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Abstract. In this paper, the global and semiglobal convergence of the nonlinear active distur-
bance rejection control (ADRC) for a class of multi-input multi-output nonlinear systems with large
uncertainty that comes from both dynamical modeling and external disturbance are proved. As a
result, a class of linear systems with external disturbance that can be dealt with by the ADRC is
classified. The ADRC is then compared both analytically and numerically to the well-known in-
ternal model principle. A number of illustrative examples are presented to show the efficiency and
advantage of the ADRC in dealing with unknown dynamics and in achieving fast tracking with lower
overstriking.
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1. Introduction. The uncertainty that arises either from an unmodeled part of
the system dynamics or from external disturbance is essentially the major concern in
postmodern control theory. Many methodologies have been developed to deal with
the uncertainty. Among them are two well-studied strategies: robust control and
sliding mode control. Both consider the worst case of the uncertainty, thus leading to
relatively excessive control effort for some particular operations of the control system.
The traditional high-gain control method (see, e.g., [19]) is sound mathematically,
but not practically since it uses the high gain not only in the observer but also in
the feedback loop in order to suppress the uncertainty. On the other hand, control
strategies based on the idea of online estimation and compensation have also been
presented. The modified high-gain control is a typical strategy of this kind (see [5, 18]);
more examples can be found in [1, 2, 3, 6, 7], to name just a few.

The active disturbance rejection control (ADRC), an unconventional design strat-
egy, was first proposed by Han in his pioneer work [14]. It is now acknowledged to
be an effective control strategy in dealing with the total uncertainty (unknown part
of model dynamics and of external disturbance). A major feature of the ADRC lies
in its ability to cancel the total uncertainty in the feedback loop after an estimation
in real time. Its power was initially demonstrated by numerical simulations [13, 14]
in the early stage, and later consolidated in many engineering practices such as mo-
tion control, tension control in web transport and strip precessing systems, DC-DC
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power converts in power electronics, continuous stirred tank reactor in chemical and
process control, micro-electro-mechanical systems gyroscope. More concrete examples
can also be found in [15, 17, 20, 22, 23, 25] and the references therein. For a more
practical perspective, we refer to a recent paper [24]. Compared to its success in ap-
plications, the theoretical study on the ADRC lags far behind. It is only very recently,
that the global convergence of a closed loop of the nonlinear ADRC was proved in [9]
for some class of nonlinear SISO systems where the zero dynamics is not taken into
account. For linear ADRC, a semiglobal convergence is obtained for the stabilization
of a kind of SISO system in [5] and generalized to a class of MIMO systems in [21].

It is the main contribution of this paper that we present both semiglobal and
global convergence of the nonlinear ADRC for a class of general MIMO nonlinear
systems. The system we are concerned with is the following partial exact feedback
linearizable MIMO system ([16]) with large uncertainties:

(1.1)

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

ẋi(t) = Anix
i(t) +Bni

[

fi(x(t), ξ(t), wi(t))

+
m
∑

j=1

aij(x(t), ξ(t), w(t))uj (t)
]

,

yi(t) = Cix
i(t), i = 1, 2, . . . ,m,

ξ̇(t) = F0(x(t), ξ(t), w(t)),

where u ∈ R
m, ξ ∈ R

s, x = (x1, x2, . . . , xm) ∈ R
n, n = n1 + · · · + nm, F0, fi, aij , wi

are C1-functions with their arguments, respectively, the external disturbance w =
(w1, w2, . . . , wm) satisfies supt∈[0,∞) ‖(w, ẇ)‖ < ∞, and

(1.2) Ani =

(

0 Ini−1

0 0

)

ni×ni

, Bni =
(

0, . . . , 0, 1
)⊤

ni×1
, Cni =

(

1, 0, . . . , 0
)

1×ni
.

In the study of the ADRC of the system (1.1), it is generally assumed that the
unmodeled dynamics terms fi’s are unknown, the control parameters aij ’s have some
uncertainties, and the external disturbance w is completely unknown.

Let the reference input signal be vi. We then construct a tracking differentiator
with input vi and output zi as follows:

(1.3)
TD: żi(t) = Ani+1z

i(t) +Bni+1ρ
ni+1ψi

(

zi1 − vi,
zi
2

ρ , . . . ,
zi
ni+1

ρni

)

,

i = 1, 2 . . . ,m.

Note that zij can be used as an approximation of (vi)
(j−1), the (j−1)th derivative of vi.

The control objective of the ADRC is to make the output xi
1 track the measured

signal vi, and xi
j track zij , 1 ≤ j ≤ ni, 1 ≤ i ≤ m. Moreover, each error eij = xi

j − zji
converges to zero in a way that the reference state xi∗

j also converges to zero, where

xi∗
j satisfies the following reference differential equation:

(1.4) Ref:

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

ẋi∗
1 (t) = xi∗

2 (t),

ẋi∗
2 (t) = xi∗

3 (t),

...

ẋi∗
ni
(t) = φi(x

i∗
1 (t), . . . , xi∗

ni
(t)), φi(0, 0, . . . , 0) = 0.

In other words, it is required that eij = xi
j − zji ≈ xi∗

j and xi∗
j (t) → 0 as t → ∞.
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It is worth pointing out that with the use of the tracking differentiator (1.3), it
is possible to deal with the signal vi whose high-order derivatives do not exist in the
classical sense, as it is often the case in boundary measurement of the PDEs.

The convergence of (1.3) implies that zij can be regarded as an approximation of

(vi)
(j−1) in the sense of distribution ([8, 12]). This result is detailed below (see [12]).
Lemma 1.1. Consider system (1.3). Suppose that ψi is locally Lipschitz contin-

uous with its arguments. If it is globally asymptotically stable with ρ = 1, v ≡ 0, and
v̇i (the first derivative of vi with respect to t) is bounded, then for any initial value
of (1.3) and constant τ > 0, limρ→∞ |zi1(t) − vi(t)| = 0 uniformly for t ∈ [τ,∞).
Moreover, for any j, 1 ≤ j ≤ ni + 1, zij is uniformly bounded over R

+.

