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ON CONVERGENCE OF SUBSPACES GENERATED BY
DILATIONS OF POLYNOMIALS. AN APPLICATION TO BEST

LOCAL APPROXIMATION

FABIÁN E. LEVIS AND CLAUDIA V. RIDOLFI

Abstract. We study the convergence of a net of subspaces generated by
dilations of polynomials in a finite dimensional subspace. As a consequence, we
extend the results given by Zó and Cuenya [Advanced Courses of Mathematical
Analysis II (Granada, 2004), 193–213, World Scientific, 2007] on a general
approach to the problems of best vector-valued approximation on small regions
from a finite dimensional subspace of polynomials.

1. Introduction

Suppose that {aj} is a data set. These data are values of a function and its
derivatives at a point. If we want to approximate these data using a polynomial of
degree at most l, which will be the best algorithm to use? A Taylor polynomial of
degree l is probably the most natural procedure to use.

The problem of finding an optimal algorithm to approximate a finite number
of data corresponding to a function is developed in the best local approximation
theory.

In 1934, Walsh proved in [11] that the Taylor polynomial of degree l for an
analytic function f can be obtained by taking the limit as ε → 0 of the best
Chebyshev approximation to f from Πl on the disk |z| ≤ ε. This paper was the
first association between the best local approximation to a function f from Πl in 0
and the Taylor polynomial for f at the origin. However, the concept of best local
approximation has been introduced and developed more recently by Chui, Shisha,
and Smith in [2]. Later, several authors [3, 4, 5, 6, 8, 9, 10, 12] have studied this
problem.

We consider a family of function seminorms {‖·‖ε}ε>0, acting on Lebesgue mea-
surable functions F : B ⊂ Rn → Rk, where B is the unit ball centered at the origin
in Rn. We will use the notation F ε(x) = F (εx) and ‖F‖∗ε = ‖F ε‖ε. For l ∈ N∪{0},
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we will denote by Πl the class of algebraic polynomials in n variables of degree at
most l, and Πl

k the set {P = (p1, . . . , pk) : ps ∈ Πl}.
Let A be a subspace of Πl

k and let {Pε}ε>0 be a net of best approximants to F
from A with respect to ‖ · ‖∗ε , i.e.,

‖F − Pε‖∗ε ≤ ‖F − P‖∗ε , for all P ∈ A. (1.1)

If the net {Pε}ε>0 has a limit in A as ε → 0, this limit is called the best local
approximation to F from A in 0. According to (1.1), we observe that P εε is a
polynomial in

Aε := {P ε : P ∈ A} ⊂ Πl
k (1.2)

of best approximation to F ε by elements of the class Aε, with respect to the semi-
norm ‖ · ‖ε. We write it briefly as P εε ∈ PAε,ε(F ε). Note that Aε is a subspace
generated by dilations of polynomials in A.

From now on, we assume the following properties for the family of function
seminorms ‖ · ‖ε, 0 ≤ ε ≤ 1.
(1) For F = (f1, . . . , fk) and G = (g1, . . . , gk), we have ‖F‖ε ≤ ‖G‖ε, for every

ε > 0, whenever |fs| ≤ |gs|, s = 1, . . . , k.
(2) If 1 is the function F (x) = (1, . . . , 1), we have ‖1‖ε <∞, for all ε > 0.
(3) For every F ∈ Ck(B), we have ‖F‖ε → ‖F‖0, as ε → 0, where Ck(B) is the

set of continuous functions F : B ⊂ Rn → Rk. Moreover, ‖ · ‖0 is a norm on
Ck(B).

An important point to note here is that there exist positive constants C =
C(m, k) and ε(m, k) such that for every 0 < ε ≤ ε(m, k),

1
C
‖P‖0 ≤ ‖P‖ε ≤ C‖P‖0, for every P ∈ Πm

k (1.3)

[13, Proposition 3.1].
In order to give an example of norms ‖ · ‖ε, 0 ≤ ε ≤ 1, with the properties

(1)–(3), we recall a definition of convergence of measures given in [6]. See also [1]
for the notion of weak convergence of measures in general.

Definition 1.1. Let µε, 0 ≤ ε ≤ 1, be a family of probability measures on B. We
say that the measures µε converge weakly in the proper sense to the measure µ0 if
we have ∫

B

f(x) dµε(x)→
∫
B

f(x) dµ0(x), f ∈ C1(B),

and µ0(B′) > 0 for any ball B′ ⊂ B.

The assumption on the measure µ0 implies that

‖F‖ε = ‖F‖Lp(µε) =
(∫

B

‖F‖pdµε
) 1
p

is actually a norm on Ck(B) for ε = 0 and 1 ≤ p < ∞, where ‖ · ‖ stands for any
monotone norm on Rk. We use a monotone norm on Rk to ensure property (1) for
the family of seminorms ‖ · ‖ε, 0 ≤ ε ≤ 1.
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Let F be in Ck(B); it is readily seen, by using the definition of weak convergence
of measures, that there exists ε0 = ε0(F ) > 0 such that if ‖F‖ε = ‖F‖Lp(µε) = 0,
for some 0 < ε ≤ ε0, then F = 0. Moreover we have that ‖F‖ε = ‖F‖Lp(µε)
converges as ε→ 0 to the norm ‖F‖0 = ‖F‖Lp(µ0) if F ∈ Ck(B).

