation yields

$$T_{s_0}(P_{\epsilon}^{\epsilon})(x) = \sum_{r=1}^{d_0} C_{0,r,\epsilon} T_{s_0}(w_{0,r})(x), \qquad (2.10)$$

55

$$T_{s_j}(P_{\epsilon}^{\epsilon})(x) = T_{s_{j-1}}(P_{\epsilon}^{\epsilon})(x) + \sum_{i=0}^{j-1} \sum_{r=1}^{d_i} C_{i,r,\epsilon} \sum_{s_{j-1} < |\alpha| \le s_j} \epsilon^{|\alpha| - s_i} \frac{\partial^{\alpha} w_{i,r}(0)}{\alpha!} x^{\alpha} + \sum_{r=1}^{d_j} C_{j,r,\epsilon} T_{s_j}(w_{j,r})(x)$$

$$(2.11)$$

if $1 \leq j \leq N$, and

$$T_{s_{N+1}}(P_{\epsilon}^{\epsilon})(x) = T_{s_{N}}(P_{\epsilon}^{\epsilon})(x) + \sum_{l=1}^{d_{N+1}} D_{l,\epsilon}T_{s_{N+1}}(v_{\ell})(x) + \sum_{i=0}^{N} \sum_{r=1}^{d_{i}} C_{i,r,\epsilon} \sum_{s_{N} < |\alpha| \le s_{N+1}} \epsilon^{|\alpha| - s_{i}} \frac{\partial^{\alpha} w_{i,r}(0)}{\alpha!} x^{\alpha}.$$
(2.12)

From (2.8) and (2.10), we deduce that $T_{s_0}(P_{\epsilon}^{\epsilon})(x) = \sum_{r=1}^{d_0} C_{0,r,\epsilon} T_{s_0}(w_{0,r})(x)$ is convergent as $\epsilon \to 0$. Since $\{T_{s_0}(w_{0,r})\}_{r=1}^{d_0}$ is a basis of $T_{s_0}(S_{s_0})$, there are real numbers $C_{0,r}$, $1 \leq r \leq d_0$, such that $C_{0,r,\epsilon} \to C_{0,r}$ as $\epsilon \to 0$. According to (2.8) and (2.11) it follows that $\sum_{r=1}^{d_1} C_{1,r,\epsilon} T_{s_1}(w_{1,r})(x)$ is convergent as $\epsilon \to 0$. Hence, there are real numbers $C_{1,r}$, $1 \leq r \leq d_1$, such that $C_{1,r,\epsilon} \to C_{1,r}$ as $\epsilon \to 0$, because $\{T_{s_1}(w_{1r})\}_{r=1}^{d_1}$ is a basis of $T_{s_1}(S_{s_1})$. Similarly, as $\{T_{s_{N+1}}(v_l)\}_{l=1}^a$ is a basis of $T_{s_{N+1}}(A_{s_N})$ and $\{T_{s_i}(w_{ir})\}_{r=1}^{d_i}$ is a basis of $T_{s_i}(S_{s_i})$, $0 \leq i \leq N$, (2.8) and (2.10)– (2.12) show that there are real numbers D_l and $C_{i,r}$ such that $D_{l,\epsilon} \to D_l$ and $C_{i,r,\epsilon} \to C_{i,r}$ as $\epsilon \to 0$. In consequence,

$$P = \sum_{l=1}^{a} D_l T_{s_{N+1}}(v_l) + \sum_{i=0}^{N} \left(\sum_{r=1}^{d_i} C_{i,r} T_{s_i}(w_{ir}) \right),$$

and so $P \in T_{s_{N+1}}(A_{s_N}) \oplus T_{s_N}(S_{s_N}) \oplus T_{s_{N-1}}(S_{s_{N-1}}) \oplus \dots \oplus T_{s_0}(S_{s_0})$

(b) Now assume $s_0 = r_0$, i.e., $A_{s_0} = \{0\}$. Then \mathcal{A} has the form (2.4) with N = 0, $A_{s_0} = \{0\}$ and $S_{s_0} = \mathcal{A}$. An analysis similar to the proof of (a) shows that T_{r_0} is an isomorphism and $\mathcal{B} = T_{s_0}(S_{s_0}) = T_{r_0}(\mathcal{A})$.

The following corollary follows immediately from the proof of Theorem 2.6.