Remark 1.1. We remark that all zij are ρ-dependent, and that zij is regarded as
an approximation of the (i − 1)th order derivative of vi in the sense of a generalized
derivative (see Theorem 2.1 of [12]). If all (vi)

(j−1) exist in the classical sense, we may
consider simply zij = (vi)

(j−1) for j = 2, 3, . . . , ni. In the latter case, the TD (1.3)
does not need to be coupled into the ADRC.

Owing to Lemma 1.1, we can make the following assumption.
Assumption A1. ‖z(t)‖ = ‖(z1(t), z2(t), . . . , zm(t))‖ < C1 ∀ t > 0, where zi is the

solution of (1.3), zi(t) = (zi1(t), z
i
2(t), . . . , z

i
ni
(t)), and C1 is a ρ-dependent positive

constant.
An important constituent in the ADRC is the extended state observer (ESO)

which is used to estimate not only the state but also the total uncertainty in system
dynamics and external disturbance.

The ESO is designed as follows:

(1.5) ESO:

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

˙̂xi
1(t) = x̂i

2(t) + εni−1gi1(e
i
1(t)),

˙̂xi
2(t) = x̂i

3(t) + εni−2gi2(e
i
1(t)),

...
˙̂xi
ni
(t) = x̂i

ni+1(t) + gini
(ei1(t)) + u∗

i (t),

˙̂xi,ni+1(t) =
1

ε
gini+1(e

i
1(t)), i = 1, 2, . . . ,m,

where ei1 = (xi
1 − x̂i

1)/ε
ni , the gij are possibly some nonlinear functions, thus the

term nonlinear ADRC. When all gij are linear, it becomes the special case studied in
[5]. The function of ESO is to estimate, in real time, both the state, and the total
disturbance in the ith subsystem by the extended state x̂i,ni+1 in (1.5).

The convergence of ESO (1.5) itself (without feedback), like many other observers
in nonlinear systems, is an independent issue. And some results are obtained in
[10, 11].

In order to show the convergence of ADRC, we need the following assumptions
on ESO (1.5) (Assumption A2) and reference system (1.4) (Assumption A3).

Assumption A2. For every i ≤ m, |gij(r)| ≤ Λi
jr for all r ∈ R. And there

exist constants λi
11, λ

i
12, λ

i
13, λ

i
14, βi

1, and positive definite continuous differentiable
functions V i

1 ,W
i
1 : Rni+1 → R such that

(1) λi
11‖y‖2 ≤ V i

1 (y) ≤ λi
12‖y‖2, λi

13‖y‖2 ≤ W i
1(y) ≤ λi

14‖y‖2 ∀ y ∈ R
n+1,

(2)

ni
∑

j=1

(yj+1 − gij(y1))
∂V i

1

∂yj
(y)− gini+1(y1)

∂V i
1

∂yni+1
(y) ≤ −W i

1(y) ∀ y ∈ R
ni+1,

(3) max

{∣

∣

∣

∣

∂V i
1

∂yni

(y)

∣

∣

∣

∣

,

∣

∣

∣

∣

∂V i
1

∂yni+1
(y)

∣

∣

∣

∣

}

≤ βi
1‖y‖ ∀ y ∈ R

ni+1.
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Assumption A3. For every 1 ≤ i ≤ m, φi is globally Lipschitz continuous with
Lipschitz constant Li: |φi(x) − φi(y)| ≤ Li‖x − y‖ for all x, y ∈ R

ni . And there
exist constants λi

21, λ
i
22, λ

i
23, λ

i
24, βi

2, and positive definite continuous differentiable
functions V i

2 ,W
i
2 : Rni → R such that

(1) λi
21‖y‖2 ≤ V i

2 (y) ≤ λi
22‖y‖2, λi

23‖y‖2 ≤ W i
2(y) ≤ λi

24‖y‖2,

(2)

ni−1
∑

j=1

yj+1
∂V i

2

∂yj
(y) + φi(y1, y2, . . . , yni)

∂V i
2

∂yni

(y) ≤ −W i
2(y),

(3)

∣

∣

∣

∣

∂V i
2

∂yni

∣

∣

∣

∣

≤ βi
2‖y‖ ∀ y = (y1, y2, . . . , yni) ∈ R

ni .

Throughout the paper, the following notation will be used without specifying
every time:

x̃i = (x̂i
1, x̂

i
2, . . . , x̂

i
ni
)⊤, x̂i = (x̂i

1, x̂
i
2, . . . , x̂

i
ni+1)

⊤, x̃ = (x̃1⊤, . . . , x̃m⊤)⊤,

eij(t) =
xi
j(t)− x̂i

j(t)

εni+1−j
, 1 ≤ j ≤ ni + 1, 1 ≤ i ≤ m,

ei = (ei1, . . . , e
i
ni+1)

⊤, e = (e1⊤, . . . , em⊤)⊤, η = x− z, ηi = xi − zi;

(1.6)

V1 : R2n+m → R, V1(e) =

m
∑

i=1

V i
1 (e

i), V2 : R2n → R, V2(η) =

m
∑

i=1

V i
2 (η

i).(1.7)

And u∗
i , x

i
ni+1 will be specified later in different cases.

We proceed as follows. In section 2, we design, using a saturated function, the
feedback control to insure that the system states stay in a prescribed compact set.
A semiglobal convergence for the closed loop is presented. In section 3, we give a
feedback control without the prior assumptions on the boundary of the initial values
that are used in section 2. A global separation principle is established under stronger
condition for the system functions than that used in section 2. In section 4, we present
a special ESO and feedback control based on some information on system functions.
The convergence proof is also presented. The last section is devoted to examples and
numerical simulations that are used to illustrate the efficiency of ADRC. As a special
case, the ADRC is applied to a class of linear MIMO, and is compared to the internal
model principle.

2. Semiglobal convergence of ADRC. In this section, we assume that the
initial values of system (1.1) lie in a compact set. This information is used to construct
a saturated feedback control to avoid the peaking problem caused by the high gain in
the ESO.

Assumption AS1. There are constants C1, C2 such that ‖x(0)‖ < C2, ‖(w(t),
ẇ(t))‖ < C3.