For more examples of nets of seminorms fulfilling conditions (1)–(3), we refer
the reader to [13].

We say that F : B ⊂ Rn → Rk has a Taylor polynomial of degree m at 0 if there
exists P ∈ Πm

k such that

‖F − P‖∗ε = o(εm), as ε→ 0.

It is well known that if a Taylor polynomial exists, it is unique [13, Proposition
3.3]; we denote it by Tm = Tm(F ). We write F ∈ tm if the function F has
the Taylor polynomial of degree m at 0. Moreover, if F ∈ tm and Tm(F ) =∑
|α|≤m Cαx

α, then the Taylor polynomial of degree l ≤ m for F at 0 is given
by Tl(F ) =

∑
|α|≤l Cαx

α [13, Proposition 3.5], where α = (α1, . . . , αn) ∈ Rn with
αi ≥ 0 and |α| = α1 + α2 + · · · + αn. We set ∂αF (0) for the vector α!Cα with
α! = α1!α2! . . . αn!.

The problem of best local approximation with a family of function seminorms
{‖ · ‖ε}ε>0 satisfying (1)–(3) was considered in [13] for two types of approximation
class A fulfilling Πm

k ⊂ A ⊂ Πl
k and

(c1) Aε = A, for each ε > 0, or
(c2) if P ∈ A and Tm+1(P ) = 0, then P = 0.

Firstly, the authors studied the asymptotic behavior of a normalized error func-
tion as ε→ 0 [13, Theorems 4.2 and 4.5]. Secondly, they showed that there exists
the best local approximation to F in 0 and is associated with a Taylor polynomial
for F in 0 [13, Theorem 5.1]. In particular, if A = Πm

k and F ∈ tm, they proved
that Pε → Tm(F ) as ε→ 0 [13, Theorem 3.1].

In this work we generalize the results found in [13], without the restrictions (c1)
or (c2) given above. For this, it is essential to study the convergence of the net
{Aε} as ε→ 0.

This paper is organized as follows. In Section 2, we investigate the asymptotic
behavior of {Aε}. In Section 3, we study the asymptotic behavior of the error
function ε−m−1(Fε − Pε)ε for a suitable integer, and we show some results about
the best local approximation in the origin which generalizes those of [13].

2. Asymptotic behavior of the net {Aε}

In this section, we study the asymptotic behavior of the net {Aε} given in (1.2).
We begin with the following definition.

Definition 2.1. Let A ⊂ Πl
k be a subspace. We say that P ∈ lim

ε→0
Aε if there

exists a net {Pε} ⊂ A such that lim
ε→0
‖P − P εε ‖0 = 0. We denote B = lim

ε→0
Aε.

Remark 2.2. If A ⊂ Πl
k is a subspace, then the sets Aε and B are also subspaces

of Πl
k. Furthermore, if Aε = A, for all ε > 0, we have that B = A.
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Next, we show a simple example of Aε = A.

Example 2.3. Set n = 3 and A = span{(x1, x1 +x2 +x3, x
2
1 +x2

2)}. Then, clearly
we obtain Aε = span{(εx1, ε(x1 + x2 + x3), ε2(x2

1 + x2
2))} = A.

Proposition 2.4. Let A be a subspace of polynomials such that Πm
k ⊂ A for some

m ∈ N ∪ {0} and k ∈ N. Then Πm
k ⊂ Aε for all ε > 0. Moreover, Πm

k ⊂ B.

Proof. Set Rα,i(x) = xαei, |α| ≤ m, 1 ≤ i ≤ k, where {ei}ki=1 is the canonical basis
of Rk. Then

{Rα,i : |α| ≤ m, 1 ≤ i ≤ k} (2.1)
is a basis of the space Πm

k . Since Aε is a subspace, we have Rα,i = 1
ε|α|

Rεα,i ∈ Aε,
and so Πm

k ⊂ Aε, for all ε > 0. Finally, using the definition of B, we obtain
Πm
k ⊂ B. �

From now on, for any Lebesgue measurable function F : B ⊂ Rn → Rk we
denote T−1(F ) = 0.

Proposition 2.5. Let A be a subspace of Πl
k and let 0 ≤ s+ 1 ≤ l be an integer.

If P ∈ A satisfies Ts(P ) = 0 and Ts+1(P ) 6= 0, then Ts+1(P ) ∈ B.