Corollary 2.7. Let \mathcal{A} be a non-zero subspace of Π_k^l . Then $\lim_{n \to \infty} \mathcal{A}^{\epsilon_n} = \mathcal{B}$ for any sequence $\{\epsilon_n\}$ of the net $\epsilon \downarrow 0$.

Remark 2.8. \mathcal{B} is isomorphic to $T_{r_0}(\mathcal{A})$.

Corollary 2.9. Let $s \ge m+1$ and let $\mathcal{A} = \prod_k^m \oplus A_{s-1}$ be such that $A_s = \{0\}$. Then $\mathcal{B} = \prod_k^m \oplus T_s(A_{s-1})$ and the linear operator $T : \mathcal{A} \to \prod_k^s$ given by $T(P) = T_s(P)$ defines an isomorphism between \mathcal{A} and \mathcal{B} .

Proof. We first claim that T is an injective operator. Indeed, if T(P) = T(Q) for $P, Q \in \mathcal{A}$, then $T_s(P-Q) = 0$ and so $P-Q \in A_s$. Since $A_s = \{0\}$, we have P = Q. Since \mathcal{A} is isomorphic to $T(\mathcal{A})$, the proof concludes by proving $\mathcal{B} = \prod_k^m \oplus T_s(A_{s-1}) = T_s(\mathcal{A})$.

Let A_i be the sets defined in (2.2). Since

$$\{0\} = A_s \subsetneq A_{s-1} = \dots = A_m \subsetneq A_{m-1} \subsetneq \dots \subsetneq A_0 \subsetneq \mathcal{A},$$

then $\mathcal{A} = A_{s-1} \oplus B_m \oplus B_{m-1} \oplus \cdots \oplus B_0$, where $A_i \oplus B_i = A_{i-1}, 0 \leq i \leq m$. Therefore Π_k^m is isomorphic to $B_m \oplus \cdots \oplus B_0$. On the other hand, since $s_0 = 0$, $r_0 = s$ and $J \setminus \{r_0\} = \{0, 1, \ldots, m\}$, by Proposition 2.6 (a),

$$\mathcal{B} = T_s(A_{s-1}) \oplus T_m(B_m) \oplus \cdots \oplus T_0(B_0).$$

From the proof of Theorem 2.6, we obtain that $B_m \oplus \cdots \oplus B_0$ is isomorphic to $T_m(B_m) \oplus \cdots \oplus T_0(B_0)$, and consequently Π_k^m is isomorphic to $T_m(B_m) \oplus \cdots \oplus T_0(B_0) \subset \Pi_k^m$. Hence, $T_m(B_m) \oplus \cdots \oplus T_0(B_0) = \Pi_k^m$ and so $\mathcal{B} = T_s(A_{s-1}) \oplus \Pi_k^m = T_s(A_{s-1}) \oplus T_s(\Pi_k^m) = T_s(\mathcal{A})$.

3. An application to best local approximation

Let $\{P_{\epsilon}\}$ be a net of best approximants to F from \mathcal{A} with respect to $\|\cdot\|_{\epsilon}^{*}$, and let E_{ϵ} be the error function

$$E_{\epsilon}(F) = \frac{F^{\epsilon} - P_{\epsilon}^{\epsilon}}{\epsilon^{m+1}}.$$

If $F \in t^{m+1}$, then

$$F^{\epsilon} = T^{\epsilon}_{m+1} + \epsilon^{m+1} R^{\epsilon}_{m+1},$$

where $R_{m+1} = \frac{F - T_{m+1}}{\epsilon^{m+1}}$, $||R_{m+1}^{\epsilon}||_{\epsilon} = o(1)$, and T_{m+1} is the Taylor polynomial of F of degree m + 1 at 0. Moreover,

$$\lambda P^{\epsilon}_{\epsilon} \in \mathcal{P}_{\mathcal{A}^{\epsilon},\epsilon}(\lambda F^{\epsilon}) \quad \text{and} \quad P^{\epsilon} + P^{\epsilon}_{\epsilon} \in \mathcal{P}_{\mathcal{A}^{\epsilon},\epsilon}((P+F)^{\epsilon}), \quad \text{for } P \in \mathcal{A}_{\epsilon}$$

The following proposition may be proved in much the same way as [13, Proposition 4.1]. However, we repeat the proof for completeness.