Let C∗
1 = max{y∈Rn, ‖y‖≤C1+C2} V2(y). The following assumption is to guarantee

the input-to-state stablilty for zero dynamics (see [18]).
Assumption AS2. There exist positive definite functions V0,W0 : Rs → R such

that LF0V0(ξ) ≤ −W0(ξ) for all ξ : ‖ξ‖ > χ(x,w), where χ : Rn+m → R is a wedge
function, and LF0V0(ξ) denotes the Lie derivative along the zero dynamics in system
(1.1).
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Set

max

{

sup
‖x‖≤C1+(C∗

1+1)/(minλi
23)+1,‖w‖≤C3,

|χ(x,w)|, ‖ξ(0)‖
}

≤ C4,

M1 ≥ 2

(

1 +M2 + C1

+ max
1≤i≤m

sup
‖x‖≤C1+(C∗

1+1)/(minλi
23)+1,‖w ‖≤C3,‖ξ‖≤C4

|fi(x, ξ, wi)|
)

,

M2 ≥ max
‖x‖≤C1+(C∗

1+1)/(minλi
23)+1

|φi(x)|.

(2.1)

The following assumption is for the control parameters.
Assumption AS3. For each aij(x, ξ, wi), there exists a nominal parameter function

bij(x) such that the following hold.
(i) The matrix with entries bij are globally invertible with inverse matrix given

by

(2.2)

⎛

⎜

⎜

⎜

⎝

b∗11(x) b∗12(x) · · · b∗1m(x)
b∗21(x) b∗22(x) · · · b∗2m(x)

...
...

. . .
...

b∗m1(x) b∗m2(x) · · · b∗mm(x)

⎞

⎟

⎟

⎟

⎠

=

⎛

⎜

⎜

⎜

⎝

b11(x) b12(x) · · · b1m(x)
b21(x) b22(x) · · · b2m(x)

...
...

. . .
...

bm1(x) bm2(x) · · · bmm(x)

⎞

⎟

⎟

⎟

⎠

−1

.

(ii) For every 1 ≤ i, j ≤ m, bij , b
∗
ij , and all partial derivatives of bij and b∗ij with

respect to their arguments are globally bounded.
(iii)

(2.3)
ϑ = max

1≤i≤m
sup

‖x‖≤C1+(C∗
1+1)/(minλi

23)+1,‖ξ‖≤C4,‖w‖≤C3,ν∈Rn

|aij(x, ξ, w) − bij(x)|
∣

∣b∗ij(ν)
∣

∣

< min
1≤i≤m

{

1

2
, λi

13

(

mβi
1Λ

i
ni+1

(

M1 +
1

2

))−1
}

.

Let satM : R → R be an odd continuous differentiable saturated function defined
as follows (see [5]):

(2.4) satM (r) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

r, 0 ≤ r ≤ M,

− 1
2r

2 + (M + 1)r − 1

2
M2, M < r ≤ M + 1,

M + 1
2 , r > M + 1,

where M > 0 is some constant.
The feedback control is designed as:

(2.5) ADRC(S):

⎧

⎪

⎨

⎪

⎩

u∗
i = −satM1(x̂

i
ni+1) + satM2(φi(x̃

i − zi)) + zini+1,

ui =
m
∑

k=1

b∗ik(x̃)u
∗
k.

The roles played by the different terms in control design (2.5) are as follows: x̂i
ni+1 is to

compensate the total disturbance; xi
ni+1 = fi(x, ξ, wi)+

∑m
j=1(aij(x, ξ, wi)−bij(x))uj ,

φi(x̃
i − zi) + zini+1 is to guarantee the output tracking; and x̂i

n1+1, φi(x̂
i − zi) are

D
o
w

n
lo

ad
ed

 0
4
/2

3
/1

3
 t

o
 1

4
6
.1

4
1
.1

.9
2
. 
R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r 

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
:/

/w
w

w
.s

ia
m

.o
rg

/j
o
u
rn

al
s/

o
js

a.
p
h
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1732 BAO-ZHU GUO AND ZHI-LIANG ZHAO

bounded by using satM1 , satM2 , respectively, to limit the peak value in control signal.
Since both the cancellation and estimation are proceeding online for a particular
operation, the control signal in the ADRC does not need to be unnecessarily large.
That means the ADRC would spend less energy in control in order to cancel the effect
of the disturbance ([26])

Under the feedback (2.5), the closed loop of system (1.1) and ESO (1.5) is re-
written as

(2.6)
⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

ẋi(t) = Anix
i(t) +Bni

[

fi(x(t), ξ(t), wi(t)) +

m
∑

j=1

aij(x(t), ξ(t), w(t))uj (t)
]

,

ξ̇(t) = F0(x(t), ξ(t), w(t)),

˙̂xi(t) = Ani+1x̂
i(t) +

(

Bni

0

)

u∗
i (t) +

⎛

⎜

⎝

εni−1gi1(e
i
1(t))

...
1
εg

i
ni+1(e

i
1(t))

⎞

⎟

⎠
,

u∗
i (t) = −satM1(x̂

i
ni+1(t)) + satM2(φi(x̃

i(t)− zi(t))) + zini+1(t),

ui(t) =

m
∑

k=1

b∗ik(x̃(t))u
∗
k(t).

Our first main result is stated as Theorem 2.1 below.
Theorem 2.1. Assume that Assumptions A1–A3 and AS1–AS3 are satisfied. Let

an ε-dependent solution of (2.6) be (x(t, ε), x̂(t, ε)). Then for any σ > 0, there exists
an ε0 > 0 such that for any ε ∈ (0, ε0), there exists an ε-independent constant t0 > 0
such that

(2.7) |x̃(t, ε)− x(t, ε)| ≤ σ for all t > t0

and

(2.8) limt→∞‖x(t, ε)− z(t)‖ ≤ σ.

The proof of Theorem 2.1 is based on the boundedness of the solution stated in
Lemma 2.2.