Proof. For each ε > 0 we define Qε = P
εs+1 ∈ A. Since Ts(P ) = 0, it follows that

‖Ts+1(P )−Qεε‖0 = ‖(Ts+1(P )−P )ε‖0
εs+1 . So ‖Ts+1(P )−Qεε‖0 = o(1) as ε → 0, and

thus Ts+1(P ) ∈ B. �

The following sets will be needed throughout the paper. Let A be a non-zero
subspace of Πl

k. We define
A−1 := A and Aj := {P ∈ A : Tj(P ) = 0} , for 0 ≤ j ≤ l. (2.2)

We note that
Aj ⊂ Ai, whenever i < j.

Since Al ⊂ {P ∈ Πl
k : Tl(P ) = 0} = {0}, we have

{j : 0 ≤ j ≤ l and Aj 6= A} 6= ∅ and {j : 0 ≤ j ≤ l and Aj = {0}} 6= ∅.
Set

s0 = min {j : 0 ≤ j ≤ l and Aj 6= A}
and

r0 = min {j : 0 ≤ j ≤ l and Aj = {0}}.
It is easy to see that 0 ≤ s0 ≤ r0 ≤ l, and

s0, r0 ∈ {j : s0 ≤ j ≤ r0 and Aj ( Aj−1} =: J.
We can now formulate our main result which describes the limit set B.

Theorem 2.6. Let A be a non-zero subspace of Πl
k. Then B is a subspace of Πr0

k

isomorphic to A. Furthermore, under the above notation the following holds:
(a) if s0 < r0 and J \ {r0} = {s0, . . . , sN} with si < si+1 for N > 0, then B =

Tr0(AsN )⊕TsN (SsN )⊕TsN−1(SsN−1)⊕· · ·⊕Ts0(Ss0), where Asi⊕Ssi = Asi−1 ,
0 ≤ i ≤ N ;
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(b) if s0 = r0, then B = Tr0(A).

Proof. (a) Assume s0 < r0. Since every subspace of Asi−1 , 0 ≤ i ≤ N , has a
complement, there exists a subspace Ssi ⊂ Asi−1 such that

Asi ⊕ Ssi = Asi−1 , 0 ≤ i ≤ N. (2.3)

In consequence,
A = AsN ⊕ SsN ⊕ SsN−1 ⊕ · · · ⊕ Ss0 . (2.4)

As Ssi ⊂ Asi−1 , 0 ≤ i ≤ N , and Ar0−1 = AsN , we obtain

Q(x) =


∑
|α|≥si

∂αQ(0)
α! xα, if Q ∈ Ssi , 0 ≤ i ≤ N ;∑

|α|≥sN+1

∂αQ(0)
α! xα, if Q ∈ AsN ,

(2.5)

where sN+1 = r0. Let Ti : Ssi → Πsi
k be a linear operator defined by Ti(P ) =

Tsi(P ), 0 ≤ i ≤ N , and TN+1 : A → ΠsN+1
k be the linear operator given by

TN+1(P ) = TsN+1(P ). We claim that
(i) Ti is an injective operator, 0 ≤ i ≤ N + 1.
(ii) TsN+1(AsN ) ∩

∑N
i=0 Tsi(Ssi) = {0}.

(iii) If N > 0 then Tsl(Ssl) ∩
(
TsN+1(AsN ) +

∑N
i=0,i6=l Tsi(Ssi)

)
= {0} whenever

l 6= i.
Indeed, let 0 ≤ i ≤ N . If Tsi(P ) = Tsi(Q) for some P,Q ∈ Ssi , then P − Q ∈
Asi∩Ssi . So (2.3) implies that P = Q. On the other hand, if TsN+1(P ) = TsN+1(Q)
with P,Q ∈ A, then P − Q ∈ AsN+1 = {0}, which proves (i). To prove (ii) we
consider QN+1 ∈ AsN and Qi ∈ Ssi such that P = TsN+1(QN+1) =

∑N
i=0 Tsi(Qi).

From (2.5) we see that

TsN+1(QN+1)(x) =
∑

|α|=sN+1

∂αQN (0)
α! xα and

N∑
i=0

Tsi(Qi) ∈ ΠsN
k . (2.6)

Therefore P = 0. Now, let QN+1 ∈ AsN and Qi ∈ Ssi be such that

P = Tsl(Ql) = TsN+1(QN+1) +
N∑

i=0,i6=l
Tsi(Qi). (2.7)

From (2.5) it follows that

Tsi(Qi) =
∑
|α|=si

∂αQi(0)
α! xα, 0 ≤ i ≤ N.

According to (2.6) and (2.7) we have P = 0, and (iii) is proved. Using (i)–(iii), we
deduce that the subspace

TsN+1(AsN ) + TsN (SsN ) + TsN−1(SsN−1) + · · ·+ Ts0(Ss0)

is a direct sum isomorphic to A. The proof concludes by proving

B = TsN+1(AsN )⊕ TsN (SsN )⊕ TsN−1(SsN−1)⊕ · · · ⊕ Ts0(Ss0).
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We observe that if P ∈ Ssi \ {0}, then Tsi(P ) 6= 0 and Tsi−1(P ) = 0 by (2.3). So,
Proposition 2.5 implies that Tsi(P ) ∈ B. On the other hand, if P ∈ AsN \ {0}, we
get TsN (P ) = 0. Moreover, we have TsN+1(P ) 6= 0. In fact, on the contrary, we see
that P ∈ AsN+1 = {0}. Proposition 2.5 now gives TsN+1(P ) ∈ B. Therefore,

TsN+1(AsN )⊕ TsN (SsN )⊕ TsN−1(SsN−1)⊕ · · · ⊕ Ts0(Ss0) ⊂ B.