Proposition 3.1. Let \mathcal{A} be a non-zero subspace of Π_k^l with l > m, and let $\{P_{\epsilon}\}$ be a net of best approximants of F from \mathcal{A} with respect to $\|\cdot\|_{\epsilon}^*$. If $F \in t^{m+1}$, $T_m \in \mathcal{A}$ and $\phi_{m+1} = T_{m+1} - T_m$, then

$$E_{\epsilon}(F) = \phi_{m+1} + R^{\epsilon}_{m+1} - \mathcal{P}_{\mathcal{A}^{\epsilon},\epsilon}(\phi_{m+1} + R^{\epsilon}_{m+1}),$$

where $||R_{m+1}^{\epsilon}||_{\epsilon} = o(1)$ as $\epsilon \to 0$.

Proof. Since $R_{m+1}^{\epsilon} = \frac{F^{\epsilon} - T_{m+1}^{\epsilon}}{\epsilon^{m+1}}$, then

$$\phi_{m+1} + R^{\epsilon}_{m+1} = T_{m+1} - T_m + \frac{F^{\epsilon} - T^{\epsilon}_{m+1}}{\epsilon^{m+1}} = \frac{T^{\epsilon}_{m+1} - T^{\epsilon}_m}{\epsilon^{m+1}} + \frac{F^{\epsilon} - T^{\epsilon}_{m+1}}{\epsilon^{m+1}}$$
$$= \frac{F^{\epsilon} - T^{\epsilon}_m}{\epsilon^{m+1}}.$$

As $T_m \in \mathcal{A}$, we have

$$\phi_{m+1} + R^{\epsilon}_{m+1} - \mathcal{P}_{\mathcal{A}^{\epsilon},\epsilon}(\phi_{m+1} + R^{\epsilon}_{m+1}) = \frac{F^{\epsilon} - T^{\epsilon}_{m}}{\epsilon^{m+1}} - P_{\mathcal{A}^{\epsilon},\epsilon}\left(\frac{F^{\epsilon} - T^{\epsilon}_{m}}{\epsilon^{m+1}}\right)$$
$$= \frac{F^{\epsilon} - P^{\epsilon}_{\epsilon}}{\epsilon^{m+1}} = E_{\epsilon}(F).$$

Next, we give a new result about the asymptotic behavior of the error without the conditions (c1) or (c2), which generalizes Theorems 4.2 and 4.5 of [13].

Theorem 3.2. Let \mathcal{A} be a non-zero subspace of Π_k^l with l > m. If $F \in t^{m+1}$, $T_m \in \mathcal{A}$ and $\phi_{m+1} = T_{m+1} - T_m$, then

$$||E_{\epsilon}(F)||_{\epsilon} \to \inf_{P \in \mathcal{B}} ||\phi_{m+1} - P||_0, \quad as \ \epsilon \to 0.$$

Proof. By Proposition 3.1,

$$E_{\epsilon}(F) = \phi_{m+1} + R^{\epsilon}_{m+1} - \mathcal{P}_{\mathcal{A}^{\epsilon},\epsilon}(\phi_{m+1} + R^{\epsilon}_{m+1}), \qquad (3.1)$$

where $||R_{m+1}^{\epsilon}||_{\epsilon} = o(1)$ as $\epsilon \to 0$. We first prove

$$\overline{\lim_{\epsilon \to 0}} \| E_{\epsilon}(F) \|_{\epsilon} \le \inf_{P \in B} \| \phi_{m+1} - P \|_{0}.$$
(3.2)

In fact, let $P \in \mathcal{B}$. By the definition of \mathcal{B} , there exists a net $\{Q_{\epsilon}\} \subset \mathcal{A}$ such that $\|P - Q_{\epsilon}^{\epsilon}\|_{0} \to 0$, as $\epsilon \to 0$. In consequence, $\|P - Q_{\epsilon}^{\epsilon}\|_{\epsilon} = o(1)$, as $\epsilon \to 0$, by (1.3). Since $Q_{\epsilon}^{\epsilon} \in \mathcal{A}^{\epsilon}$ and $\|R_{m+1}^{\epsilon}\|_{\epsilon} = o(1)$, from (3.1) we obtain

$$||E_{\epsilon}(F)||_{\epsilon} \le ||\phi_{m+1} + R^{\epsilon}_{m+1} - Q^{\epsilon}_{\epsilon}||_{\epsilon} \le ||\phi_{m+1} - Q^{\epsilon}_{\epsilon}||_{\epsilon} + o(1), \quad \text{as } \epsilon \to 0.$$
(3.3)