Lemma 2.2. Assume that Assumptions A1, A2, AS1, AS2 are satisfied. Let
Ω0 = {y|V2(y) ≤ C∗

1}, Ω1 = {y|V2(y) ≤ C∗
1 + 1}. Then there exists an ε1 > 0 such

that for any ε ∈ (0, ε1), and t ∈ [0,∞), η(t, ε) ∈ Ω1.
Proof. First, we see that for any ε > 0,

(2.9)
|ηij(t, ε)| ≤ |ηij(0)|+ |ηij+1(t, ε)|t, 1 ≤ j ≤ ni − 1, 1 ≤ i ≤ m,

|ηini
(t, ε)| ≤ |ηini

(0)|+ [C1 +M1 +mM∗
1 (C1 +M1 +M2)]t, η(t, ε) ∈ Ω1,

where

M∗
1 = max

1≤i,j≤m
sup

‖x‖≤C1+(C∗
1+1)/(minλi

23)+1,‖w‖≤C̄3,‖ξ‖≤C̄4

|aij(x, ξ, w)|.

Next, by an iteration process, we can show that all terms on the right-hand side
of (2.9) are ε-independent. Since ‖η(0)‖ < C1 + C2, η(0) ∈ Ω0, there exists an
ε-independent constant t0 > 0 such that η(t, ε) ∈ Ω0 for all t ∈ [0, t0].
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Lemma 2.2 is finally proved by a contradiction. Suppose that Lemma 2.2 is false.
Then for any ε > 0, there exist an ε∗ ∈ (0, ε) and t∗ ∈ (0,∞) such that

(2.10) η(t∗, ε) ∈ R
n − Ω1.

Since for any t ∈ [0, t0], η(t, ε
∗) ∈ Ω0, and η is continuous in t, there exists a t1 ∈

(t0, t2) such that

(2.11)

η(t1, ε) ∈ ∂Ω0 or V2(η(t1, ε)) = C∗
1 ,

‖η(t2, ε)‖ ∈ Ω1 − Ω0 or C∗
1 < V2(η(t2, ε)) ≤ C∗

1 + 1,

η(t, ε) ∈ Ω1 − Ω◦
0 ∀ t ∈ [t1, t2] or C

∗
1 ≤ V2(η(t, ε)) ≤ C∗

1 + 1,

η(t, ε) ∈ Ω1 ∀ t ∈ [0, t2].

By (1.1) and (1.6), it follows that the errors ei in this case satisfy

(2.12) εėi(t) = Ani+1e
i(t)+∆i1

(

Bni

0

)

+ ε∆i2Bni+1−

⎛

⎜

⎝

gi1(e
i
1(t))
...

gini+1(e
i
1(t))

⎞

⎟

⎠
, 1 ≤ i ≤ m,

where

(2.13)

∆i1 =

m
∑

j=1

(

bij(x) − bij(x̃)
)

uj,

∆i2 =
d

dt

(

fi(x, ξ, wi) +

m
∑

j=1

(

aij(x, ξ, wi)− bij(x)
)

uj

)∣

∣

∣

∣

along (2.6)

.

Since all derivatives of bij are globally bounded, there exists a constant N0 > 0 such
that|∆i1| ≤ εN0‖e‖.

We define two vector fields of x by

Fi(x
i) =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

xi
2

xi
3
...

xi
ni+1 + fi(x, ξ, wi) +

m
∑

j=1

aij(x, ξ, wj)uj − u∗
i

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

,(2.14)

F (x) =
(

F1(x
1)⊤, F2(x

2)⊤, . . . , Fm(xm)⊤
)⊤

;(2.15)

F̂i(x̃
i) =

⎛

⎜

⎜

⎜

⎝

x̂i
2 + εni−1gi1(e

i
1)

x̂i
3 + εni−2gi2(e

i
1)

...
x̂i
ni+1 + gini

(ei1) + u∗
i

⎞

⎟

⎟

⎟

⎠

,(2.16)

F̂ (x̃) =
(

F̂1(x̃
1)⊤, F̂2(x̃

2)⊤, . . . , F̂m(x̃m)⊤
)⊤

.
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Considering the derivative of xi
ni+1 with respect to t in the interval [t1, t2], we

have
(2.17)

∆i2 =
d

dt

⎛

⎝fi(x, ξ, wi) +

m
∑

j=1

(

aij(x, ξ, wj)− bij(x)
)

uj

⎞

⎠

=

[

LF (x)fi(x, ξ, wi) + LF0(ξ)fi(x, ξ, wi) +
∂fi
∂wi

ẇi

]

+
d

dt

⎛

⎝

m
∑

j,l=1

(

aij(x, ξ, wj)− bij(x)
)

b∗jl(x̃)u
∗
l

⎞

⎠

=

[

LF (x)fi(x, ξ, wi) + LF0(ξ)fi(x, ξ, wi) +
∂fi
∂wi

ẇi

]

+

m
∑

j,l=1

(

LF (x)

(

aij(x, ξ, wj)− bij(x)
)

+ LF0(ξ)aij(x, ξ, wj) +
∂aij
∂wi

ẇi

)

b∗jl(x̃)u
∗
l

+

m
∑

j,l=1

(

aij(x, ξ, wj)− bij(x)
)

LF̂ (x̃)

(

b∗jl(x̃)
)

u∗
l

+

m
∑

j,l=1

(

aij(x, ξ, wj)− bij(x)
)

b∗jl(x̃)

×
(

−1

ε
ḣM1(x̂

i
ni+1)g

i
ni+1(e

i
1) + LF̂i(x̃i)satM2(φi(x̃

i − zi))

−
ni
∑

s=1

zs+1
∂satM2 ◦ φi

∂ys
(x̃i − zi) + żini+1

)

.