On the other hand, if P ∈ B, there exists {Pε} ⊂ A such that

lim
ε→0
‖P − P εε ‖0 = 0. (2.8)

Let dN+1 = dim(AsN ) and di = dim(Ssi), 0 ≤ i ≤ N . We take {vl}dN+1
l=1 and

{wir}dir=1 bases of AsN and Ssi , respectively. It is easy to check that for each
0 < ε ≤ 1, {ε−sN+1vl}dN+1

l=1 is a basis of AsN and {ε−siwir}dir=1 is a basis of Ssi ,
0 ≤ i ≤ N . According to (2.4), we have that there exist real numbers Dl,ε and
Ci,r,ε such that

Pε =
dN+1∑
l=1

ε−sN+1Dl,εvl +
N∑
i=0

di∑
r=1

ε−siCi,r,εwir.

From (2.5) it follows that

vl(x) =
∑

|α|≥sN+1

∂αvl(0)
α! xα and wir(x) =

∑
|α|≥si

∂αwir(0)
α! xα. (2.9)

So,

P εε (x) =
dN+1∑
l=1

Dl,εε
−sN+1vεl (x) +

N∑
i=0

di∑
r=1

Ci,r,εε
−siwεir(x)

=
dN+1∑
l=1

Dl,ε

∑
|α|=sN+1

∂αvl(0)
α! xα +

dN+1∑
l=1

Dl,ε

∑
|α|>sN+1

ε|α|−sN+1
∂αvl(0)
α! xα

+
N∑
i=0

di∑
r=1

Ci,r,ε
∑
|α|=si

∂αwir(0)
α! xα +

N∑
i=0

di∑
r=1

Ci,r,ε
∑
|α|>si

ε|α|−si
∂αwir(0)

α! xα.

Consequently

Tsj (P εε )(x) =
j∑
i=0

di∑
r=1

Ci,r,ε
∑
|α|=si

∂αwir(0)
α! xα

+
j−1∑
i=0

di∑
r=1

Ci,r,ε
∑

si<|α|≤sj

ε|α|−si
∂αwir(0)

α! xα
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if 0 ≤ j ≤ N , and

TsN+1(P εε )(x) =
dN+1∑
l=1

Dl,ε

∑
|α|=sN+1

∂αvl(0)
α! xα +

N∑
i=0

di∑
r=1

Ci,r,ε
∑
|α|=si

∂αwir(0)
α! xα

+
N∑
i=0

di∑
r=1

Ci,r,ε
∑

si<|α|≤sN+1

ε|α|−si
∂αwir(0)

α! xα.

From (2.9) it follows that

TsN+1(v`)(x) =
∑

|α|=sN+1

∂αv`(0)
α! xα and Tsj (wj.r)(x) =

∑
|α|=sj

∂αwj,r(0)
α! xα.

Thus, a straightforward computation yields

Ts0(P εε )(x) =
d0∑
r=1

C0,r,εTs0(w0,r)(x), (2.10)

Tsj (P εε )(x) = Tsj−1(P εε )(x) +
j−1∑
i=0

di∑
r=1

Ci,r,ε
∑

sj−1<|α|≤sj

ε|α|−si
∂αwi,r(0)

α! xα

+
dj∑
r=1

Cj,r,εTsj (wj,r)(x)

(2.11)

if 1 ≤ j ≤ N , and

TsN+1(P εε )(x) = TsN (P εε )(x) +
dN+1∑
l=1

Dl,εTsN+1(v`)(x)

+
N∑
i=0

di∑
r=1

Ci,r,ε
∑

sN<|α|≤sN+1

ε|α|−si
∂αwi,r(0)

α! xα.