By Property (3), $\|\phi_{m+1} - P\|_{\epsilon} \to \|\phi_{m+1} - P\|_0$, as $\epsilon \to 0$. Hence, using the triangle inequality we have

$$\begin{aligned} |\|\phi_{m+1} - Q_{\epsilon}^{\epsilon}\|_{\epsilon} - \|\phi_{m+1} - P\|_{0}| &\leq |\|\phi_{m+1} - Q_{\epsilon}^{\epsilon}\|_{\epsilon} - \|\phi_{m+1} - P\|_{\epsilon}| \\ &+ |\|\phi_{m+1} - P\|_{\epsilon} - \|\phi_{m+1} - P\|_{0}| \\ &\leq \|P - Q_{\epsilon}^{\epsilon}\|_{\epsilon} + |\|\phi_{m+1} - P\|_{\epsilon} - \|\phi_{m+1} - P\|_{0}| = o(1) \end{aligned}$$

as $\epsilon \to 0$. Now, according to (3.3) we get (3.2).

The proof finishes by observing that

$$\lim_{\epsilon \to 0} \|E_{\epsilon}(F)\|_{\epsilon} \ge \inf_{P \in \mathcal{B}} \|\phi_{m+1} - P\|_{0}.$$
(3.4)

Let $\epsilon \downarrow 0$ be a sequence such that $\lim_{\epsilon \to 0} ||E_{\epsilon}(F)||_{\epsilon} = \underline{\lim}_{\epsilon \to 0} ||E_{\epsilon}(F)||_{\epsilon}$. We consider $P_{\epsilon}^{\epsilon} \in \mathcal{P}_{\mathcal{A}^{\epsilon},\epsilon}(\phi_{m+1} + R_{m+1}^{\epsilon})$. We claim that there exist constants $M, \epsilon_0 > 0$ such that

$$\|P_{\epsilon}^{\epsilon}\|_{0} \le M, \quad 0 < \epsilon \le \epsilon_{0}.$$

$$(3.5)$$

Indeed, as $0 \in \mathcal{A}^{\epsilon}$ we get

$$\begin{aligned} \|P_{\epsilon}^{\epsilon}\|_{\epsilon} &\leq \|P_{\epsilon}^{\epsilon} - (\phi_{m+1} + R_{m+1}^{\epsilon})\|_{\epsilon} + \|\phi_{m+1} + R_{m+1}^{\epsilon}\|_{\epsilon} \\ &\leq 2\|\phi_{m+1} + R_{m+1}^{\epsilon_{n}}\|_{\epsilon} \\ &\leq 2\|\phi_{m+1}\|_{\epsilon} + 2\|R_{m+1}^{\epsilon}\|_{\epsilon}, \end{aligned}$$
(3.6)

for $0 < \epsilon \leq 1$. By Proposition 3.1 and Property (3), we see that $2\|\phi_{m+1}\|_{\epsilon} + 2\|R_{m+1}^{\epsilon}\|_{\epsilon} \rightarrow 2\|\phi_{m+1}\|_{0}$, as $\epsilon \rightarrow 0$. So, from (1.3) and (3.6), we obtain (3.5).

In consequence, there exists a subsequence of $\{P_{\epsilon}^{\epsilon}\}$, which is denoted in the same way, and $P_{0} \in \Pi_{k}^{l}$ such that $P_{\epsilon}^{\epsilon} \to P$ uniformly on B, as $\epsilon \to 0$. Since $|\|\phi_{m+1} - P_{\epsilon}^{\epsilon}\|_{\epsilon} - \|\phi_{m+1} - P\|_{0}| \leq |\|\phi_{m+1} - P_{\epsilon}^{\epsilon}\|_{\epsilon} - \|\phi_{m+1} - P\|_{\epsilon}| + |\|\phi_{m+1} - P\|_{\epsilon} - \|\phi_{m+1} - P\|_{0}| \leq \|P - P_{\epsilon}^{\epsilon}\|_{\epsilon} + |\|\phi_{m+1} - P\|_{\epsilon} - \|\phi_{m+1} - P\|_{0}|$, using Property (3) we get

$$\|\phi_{m+1} - P\|_0 = \|\phi_{m+1} - P_{\epsilon}^{\epsilon}\|_{\epsilon} + o(1), \text{ as } \epsilon \to 0.$$