By the assumptions, all ‖(w, ẇ)‖, ‖x‖, ‖ξ‖, ‖z‖, and |zini+1| are bounded in [t1, t2],
we conclude that there exists a positive ε-independent number Ni such that for all
t ∈ [t1, t2],

(2.18)
∣

∣

∣

∣

LF (x)fi(x, ξ, wi) + LF0(ξ)fi(x, ξ, wi) +
∂fi
∂wi

ẇi

+

m
∑

j,l=1

(

LF (x)

(

aij(x, ξ, wj)− bij(x)
)

+ LF0(ξ)aij(x, ξ, wj) +
∂aij
∂wi

ẇi

)

× b∗jl(x̃)u
∗
l

∣

∣

∣

∣

≤ N1,

(2.19)

∣

∣

∣

∣

∣

∣

m
∑

j,l=1

(aij(x, ξ, wj)− bij(x))LF̂ (x̃)b
∗
jl(x̃)u

∗
l

∣

∣

∣

∣

∣

∣

≤ N2‖e‖+N3,

(2.20)
∣

∣

∣

∣

∣

∣

m
∑

j,l=1

(

aij(x, ξ, wj)−bij(x)
)

b∗jl(x̃)

(

−1

ε
ḣM1(x̂

i
ni+1)g

i
ni+1(e

i
1) +LF̂i(x̃i)satM2(φi(x̃

i − zi))

−
ni
∑

s=1

zs+1
∂satM2 ◦ φi

∂ys
(x̃i − zi) + żini+1

)∣

∣

∣

∣

∣

≤ N

ε
‖ei‖+N4‖e‖+N5,
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where

(2.21)

N = Λi
ni+1

(

M1 +
1

2

)

×max1≤i≤m sup‖x‖≤C1+(C∗
1+1)/(minλi

23)+1,‖ξ‖≤C4,‖w‖≤C3,ν∈Rn

m
∑

j,l=1

|aij(x, ξ, w) − bij(x)|
∣

∣b∗jl(ν)
∣

∣ = Λi
ni+1

(

M1 +
1

2

)

ϑ.

Finding the derivative of V1 along system (2.12) with respect to t shows that for
any 0 < ε < min1≤i≤m(λi

13 −Nβi
1)/((N0 +N2 +N4)max1≤i≤m βi

1) and t ∈ [0, t2],

(2.22)

dV1(e)

dt

∣

∣

∣

∣

along (2.12)

≤
m
∑

i=1

{

−1

ε
W i

1

(

ei
)

+ βi
1‖ei‖

(

N0‖e‖+N1 +N2‖e‖+N3 +N5

+N4‖e‖+
N

ε
‖ei‖

)}

,

≤ −
(

1

ε
min

1≤i≤m

(

λi
13 −Nβi

1

)

− (N0 +N2 +N4) max
1≤i≤m

(

βi
1

)

)

‖e‖2

+mmaxβi
1(N1 +N3 +N5)‖e‖

≤ − 1

max{λi
12}

(

1

ε
min

1≤i≤m

(

λi
13 −Nβi

1

)

− (N0 +N2 +N4)

× max
1≤i≤m

(

βi
1

)

)

V1(e) +
mmaxβi

1(N1 +N3 +N5)
√

λi
12

√

V1(e).

Hence for any 0 < ε < min1≤i≤m(λi
13 − Nβi

1)/((N0 + N2 + N4)max1≤i≤m βi
1) and

t ∈ [0, t2], one has

(2.23)
d

dt

√

V1(e) ≤ −
(

Π1

ε
−Π2

)

√

V1(e) + Π3,

where

(2.24)

Π1 =
min

(

λi
13 −Nβi

1

)

max{λi
12}

, Π2 =
(N0 +N2 +N4)max

(

βi
1

)

max{λi
12}

,

Π3 =
mmaxβi

1(N1 +N3 +N5)
√

λi
12

.

Therefore, for every 0 < ε < min1≤i≤m(λi
13 − Nβi

1)/((N0 + N2 + N4)max1≤i≤m βi
1)

and t ∈ [0, t2], we have

(2.25)

‖e‖ ≤ 1
√

λi
11

√

V1(e) ≤
1

√

λi
11

[

e(−Π1/ε+Π2)t
√

V1(e(0))

+Π3

∫ t

0

e(−Π1/ε+Π2)(t−s)ds

]

.

Passing to the limit as ε → 0 yields, for any t ∈ [t1, t2], that

(2.26)

e(−Π1/ε+Π2)t
√

V1(e(0)) ≤
1

√

min{λi
11}

e(−Π1/ε+Π2)t

×
m
∑

i=1

∥

∥

∥

( ei1
εni+1

,
ei2
εni

, . . . , ei(ni+1)

)∥

∥

∥ → 0.
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Hence for any σ ∈ (0,min{1/2, λi
23(C1+C2)/(mN6)}), there exists an ε1 ∈ (0, 1) such

that ‖e‖ ≤ σ for all ε ∈ (0, ε1) and t ∈ [t1, t2], where N6 = max1≤i≤m{βi
2(1 + L̂i)}

and L̂i is the Lipschitz constant of φi.
Notice that for any 0 < ε < ε1 and t ∈ [t1, t2], η ∈ Ω1, ‖e‖ ≤ σ,

(2.27)

‖x̃i − zi‖ ≤ ‖x− x̃i‖+ ‖xi − zi‖ ≤ (C∗
1 + 1)/minλi

23 + 1, |φi(x̃
i − zi)|

≤ M2,
|x̂i

ni+1| ≤ |eini+1|+ |xi
ni+1| ≤ |eini+1|

+

∣

∣

∣

∣

∣

∣

fi(x, ξ, wi)

m
∑

j=1

(aij(x, ξ, wi)− bij(x))ui

∣

∣

∣

∣

∣

∣

≤ |eini+1|+ |fi(x, ξ, wi)|+ ϑ(M1 +M2 + C2)

≤ 1 +M2 + C1 + |fi(x, ξ, wi)|+ ϑM1 ≤ M1.

So u∗
i in (2.6) takes the form u∗

i = x̂i
ni+1 +φi(x̃

i − zi)+ zini+1 for all t ∈ [t1, t2]. With
this u∗

i , the derivative of V2, along system (2.6) with respect to t in interval [t1, t2],
satisfies

(2.28)

d

dt
V2(η) =

m
∑

i=1

(

−W i
2(η

i(t)) +N6σ‖ηi‖
)

≤ − min
1≤i≤m

{λi
23}‖η‖2 +mN6‖e‖‖η‖ < 0,

which contradicts (2.11). And the proof is complete.
Proof of Theorem 2.1. From Lemma 2.2, η(t, ε) ∈ Ω1 for all ε ∈ (0, ε1) and

t ∈ (0,∞), it follows that (2.27) holds true for all t ∈ [0,∞). Therefore (2.28) and
(2.22) also hold true for any ε ∈ (0, ε1) and t ∈ [0,∞).