(2.12)

From (2.8) and (2.10), we deduce that Ts0(P εε )(x) =
∑d0
r=1 C0,r,εTs0(w0,r)(x) is

convergent as ε → 0. Since {Ts0(w0,r)}d0
r=1 is a basis of Ts0(Ss0), there are real

numbers C0,r, 1 ≤ r ≤ d0, such that C0,r,ε → C0,r as ε → 0. According to (2.8)
and (2.11) it follows that

∑d1
r=1 C1,r,εTs1(w1,r)(x) is convergent as ε → 0. Hence,

there are real numbers C1,r, 1 ≤ r ≤ d1, such that C1,r,ε → C1,r as ε→ 0, because
{Ts1(w1r)}d1

r=1 is a basis of Ts1(Ss1). Similarly, as {TsN+1(vl)}al=1 is a basis of
TsN+1(AsN ) and {Tsi(wir)}

di
r=1 is a basis of Tsi(Ssi), 0 ≤ i ≤ N , (2.8) and (2.10)–

(2.12) show that there are real numbers Dl and Ci,r such that Dl,ε, → Dl and
Ci,r,ε → Ci,r as ε→ 0. In consequence,

P =
a∑
l=1

DlTsN+1(vl) +
N∑
i=0

(
di∑
r=1

Ci,rTsi(wir)
)
,

and so P ∈ TsN+1(AsN )⊕ TsN (SsN )⊕ TsN−1(SsN−1)⊕ · · · ⊕ Ts0(Ss0).
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(b) Now assume s0 = r0, i.e., As0 = {0}. Then A has the form (2.4) with N = 0,
As0 = {0} and Ss0 = A. An analysis similar to the proof of (a) shows that Tr0 is
an isomorphism and B = Ts0(Ss0) = Tr0(A). �

The following corollary follows immediately from the proof of Theorem 2.6.

Corollary 2.7. Let A be a non-zero subspace of Πl
k. Then lim

n→∞
Aεn = B for any

sequence {εn} of the net ε ↓ 0.

Remark 2.8. B is isomorphic to Tr0(A).

Corollary 2.9. Let s ≥ m+1 and let A = Πm
k ⊕As−1 be such that As = {0}. Then

B = Πm
k ⊕ Ts(As−1) and the linear operator T : A → Πs

k given by T (P ) = Ts(P )
defines an isomorphism between A and B.

Proof. We first claim that T is an injective operator. Indeed, if T (P ) = T (Q) for
P,Q ∈ A, then Ts(P −Q) = 0 and so P −Q ∈ As. Since As = {0}, we have P = Q.

Since A is isomorphic to T (A), the proof concludes by proving B = Πm
k ⊕

Ts(As−1) = Ts(A).
Let Aj be the sets defined in (2.2). Since

{0} = As ( As−1 = · · · = Am ( Am−1 ( · · · ( A0 ( A,

then A = As−1 ⊕ Bm ⊕ Bm−1 ⊕ · · · ⊕ B0, where Ai ⊕ Bi = Ai−1, 0 ≤ i ≤ m.
Therefore Πm

k is isomorphic to Bm ⊕ · · · ⊕ B0. On the other hand, since s0 = 0,
r0 = s and J \ {r0} = {0, 1, . . . ,m}, by Proposition 2.6 (a),

B = Ts(As−1)⊕ Tm(Bm)⊕ · · · ⊕ T0(B0).

From the proof of Theorem 2.6, we obtain that Bm ⊕ · · · ⊕ B0 is isomorphic to
Tm(Bm) ⊕ · · · ⊕ T0(B0), and consequently Πm

k is isomorphic to Tm(Bm) ⊕ · · · ⊕
T0(B0) ⊂ Πm

k . Hence, Tm(Bm)⊕ · · · ⊕T0(B0) = Πm
k and so B = Ts(As−1)⊕Πm

k =
Ts(As−1)⊕ Ts(Πm

k ) = Ts(A). �

3. An application to best local approximation

Let {Pε} be a net of best approximants to F from A with respect to ‖ · ‖∗ε , and
let Eε be the error function

Eε(F ) = F ε − P εε
εm+1 .

If F ∈ tm+1, then
F ε = T εm+1 + εm+1Rεm+1,

where Rm+1 = F−Tm+1
εm+1 , ‖Rεm+1‖ε = o(1), and Tm+1 is the Taylor polynomial of F

of degree m+ 1 at 0. Moreover,

λP εε ∈ PAε,ε(λF ε) and P ε + P εε ∈ PAε,ε((P + F )ε), for P ∈ A.

The following proposition may be proved in much the same way as [13, Propo-
sition 4.1]. However, we repeat the proof for completeness.
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Proposition 3.1. Let A be a non-zero subspace of Πl
k with l > m, and let {Pε} be

a net of best approximants of F from A with respect to ‖ · ‖∗ε . If F ∈ tm+1, Tm ∈ A
and φm+1 = Tm+1 − Tm, then

Eε(F ) = φm+1 +Rεm+1 − PAε,ε(φm+1 +Rεm+1),

where ‖Rεm+1‖ε = o(1) as ε→ 0.

Proof. Since Rεm+1 = F ε−T εm+1
εm+1 , then

φm+1 +Rεm+1 = Tm+1 − Tm +
F ε − T εm+1
εm+1 =

T εm+1 − T εm
εm+1 +

F ε − T εm+1
εm+1

= F ε − T εm
εm+1 .

As Tm ∈ A, we have

φm+1 +Rεm+1 − PAε,ε(φm+1 +Rεm+1) = F ε − T εm
εm+1 − PAε,ε

(
F ε − T εm
εm+1

)
= F ε − P εε

εm+1 = Eε(F ). �

Next, we give a new result about the asymptotic behavior of the error without
the conditions (c1) or (c2), which generalizes Theorems 4.2 and 4.5 of [13].