We observe that $P \in B$ by Corollary 2.7. Therefore, by Proposition 3.1,

$$\inf_{Q \in \mathcal{B}} \|\phi_{m+1} - Q\|_0 \leq \|\phi_{m+1} - P\|_0 = \|\phi_{m+1} - P_{\epsilon}^{\epsilon}\|_{\epsilon} + o(1) \\
\leq \|\phi_{m+1} + R_{m+1}^{\epsilon} - P_{\epsilon}^{\epsilon}\|_{\epsilon} + \|R_{m+1}^{\epsilon}\|_{\epsilon} \\
= \|E_{\epsilon}(F)\|_{\epsilon} + \|R_{m+1}^{\epsilon}\|_{\epsilon}.$$

So, $\inf_{Q \in \mathcal{B}} \|\phi_{m+1} - Q\|_0 \leq \lim_{\epsilon \to 0} \left(\|E_{\epsilon}(F)\|_{\epsilon} + \|R_{m+1}^{\epsilon}\|_{\epsilon} \right) = \underline{\lim}_{\epsilon \to 0} \|E_{\epsilon}(F)\|_{\epsilon}, \text{ and } (3.4)$ is proved. \Box

The following result provides us with a useful and important property for a net of best approximants to F from \mathcal{A} .

Theorem 3.3. Let \mathcal{A} be a non-zero subspace of Π_k^l with l > m, and let $\{P_{\epsilon}\}$ be a net of best approximants of F from \mathcal{A} with respect to $\|\cdot\|_{\epsilon}^*$. Assume $F \in t^{m+1}$, $T_m \in \mathcal{A}$ and $\phi_{m+1} = T_{m+1} - T_m$. If \mathcal{C} is the cluster point set of the net $\left\{\frac{(P_{\epsilon} - T_m)^{\epsilon}}{\epsilon^{m+1}}\right\}$, as $\epsilon \to 0$, then $\mathcal{C} \neq \emptyset$. Moreover, each polynomial in \mathcal{C} is a solution of the minimization problem

$$\min_{P \in \mathcal{B}} \|\phi_{m+1} - P\|_0. \tag{3.7}$$

Proof. We observe that

$$\begin{split} E_{\epsilon}(F) &= \frac{(F-P_{\epsilon})^{\epsilon}}{\epsilon^{m+1}} = \frac{(T_{m+1}-T_m)^{\epsilon} + (F-T_{m+1})^{\epsilon} - (P_{\epsilon}-T_m)^{\epsilon}}{\epsilon^{m+1}} \\ &= \frac{\phi_{m+1}^{\epsilon} - (P_{\epsilon}-T_m)^{\epsilon}}{\epsilon^{m+1}} + \frac{(F-T_{m+1})^{\epsilon}}{\epsilon^{m+1}} \\ &= \phi_{m+1} - \frac{(P_{\epsilon}-T_m)^{\epsilon}}{\epsilon^{m+1}} + \frac{(F-T_{m+1})^{\epsilon}}{\epsilon^{m+1}}. \end{split}$$

Then

$$\begin{split} \left\| \phi_{m+1} - \frac{(P_{\epsilon} - T_m)^{\epsilon}}{\epsilon^{m+1}} \right\|_{\epsilon} &- \frac{\|(F - T_{m+1})^{\epsilon}\|_{\epsilon}}{\epsilon^{m+1}} \\ &\leq \|E_{\epsilon}(F)\|_{\epsilon} \leq \left\| \phi_{m+1} - \frac{(P_{\epsilon} - T_m)^{\epsilon}}{\epsilon^{m+1}} \right\|_{\epsilon} + \frac{\|(F - T_{m+1})^{\epsilon}\|_{\epsilon}}{\epsilon^{m+1}}, \end{split}$$

and consequently,

$$||E_{\epsilon}(F)||_{\epsilon} = \left\|\phi_{m+1} - \frac{(P_{\epsilon} - T_m)^{\epsilon}}{\epsilon^{m+1}}\right\|_{\epsilon} + o(1), \quad \text{as } \epsilon \to 0.$$

since $F \in t^{m+1}$. By Theorem 3.2,

$$\inf_{P \in B} \|\phi_{m+1} - P\|_0 = \lim_{\epsilon \to 0} \left\| \phi_{m+1} - \frac{(P_\epsilon - T_m)^\epsilon}{\epsilon^{m+1}} \right\|_{\epsilon}.$$
 (3.8)