For any σ > 0, it follows from (2.28) that there exists a σ1 ∈ (0, σ/2) such that
limt→∞‖η(t, ε)‖ ≤ σ/2 provided that ‖e(t, ε)‖ ≤ σ1. From (2.22), for any τ > 0 and
this determined σ1 > 0, there exists an ε0 ∈ (1, ε1) such that ‖x(t, ε) − x̂(t, ε)‖ ≤ σ1

for any ε ∈ (0, ε0), t > τ . This completes the proof.
Remark 2.1. From Theorem 2.1, we can deduce the conclusion of [5] where the

output stabilization for a class of SISO system with linear ESO is used. This is just
to let m = 1 in (1.1), gi(r) = r in (1.5), and all the reference signals vi ≡ 0.

3. Global convergence of ADRC. In the last section, we develop the semi-
global convergence for nonlinear ADRC. The advantage of this result is that the
peaking problem can be effectively alleviated by introducing the saturation function
in the control. However, the saturation function depends on the bound of initial
values. When this bound is not available, we need the global convergence. The price
in this case is probably the peaking problem, and more restricted assumptions as well.

Assumption GA1. For every 1 ≤ i ≤ m, all partial derivatives of fi are bounded
over Rn+m, where n = n1 + · · ·+ nm.

Assumption GA2. For every 1 ≤ i, j ≤ m, aij(x, ξ, wi) = aij(wi) and there exist
constant nominal parameters bij such that the matrix with entry bij is invertible:

⎛

⎜

⎜

⎜

⎝

b∗11 b∗12 · · · b∗1m
b∗21 b∗22 · · · b∗2m
...

...
. . .

...
b∗m1 b∗m2 · · · b∗mm

⎞

⎟

⎟

⎟

⎠

=

⎛

⎜

⎜

⎜

⎝

b11 b12 · · · b1m
b21 b22 · · · b2m
...

...
. . .

...
bm1 bm2 · · · bmm

⎞

⎟

⎟

⎟

⎠

−1
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Moreover,

(3.1) min{λi
13} −

√
m

m
∑

i,k,l=1

βi
1 sup
t∈[0,∞)

|aik(wi(t))− bik|b∗klΛl
nl+1 > 0 ∀ t ∈ [0,∞).

Assumption GA3. For zero dynamics, there exist positive constants K1,K2 such
that ‖F0(x, ξ, w)‖ ≤ K1 +K2(‖x‖+ ‖w‖).

The observer based feedback control is then designed as

(3.2) ADRC(G):

⎧

⎪

⎨

⎪

⎩

u∗
i = φi(x̃

i − zi) + zini+1 − x̂i
ni+1,

ui =
m
∑

j=1

b∗ijuj .

It is seen that in feedback control (3.2), x̂i
ni+1 is used to compensate the uncertainty

xi
ni+1 = fi(x, ξ, wi)+

∑m
j=1(aij(wi)−bij)uj and φi(x̃

i−zi)+zin1+1 is used to guarantee
the output tracking.

The closed loop of system (1.1) under ESO (1.5) and ADRC (3.2) becomes

(3.3) Closed-loop:

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

ẋi = Anix
i +Bni

(

fi(x, ξ, wi) +

m
∑

k=1

aikuk

)

,

˙̂xi = Ani+1x̂
i +

⎛

⎜

⎜

⎝

εni−1gi1(e
i
1)

...
1

ε
gini+1(e

i
1)

⎞

⎟

⎟

⎠

+

(

Bni ,
0

)

u∗
i ,

ui =

m
∑

k=1

b∗iku
∗
k, u∗

i = φi(x̃
i − zi) + zini+1 − x̂i

ni+1.

Theorem 3.1. Assume that Assumptions A1–A3 and GA1–GA3 are satisfied.
Let x(t, ε), x̂(t, ε) be the ε-dependent solutions of (3.3). Then there exists a constant
ε0 > 0 such that for any ε ∈ (0, ε0), there exists an ε and the initial value dependent
constant tε > 0 such that for all t > tε,

(3.4) |xi
j(t, ε)− x̂i

j(t, ε)| ≤ Γ1ε
ni+2−j , 1 ≤ j ≤ ni + 1, 1 ≤ i ≤ m,

and

(3.5) ‖xi
j − zij‖ ≤ Γ2ε, 1 ≤ j ≤ ni, 1 ≤ i ≤ m,

where Γ1,Γ2 are constants independent of ε and the initial value. However, they are
dependent on the bound of ‖zi‖ and ‖(w, ẇ)‖.

Proof. Using the notation of ηi, ei in (1.6), we get the error equation as follows:

(3.6)

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

η̇i = Aniη
i +Bni [φi(η

i) + eini+1 + (φi(x̃
i − zi)− φi(x

i − zi))],

εėi = Ani+1e
i + ε∆̄iBni+1 −

⎛

⎜

⎝

gi1(e
i
1)

...
gini+1(e

i
1)

⎞

⎟

⎠
.
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Let
(3.7)

∆̄i =
d

dt

∣

∣

∣

∣

along (3.3)

[

fi(x, ξ, wi) +

m
∑

k=1

aik(wi)uk − u∗
i

]

=
d

dt

∣

∣

∣

∣

along (3.3)

[

fi(x, ξ, wi) +

m
∑

k,l=1

(aik(wi)− bik)b
∗
kl

(

φl(x̃
l − zl)

+ zlnl+1 − x̂l
nl+1

)]

.