Theorem 3.2. Let A be a non-zero subspace of Πl
k with l > m. If F ∈ tm+1,

Tm ∈ A and φm+1 = Tm+1 − Tm, then

‖Eε(F )‖ε → inf
P∈B
‖φm+1 − P‖0, as ε→ 0.

Proof. By Proposition 3.1,

Eε(F ) = φm+1 +Rεm+1 − PAε,ε(φm+1 +Rεm+1), (3.1)

where ‖Rεm+1‖ε = o(1) as ε→ 0. We first prove

lim
ε→0
‖Eε(F )‖ε ≤ inf

P∈B
‖φm+1 − P‖0. (3.2)

In fact, let P ∈ B. By the definition of B, there exists a net {Qε} ⊂ A such that
‖P − Qεε‖0 → 0, as ε → 0. In consequence, ‖P − Qεε‖ε = o(1), as ε → 0, by (1.3).
Since Qεε ∈ Aε and ‖Rεm+1‖ε = o(1), from (3.1) we obtain

‖Eε(F )‖ε ≤ ‖φm+1 +Rεm+1 −Qεε‖ε ≤ ‖φm+1 −Qεε‖ε + o(1), as ε→ 0. (3.3)

By Property (3), ‖φm+1−P‖ε → ‖φm+1−P‖0, as ε→ 0. Hence, using the triangle
inequality we have

|‖φm+1 −Qεε‖ε − ‖φm+1 − P‖0| ≤ |‖φm+1 −Qεε‖ε − ‖φm+1 − P‖ε|
+ |‖φm+1 − P‖ε − ‖φm+1 − P‖0|
≤ ‖P −Qεε‖ε + |‖φm+1 − P‖ε − ‖φm+1 − P‖0| = o(1)

as ε→ 0. Now, according to (3.3) we get (3.2).
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The proof finishes by observing that

lim
ε→0
‖Eε(F )‖ε ≥ inf

P∈B
‖φm+1 − P‖0. (3.4)

Let ε ↓ 0 be a sequence such that lim
ε→0
‖Eε(F )‖ε = limε→0 ‖Eε(F )‖ε. We consider

P εε ∈ PAε,ε(φm+1 + Rεm+1). We claim that there exist constants M, ε0 > 0 such
that

‖P εε ‖0 ≤M, 0 < ε ≤ ε0. (3.5)

Indeed, as 0 ∈ Aε we get

‖P εε ‖ε ≤ ‖P εε − (φm+1 +Rεm+1)‖ε + ‖φm+1 +Rεm+1‖ε
≤ 2‖φm+1 +Rεnm+1‖ε
≤ 2‖φm+1‖ε + 2‖Rεm+1‖ε,

(3.6)

for 0 < ε ≤ 1. By Proposition 3.1 and Property (3), we see that 2‖φm+1‖ε +
2‖Rεm+1‖ε → 2‖φm+1‖0, as ε→ 0. So, from (1.3) and (3.6), we obtain (3.5).

In consequence, there exists a subsequence of {P εε }, which is denoted in the
same way, and P0 ∈ Πl

k such that P εε → P uniformly on B, as ε → 0. Since
|‖φm+1−P εε ‖ε−‖φm+1−P‖0| ≤ |‖φm+1−P εε ‖ε−‖φm+1−P‖ε|+ |‖φm+1−P‖ε−
‖φm+1 − P‖0| ≤ ‖P − P εε ‖ε + |‖φm+1 − P‖ε − ‖φm+1 − P‖0|, using Property (3)
we get

‖φm+1 − P‖0 = ‖φm+1 − P εε ‖ε + o(1), as ε→ 0.

We observe that P ∈ B by Corollary 2.7. Therefore, by Proposition 3.1,

inf
Q∈B
‖φm+1 −Q‖0 ≤ ‖φm+1 − P‖0 = ‖φm+1 − P εε ‖ε + o(1)

≤ ‖φm+1 +Rεm+1 − P εε ‖ε + ‖Rεm+1‖ε
= ‖Eε(F )‖ε + ‖Rεm+1‖ε.

So, inf
Q∈B
‖φm+1 −Q‖0 ≤ lim

ε→0

(
‖Eε(F )‖ε + ‖Rεm+1‖ε

)
= limε→0 ‖Eε(F )‖ε, and (3.4)

is proved. �

The following result provides us with a useful and important property for a net
of best approximants to F from A.