According to (1.3), there exist constants $\epsilon_0, M > 0$ such that

$$\left\|\phi_{m+1} - \frac{(P_{\epsilon} - T_m)^{\epsilon}}{\epsilon^{m+1}}\right\|_0 \le M,$$

for all $0 < \epsilon \leq \epsilon_0$. The equivalence of the norms in Π_k^l implies that the net $\left\{\frac{(P_\epsilon - T_m)^\epsilon}{\epsilon^{m+1}}\right\}_{0 < \epsilon \leq \epsilon_0}$ is uniformly bounded on B. So, there exists a subsequence of $\left\{\frac{(P_\epsilon - T_m)^\epsilon}{\epsilon^{m+1}}\right\}_{0 < \epsilon \leq \epsilon_0}$, which is denoted in the same way, and a polynomial P_0 such that

$$\frac{(P_{\epsilon} - T_m)^{\epsilon}}{\epsilon^{m+1}}$$
 converges to P_0 , uniformly on B , as $\epsilon \to 0$.

In consequence, $\mathcal{C} \neq \emptyset$.

On the other hand, if $P_0 \in \mathcal{C}$, there is a sequence $\epsilon \downarrow 0$ such that $\frac{(P_e - T_m)^{\epsilon}}{\epsilon^{m+1}} \rightarrow P_0$. Since $T_m \in \mathcal{A}$, we have $P_e - T_m \in \mathcal{A}$, and so $P_0 \in \mathcal{B}$ by Corollary 2.7. Finally, from Property (3) and (3.8) we conclude that

$$\inf_{P \in B} \|\phi_{m+1} - P\|_0 = \lim_{\epsilon \to 0} \left\| \phi_{m+1} - \frac{(P_{\epsilon} - T_m)^{\epsilon}}{\epsilon^{m+1}} \right\|_{\epsilon} = \|\phi_{m+1} - P_0\|_0,$$

i.e., P_0 is a solution of (3.7).

The following theorem is an extension of [13, Theorem 5.1].

Theorem 3.4. Let \mathcal{A} be a non-zero subspace of Π_k^l with l > m, and let $\{P_\epsilon\}$ be a net of best approximants of F from \mathcal{A} with respect to $\|\cdot\|_{\epsilon}^*$. Assume m + 1 = $\min\{j: 0 \le j \le l \text{ and } A_j = \{0\}\}, F \in t^{m+1}$ with $T_m \in \mathcal{A}$, and set $\phi_{m+1} = T_{m+1} T_m$. If the minimization problem (3.7) has a unique solution P_0 , then $P_\epsilon \to T_m + P$, where $P \in \mathcal{A}$ is uniquely determined by the condition $T_{m+1}(P) = P_0 - T_m(P_0)$.

Proof. Since (3.7) has a unique solution P_0 , Theorem 3.3 implies that

$$\lim_{\epsilon \to 0} \frac{(P_{\epsilon} - T_m)^{\epsilon}}{\epsilon^{m+1}} = P_0.$$

In consequence, $\partial^{\alpha}(P_{\epsilon} - T_m)(0) \to 0$, $|\alpha| \leq m$, and $\partial^{\alpha}(P_{\epsilon} - T_m)(0) \to \partial^{\alpha}P_0(0)$, $|\alpha| = m + 1$, as $\epsilon \to 0$. Therefore

$$T_{m+1}(P_{\epsilon} - T_m)(x) \to \sum_{|\alpha|=m+1} \frac{\partial^{\alpha} P_0(0)}{\alpha!} x^{\alpha} =: R(x), \quad x \in B, \text{ as } \epsilon \to 0.$$
(3.9)