A straightforward computation shows that

(3.8)

∆̄i =

m
∑

s=1

ns−1
∑

j=1

xs
j+1

∂fi
∂xs

j

(x, ξ, wi)

+
m
∑

s,k,l=1

bikb
∗
kl

(

φl

(

x̃l − zl
)

+ zlnl+1 − x̂l
nl+1

) ∂fi
∂xs

ns

(x,wi)

+ ẇi
∂fi
∂wi

(x,wi) + LF0(ξ)fi(x, ξ, wi)

+

m
∑

k,l=1

(aik − bik)b
∗
kl

⎧

⎨

⎩

nl
∑

j=1

(

x̃l
j+1 − zlj+1 − εnl−jglj(e

l
1)
) ∂φl

∂yj
(x̃l − zl)

⎫

⎬

⎭

+

m
∑

k,l=1

(aik − bik)b
∗
kl

{

żlnl+1 −
1

ε
glnl+1(e

l
1)

}

+

m
∑

k,l=1

ȧik(wi)ẇib
∗
kl

(

φl(x̃
l − zl) + zlnl+1 − x̂l

nl+1

)

.

It follows that

(3.9)

|∆̄i| ≤ Ξi
0 + Ξi

1‖e‖+ Ξj
2‖η‖+

Ξi

ε
‖e‖,

Ξi =
√
m

m
∑

k,l=1

sup
t∈[0,∞

|aik(wi(t))− bik|b∗klΛl
nl+1,

where Ξi
0,Ξ

i
1,Ξ

i
2 are ε-independent positive constants.

Construct the Lyapunov function V : R
2n1+···+2nm+m → R for error system (3.6)

as

(3.10) V (η1, . . . , ηm, e1, . . . , em) =

m
∑

i=1

[V i
1 (e

i) + V i
2 (η

i)].

The derivative of V along the solution of (3.6) is computed as
(3.11)

dV

dt

∣

∣

∣

∣

along (3.6)

=

m
∑

i=1

{

1

ε

[

ni
∑

j=1

(eij+1 − gij(e
i
1))

∂V i
1

∂eij
(ei)− gini+1(e

i
1)

∂V i
1

∂en+1
(ei)

]

+∆̄i
∂V i

1

∂eini+1

(ei) +

ni−1
∑

j=1

ηij+1

∂V i
2

∂ηij
(ηi)

+ {φi(η
i) + eini+1 + [φi(x̃

i − zi)− φi(x
i − zi)]} ∂V i

2

∂xi
ni

(ηi)

}

.
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It follows from Assumptions A2 and A3 that

(3.12)

dV

dt

∣

∣

∣

∣

along (3.6)

≤
m
∑

i=1

{

−1

ε
W i

1(e
i) + βi

1‖ei‖
(

Ξi
0 + Ξi

1‖e‖+ Ξi
2‖η‖+

Ξi

ε
‖e‖

)

− W i
2(η

i) + βi
2(Li + 1)‖ei‖‖ηi‖

}

.

This together with Assumptions A2 and A3 gives
(3.13)

dV

dt

∣

∣

∣

∣

along (3.6)

≤
m
∑

i=1

{

− λi
13

ε
‖ei‖2 + βi

1‖ei‖
(

Ξi
0 + Ξi

1‖e‖+ Ξi
2‖η‖+

Ξi

ε
‖e‖

)

−λi
23‖ηi‖2 + βi

2(Li + 1)‖ei‖‖ηi‖
}

≤ −
(

1

ε

(

min{λi
13} −

m
∑

i=1

βi
1Ξ

i

)

−
m
∑

i=1

βi
1Ξ

i
1

)

‖e‖2

+

(

m
∑

i=1

βi
1Ξ

i
0

)

‖e‖ −min{λi
23}‖η‖2 +

m
∑

i=1

βi
2(Li + 1)‖e‖η‖.

For notational simplicity, we denote

(3.14)

Π1 = min{λi
13} −

m
∑

i=1

βi
1Ξ

i, Π2 =

m
∑

i=1

βi
1Ξ

i
1,

Π3 =

m
∑

i=1

βi
1Ξ

i
0, Π4 =

m
∑

i=1

βi
2(Li + 1), λ = min{λi

23},

and rewrite inequality (3.13) as

(3.15)
dV

dt

∣

∣

∣

∣

along (3.6)

≤ −
(

Π1

ε
−Π2

)

‖e‖2 +Π3‖e‖ − λ‖η‖2 +Π4‖e‖‖η‖.

Let ε1 = Π1/(2Π2). For every ε ∈ (0, ε1), Π2 = Π1/(2ε1) ≤ Π1/(2ε) and

(3.16) Π4‖e‖‖η‖ =

√

Π1

4ε
‖e‖

√

4ε

Π1
Π2‖η‖ ≤ Π1

4ε
‖e‖2 + 4εΠ2

2

Π1
‖η‖2.

Hence (3.15) can be estimated further as

(3.17)
dV

dt

∣

∣

∣

∣

along (3.6)

≤ −Π1

4ε
‖e‖2 +Π3‖e‖ −

(

λ− 4ε
Π2

2

Π1

)

‖η‖2.

Now we show that the solution of (3.6) is bounded when ε is sufficiently small.
To this purpose, let

(3.18) R = max

{

2,
2Π3

λ

}

, ε0 = min

{

1, ε1,
Π1

4Π3
,
λΠ1

8Π2
2

}

.

For any ε ∈ (0, ε0) and ‖e, η‖ ≥ R, we consider the derivative of V along the
solution of (3.6) by two different cases.
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Case 1. ‖e‖ ≥ R/2. In this case, ‖e‖ ≥ 1. A direct computation from (3.17),
with the definition of ε0 in (3.18), gives

(3.19)

dV

dt

∣

∣

∣

∣

along (3.6)

≤ −Π1

4ε
‖e‖2 +Π3‖e‖

≤ −
(

Π1

4ε
−Π3

)

‖e‖2 ≤ −
(

Π1

4ε
−Π3

)

< 0.

Case 2. ‖e‖ < R/2. In this case, from ‖η‖+ ‖e‖ ≥ ‖(e, η)‖, ‖η| ≥ R/2. By (3.12)
and the definition of ε0 in (3.18), we have

(3.20)

dV

dt

∣

∣

∣

∣

along (3.6)

≤ Π3‖e‖ −
(

λ− 4ε
Π2

2

Π1

)

‖η‖2

≤ −
(

λ− 4ε
Π2

2

Π1

)

R2 +Π3R ≤ −
(

λ

2
R−Π3

)

R ≤ 0.