Theorem 3.3. Let A be a non-zero subspace of Πl
k with l > m, and let {Pε} be a net

of best approximants of F from A with respect to ‖ ·‖∗ε . Assume F ∈ tm+1, Tm ∈ A
and φm+1 = Tm+1 − Tm. If C is the cluster point set of the net

{
(Pε−Tm)ε
εm+1

}
, as

ε→ 0, then C 6= ∅. Moreover, each polynomial in C is a solution of the minimization
problem

min
P∈B
‖φm+1 − P‖0. (3.7)
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Proof. We observe that

Eε(F ) = (F − Pε)ε

εm+1 = (Tm+1 − Tm)ε + (F − Tm+1)ε − (Pε − Tm)ε

εm+1

=
φεm+1 − (Pε − Tm)ε

εm+1 + (F − Tm+1)ε

εm+1

= φm+1 −
(Pε − Tm)ε

εm+1 + (F − Tm+1)ε

εm+1 .

Then∥∥∥∥φm+1 −
(Pε − Tm)ε

εm+1

∥∥∥∥
ε

− ‖(F − Tm+1)ε‖ε
εm+1

≤ ‖Eε(F )‖ε ≤
∥∥∥∥φm+1 −

(Pε − Tm)ε

εm+1

∥∥∥∥
ε

+ ‖(F − Tm+1)ε‖ε
εm+1 ,

and consequently,

‖Eε(F )‖ε =
∥∥∥∥φm+1 −

(Pε − Tm)ε

εm+1

∥∥∥∥
ε

+ o(1), as ε→ 0,

since F ∈ tm+1. By Theorem 3.2,

inf
P∈B
‖φm+1 − P‖0 = lim

ε→0

∥∥∥∥φm+1 −
(Pε − Tm)ε

εm+1

∥∥∥∥
ε

. (3.8)

According to (1.3), there exist constants ε0,M > 0 such that∥∥∥∥φm+1 −
(Pε − Tm)ε

εm+1

∥∥∥∥
0
≤M,

for all 0 < ε ≤ ε0. The equivalence of the norms in Πl
k implies that the net{

(Pε−Tm)ε
εm+1

}
0<ε≤ε0

is uniformly bounded on B. So, there exists a subsequence of{
(Pε−Tm)ε
εm+1

}
0<ε≤ε0

, which is denoted in the same way, and a polynomial P0 such
that

(Pε − Tm)ε

εm+1 converges to P0, uniformly on B, as ε→ 0.

In consequence, C 6= ∅.
On the other hand, if P0 ∈ C, there is a sequence ε ↓ 0 such that (Pε−Tm)ε

εm+1 → P0.
Since Tm ∈ A, we have Pε−Tm ∈ A, and so P0 ∈ B by Corollary 2.7. Finally, from
Property (3) and (3.8) we conclude that

inf
P∈B
‖φm+1 − P‖0 = lim

ε→0

∥∥∥∥φm+1 −
(Pε − Tm)ε

εm+1

∥∥∥∥
ε

= ‖φm+1 − P0‖0 ,

i.e., P0 is a solution of (3.7). �

The following theorem is an extension of [13, Theorem 5.1].
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Theorem 3.4. Let A be a non-zero subspace of Πl
k with l > m, and let {Pε} be

a net of best approximants of F from A with respect to ‖ · ‖∗ε . Assume m + 1 =
min {j : 0 ≤ j ≤ l and Aj = {0}}, F ∈ tm+1 with Tm ∈ A, and set φm+1 = Tm+1−
Tm. If the minimization problem (3.7) has a unique solution P0, then Pε → Tm+P ,
where P ∈ A is uniquely determined by the condition Tm+1(P ) = P0 − Tm(P0).

Proof. Since (3.7) has a unique solution P0, Theorem 3.3 implies that

lim
ε→0

(Pε − Tm)ε

εm+1 = P0.

In consequence, ∂α(Pε − Tm)(0) → 0, |α| ≤ m, and ∂α(Pε − Tm)(0) → ∂αP0(0),
|α| = m+ 1, as ε→ 0. Therefore

Tm+1(Pε − Tm)(x)→
∑

|α|=m+1

∂αP0(0)
α! xα =: R(x), x ∈ B, as ε→ 0. (3.9)

Let T : A → Πm+1
k be the linear operator defined by T (P ) = Tm+1(P ). As Am+1 =

{0}, an analysis similar to that in the proof of Corollary 2.9 shows that T is an
injective operator. Since T (A) is a closed subspace and {Tm+1(Pε−Tm)} ⊂ T (A),
(3.9) implies that there exists a unique P ∈ A such that Tm+1(P ) = R. Hence
Tm+1(Pε−Tm−P )→ 0 as ε→ 0. As Am+1 = {0} we see that ‖Q‖ := ‖Tm+1(Q)‖0
is a norm on A, and so Pε → Tm + P as ε → 0. Finally, by Theorem 2.6, B ⊂
Πm+1
k , and consequently P0 − Tm(P0) = Tm+1(P0) − Tm(P0) = R. The proof is

complete. �

Remark 3.5. If A satisfies the condition (c2), then A = Πm
k ⊕ Am with Am+1 =

{0}. By Corollary 2.9, B = Πm
k ⊕ Tm+1(Am) and each element P ∈ A is uniquely

determined by Tm+1(P ). So, we can rewrite the problem (3.7) in the following
(equivalent) form:

min
Q+U∈Πm

k
⊕Am

‖φm+1 − (Q+ Tm+1(U))‖0. (3.10)

The following result has been proved in [13, Theorem 5.1] and it is a consequence
of Theorem 3.4.