Let $T: \mathcal{A} \to \Pi_k^{m+1}$ be the linear operator defined by $T(P) = T_{m+1}(P)$. As $A_{m+1} = \{0\}$, an analysis similar to that in the proof of Corollary 2.9 shows that T is an injective operator. Since $T(\mathcal{A})$ is a closed subspace and $\{T_{m+1}(P_{\epsilon} - T_m)\} \subset T(\mathcal{A})$, (3.9) implies that there exists a unique $P \in \mathcal{A}$ such that $T_{m+1}(P) = R$. Hence $T_{m+1}(P_{\epsilon} - T_m - P) \to 0$ as $\epsilon \to 0$. As $A_{m+1} = \{0\}$ we see that $\|Q\| := \|T_{m+1}(Q)\|_0$ is a norm on \mathcal{A} , and so $P_{\epsilon} \to T_m + P$ as $\epsilon \to 0$. Finally, by Theorem 2.6, $\mathcal{B} \subset \Pi_k^{m+1}$, and consequently $P_0 - T_m(P_0) = T_{m+1}(P_0) - T_m(P_0) = R$. The proof is complete.

Remark 3.5. If \mathcal{A} satisfies the condition (c2), then $\mathcal{A} = \prod_{k=1}^{m} \oplus A_{m}$ with $A_{m+1} = \{0\}$. By Corollary 2.9, $\mathcal{B} = \prod_{k=1}^{m} \oplus T_{m+1}(A_{m})$ and each element $P \in \mathcal{A}$ is uniquely determined by $T_{m+1}(P)$. So, we can rewrite the problem (3.7) in the following (equivalent) form:

$$\min_{Q+U\in\Pi_k^m\oplus A_m} \|\phi_{m+1} - (Q+T_{m+1}(U))\|_0.$$
(3.10)

The following result has been proved in [13, Theorem 5.1] and it is a consequence of Theorem 3.4.

Corollary 3.6. Let $\Pi_k^m \subset \mathcal{A} \subset \Pi_k^l$ be a non-zero subspace that satisfies the condition (c2) and let $\{P_\epsilon\}$ be a net of best approximants of F from \mathcal{A} with respect to $\|\cdot\|_{\epsilon}^*$. Assume $F \in t^{m+1}$. If the minimization problem (3.10) has a unique solution P_0 , then $P_{\epsilon} \to T_m + P$, where $P \in \mathcal{A}$ is uniquely determined by the condition $T_{m+1}(P) = P_0 - T_m(P_0)$.

In the following example we present a function $F \in \bigcap_{m=0}^{\infty} t^m$ such that $T_2(F) \notin \mathcal{A}$ and the net $\{T_i(P_{\epsilon})\}$ does not converge for the same i > m+1.

61

Example 3.7. Set $B = [-1, 1], ||G||_{\epsilon} = \left(\int_{-1}^{1} |G(x)|^2 dx\right)^{\frac{1}{2}}, A = \operatorname{span}\{1, x^2, x^3\},$ and F(x) = x. So

$$||G||_{\epsilon}^{*} = \left(\frac{1}{\epsilon} \int_{-\epsilon}^{\epsilon} |G(x)|^{2} dx\right)^{\frac{1}{2}},$$

 $A_0 = A_1 = \operatorname{span}\{x^2, x^3\}, A_2 = \operatorname{span}\{x^3\}$ and $A_3 = \{0\}$. Since $T_1(x^2) = 0$, we observe that the subspace \mathcal{A} does not satisfy the condition (c2). Moreover, an straightforward computation shows that

$$\frac{\|F - T_0\|_{\epsilon}^*}{\epsilon^0} = \frac{\sqrt{6}}{3}\epsilon \quad \text{and} \quad \frac{\|F - T_s\|_{\epsilon}^*}{\epsilon^s} = 0, \quad s \in \mathbb{N}$$

where $T_0(x) = 0$ and $T_s(x) = x$. In consequence, $F \in t^m$ for all $m \in \mathbb{N} \cup \{0\}$, and $T_2(F) \notin \mathcal{A}$. Since $\int_{-\epsilon}^{\epsilon} \left(x - \frac{7}{5\epsilon^2}x^3\right)x^i dx = 0$, i = 0, 2, 3, then $P_{\epsilon}(x) = \frac{7}{5\epsilon^2}x^3$ is the best approximant to F from \mathcal{A} with respect to $\|\cdot\|_{\epsilon}^*$. Therefore $T_i(P_{\epsilon})(x) \to 0$, for i = 0, 1, 2, but $T_3(P_{\epsilon})(x)$ does not converge, as $\epsilon \to 0$. So, the best local approximation to F from \mathcal{A} in 0 does not exist, and

$$\|E_{\epsilon}(F)\|_{\epsilon} = \frac{\|F - P_{\epsilon}\|_{\epsilon}^{*}}{\epsilon^{3}} = \frac{2\sqrt{6}}{15\epsilon^{2}} \to \infty, \quad \text{as } \epsilon \to 0.$$

We now give another example which shows that the condition $T_m \in \mathcal{A}$ is not necessary for the existence of the best local approximation.