Corollary 3.6. Let Πm
k ⊂ A ⊂ Πl

k be a non-zero subspace that satisfies the con-
dition (c2) and let {Pε} be a net of best approximants of F from A with respect to
‖ · ‖∗ε . Assume F ∈ tm+1. If the minimization problem (3.10) has a unique solution
P0, then Pε → Tm + P , where P ∈ A is uniquely determined by the condition
Tm+1(P ) = P0 − Tm(P0).

In the following example we present a function F ∈
⋂∞
m=0 t

m such that T2(F ) /∈
A and the net {Ti(Pε)} does not converge for the same i > m+ 1.
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Example 3.7. Set B = [−1, 1], ‖G‖ε =
(

1∫
−1
|G(x)|2 dx

) 1
2

, A = span{1, x2, x3},

and F (x) = x. So

‖G‖∗ε =

1
ε

ε∫
−ε

|G(x)|2 dx

 1
2

,

A0 = A1 = span{x2, x3}, A2 = span{x3} and A3 = {0}. Since T1(x2) = 0, we
observe that the subspace A does not satisfy the condition (c2). Moreover, an
straightforward computation shows that

‖F − T0‖∗ε
ε0

=
√

6
3 ε and ‖F − Ts‖∗ε

εs
= 0, s ∈ N,

where T0(x) = 0 and Ts(x) = x. In consequence, F ∈ tm for all m ∈ N ∪ {0}, and

T2(F ) /∈ A. Since
ε∫
−ε

(
x− 7

5ε2x
3)xi dx = 0, i = 0, 2, 3, then Pε(x) = 7

5ε2x
3 is the

best approximant to F from A with respect to ‖ · ‖∗ε . Therefore Ti(Pε)(x) → 0,
for i = 0, 1, 2, but T3(Pε)(x) does not converge, as ε → 0. So, the best local
approximation to F from A in 0 does not exist, and

‖Eε(F )‖ε = ‖F − Pε‖
∗
ε

ε3
= 2
√

6
15ε2 →∞, as ε→ 0.

We now give another example which shows that the condition Tm ∈ A is not
necessary for the existence of the best local approximation.

Example 3.8. Set B, ‖·‖∗ε and F as in Example 3.7, and we consider the subspace
A = span{1, x2}. It is clear that A0 = A1 = span{x2}, A2 = {0} and B = A.
Moreover, we have F ∈ t2, T1 /∈ A, and A does not satisfy the condition (c2)

since T1(x2) = 0. As
ε∫
−ε

(x− 0)xi dx = 0, i = 0, 2, then Pε(x) = 0 is the best

approximant to F from A with respect to ‖ · ‖∗ε . Therefore, the polynomial 0 is the
best local approximation to F from A in 0.

References
[1] Billingsley, P., Convergence of Probability Measures, John Wiley & Sons, New York, 1968.

MR 0233396.
[2] Chui, C.K., Shisha, O., Smith, P.W., Best local approximation, J. Approx. Theory 15 (1975),

no. 4, 371–381. MR 0433101.
[3] Chui, C.K., Smith, P.W., Ward, J.D., Best L2 approximation, J. Approx. Theory 22 (1978),

no. 3, 254–261. MR 0510758.
[4] Chui, C.K., Diamond, H., Raphael, L.A., Best local approximation in several variables, J.

Approx. Theory 40 (1984), no. 4, 343–350. MR 0740646.
[5] Cuenya, H.H., Ferreyra, D.E., Cp condition and the best local approximation, Anal. Theory

Appl. 31 (2015), no. 1, 58–67. MR 3338788.
[6] Favier, S., Convergence of function averages in Orlicz spaces, Numer. Funct. Anal. Optim.

15 (1994), no. 3-4, 263–278. MR 1272205.
[7] Feller, W., An Introduction to Probability and Its Applications, Vol. II, John Wiley & Sons,

New York, 1966. MR 0210154.

Rev. Un. Mat. Argentina, Vol. 61, No. 1 (2020)

http://www.ams.org/mathscinet-getitem?mr=0233396
http://www.ams.org/mathscinet-getitem?mr=0433101
http://www.ams.org/mathscinet-getitem?mr=0510758
http://www.ams.org/mathscinet-getitem?mr=0740646
http://www.ams.org/mathscinet-getitem?mr=3338788
http://www.ams.org/mathscinet-getitem?mr=1272205
http://www.ams.org/mathscinet-getitem?mr=0210154


62 F. E. LEVIS AND C. V. RIDOLFI

[8] Headley, V.B., Kerman, R.A., Best local approximations in Lp(µ), J. Approx. Theory 62
(1990), no. 3, 277–281. MR 1070281.
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