Example 3.8. Set B, $\|\cdot\|_{\epsilon}^{\epsilon}$ and F as in Example 3.7, and we consider the subspace $\mathcal{A} = \operatorname{span}\{1, x^2\}$. It is clear that $A_0 = A_1 = \operatorname{span}\{x^2\}$, $A_2 = \{0\}$ and $\mathcal{B} = \mathcal{A}$. Moreover, we have $F \in t^2$, $T_1 \notin \mathcal{A}$, and \mathcal{A} does not satisfy the condition (c2) since $T_1(x^2) = 0$. As $\int_{-\epsilon}^{\epsilon} (x-0) x^i dx = 0$, i = 0, 2, then $P_{\epsilon}(x) = 0$ is the best approximant to F from \mathcal{A} with respect to $\|\cdot\|_{\epsilon}^{*}$. Therefore, the polynomial 0 is the best local approximation to F from \mathcal{A} in 0.

References

- Billingsley, P., Convergence of Probability Measures, John Wiley & Sons, New York, 1968. MR 0233396.
- [2] Chui, C.K., Shisha, O., Smith, P.W., Best local approximation, J. Approx. Theory 15 (1975), no. 4, 371–381. MR 0433101.
- [3] Chui, C.K., Smith, P.W., Ward, J.D., Best L₂ approximation, J. Approx. Theory 22 (1978), no. 3, 254–261. MR 0510758.
- [4] Chui, C.K., Diamond, H., Raphael, L.A., Best local approximation in several variables, J. Approx. Theory 40 (1984), no. 4, 343–350. MR 0740646.
- [5] Cuenya, H.H., Ferreyra, D.E., C^p condition and the best local approximation, Anal. Theory Appl. 31 (2015), no. 1, 58–67. MR 3338788.
- [6] Favier, S., Convergence of function averages in Orlicz spaces, Numer. Funct. Anal. Optim. 15 (1994), no. 3-4, 263–278. MR 1272205.
- [7] Feller, W., An Introduction to Probability and Its Applications, Vol. II, John Wiley & Sons, New York, 1966. MR 0210154.

- [8] Headley, V.B., Kerman, R.A., Best local approximations in L^p(μ), J. Approx. Theory 62 (1990), no. 3, 277–281. MR 1070281.
- [9] Macías, R.A., Zó, F., Weighted best local L^p approximation, J. Approx. Theory 42 (1984), no. 2, 181–192. MR 0760741.
- [10] Maehly, H., Witzgall, Ch., Tschebyscheff-Approximationen in kleinen Intervallen. I. Approximation durch Polynome, Numer. Math. 2 (1960), 142–150. MR 0119002.
- [11] Walsh, J.L., On approximation to an analytic function by rational functions of best approximation. Math. Z. 38 (1934), no. 1, 163–176. MR 1545445.
- [12] Wolfe, J.M., Interpolation and best L_p local approximation. J. Approx. Theory 32 (1981), no. 2, 96–102. MR 0633695.
- [13] Zó, F., Cuenya, H.H., Best approximations on small regions. A general approach. In: Advanced Courses of Mathematical Analysis II (Granada, 2004), 193–213. World Scientific, Hackensack, NJ, 2007. MR 2343602.

$F. E. Levis \boxtimes$

Universidad Nacional de Río Cuarto, CONICET, FCEFQyN, Ruta 36 Km 601, X5804BYA Río Cuarto, Argentina flevis@exa.unrc.edu.ar

C. V. Ridolfi Universidad Nacional de San Luis, CONICET, IMASL, Almirante Brown 907, 5700 San Luis, Argentina ridolfi@unsl.edu.ar

Received: July 4, 2018 Accepted: April 30, 2019