Summarizing these two cases, we get that for each ε ∈ (0, ε0), there exist an ε
and τε > 0 that depends on the initial value such that ‖(e, η)‖ ≤ R for all t ∈ (Tε,∞).
This together with (3.8) shows that |∆̄i| ≤ Mi + (Ξi/ε)‖e‖ for all t ∈ (Tε,∞), where
Mi is an R-dependent constant.

Finding the derivative of V1 along the solution of (3.6) with respect to t gives, for
any t > τε, that

(3.21)

dV1

dt

∣

∣

∣

∣

along (3.6)

=
1

ε

m
∑

i=1

{

ni
∑

j=1

(

eij+1 − gij(e
i
1)
) ∂V i

1

∂eij

(

ei
)

+
(

ε∆̄i − gini+1

(

ei1
)) ∂V i

1

∂eini+1

(

ei
)

}

≤ −Π1

ε
‖ei‖2 +

m
∑

i=1

Miβ
i
1‖ei‖

≤ − Π1

εmax{λi
12}

V1(e) +

m
∑

i=1

Miβ
i
1

√

min{λi
11}

√

V1(e).

Hence

(3.22)
d

dt

√

V1(e)

∣

∣

∣

∣

along (3.6)

≤ − Π1

2εmax{λi
12}

√

V1(e) +

m
∑

i=1

Miβ
i
1

2
√

min{λi
11}

for all t > τε.
By the comparison principle of ordinary differential equations, we get immediately,

for all t > τε, that

(3.23)
√

V1(e) ≤ e
−

Π1
2ε max{λi

12
}
(t−τε)

+

m
∑

i=1

Miβ
i
1

2
√

min{λi
11}

∫ t

τε

e
−

Π1
2εmax{λi

12
}
(t−s)

ds.

It is seen that the first term of the right-hand side of the above inequality is convergent
to zero as t → ∞, so we may assume that it is less than ε as t > tε for some tε > 0.
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For the second term, we have

(3.24)

∣

∣

∣

∣

∫ t

τε

e
−

Π1
2εmax{λi

12
}
(t−s)

ds

∣

∣

∣

∣

≤ 2max{λi
12}

Π1
ε.

These together with Assumption A2 show that there exists a positive constant Γ1 > 0
such that

(3.25)
∣

∣eij
∣

∣ ≤
√

V1(e)

min{λi
11}

≤ Γ1ε, t > tε.

Equation (3.4) then follows by taking (1.6) into account.
Finding the derivative of V2 along the solution of (3.6) with respect to t gives, for

all t > tε, that
(3.26)

dV2

dt

∣

∣

∣

∣

along (3.6)

=

m
∑

i=1

{

ni−1
∑

j=1

ηij+1

∂V i
2

∂ηij
(ηi)

+ {φi(η
i) + eini+1 + [φi(x̂

i − zi)− φi(x
i − zi)]} ∂V i

2

∂xi
ni

(ηi)

}

≤
m
∑

i=1

{

−W i
2(η

i) + βi
2(Li + 1)‖ei‖‖ηi‖

}

≤
m
∑

i=1

{

−W i
2(η

i) + βi
2(Li + 1)Γ1ε‖ηi‖

}

.

By Assumption A3, we have, for any t > tε, that

(3.27)
dV2

dt

∣

∣

∣

∣

along (3.6)

≤ −min
{

λi
23/λ

i
22

}

V2(η) +

m
∑

i=1

βi
2(Li + 1)Γ1ε

√

min{λi
21}

√

V2(η).

It follows that for all t > tε,

(3.28)
d

dt

√

V2(η)

∣

∣

∣

∣

along (3.6)

≤ −min
{

λi
23/λ

i
22

}

2

√

V2(η) +

m
∑

i=1

βi
2(Li + 1)Γ1ε

2
√

min{λi
21}

.

Applying the comparison principle in ordinary differential equations again, we
get, for all t > tε, that

(3.29)

√

V (η) ≤ e−
min{λi

23/λi
22}

2 (t−tε)
√

V (η(tε)) +

m
∑

i=1

βi
2(Li + 1)Γ1ε

2
√

min{λi
21}

×
∫ t

tε

e−
min{λi

23/λi
22}

2 (t−s)ds.

Noting (1.6), we finally get that there exist Tε > tε and Γ2 > 0 such that (3.5) holds
true. The proof is complete.
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4. ADRC for external disturbance and parameter mismatch of control

only. In this section, a special case of ADRC is considered where the functions in
dynamics are known in the sense that for any 1 ≤ i ≤ m, fi(x, ξ, wi) = f̃i(x)+f̄(ξ, wi),
where f̃i is known. In other words, the uncertainty comes from external disturbances,
zero dynamics, and parameter mismatch in control only. In this case, we try to use
the known information in the design of the ESO.

In this spirit, for each output yi = xi
1(i = 1, 2, . . . ,m), the ESO is designed below

as ESO(f) to estimate xi
j(j = 1, 2, . . . , ni) and xi

ni+1 = f̄i(ξ, wi)+
∑m

k=1 aik(wi)ui−u∗
i :

(4.1) ESO(f):

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

˙̂xi
1 = x̂i

2 + εni−1gi1(e
i
1),

˙̂xi
2 = x̂i

3 + εni−2gi2(e
i
1),

...

˙̂xi
ni

= x̂i
ni+1 + gini

(ei1) + f̃(x̃) + u∗
i ,

˙̂xi
ni+1 =

1

ε
gini+1(e

i
1), i = 1, 2, . . . ,m,

and the observer based feedback control is designed as

(4.2) ADRC(f):

⎧

⎪

⎨

⎪

⎩

u∗
i = −f̃(x̃) + φi(x̃

i − zi) + zini+1 − x̂i
ni+1,

ui =

m
∑

i=1

b∗ijuj,

where the b∗ij are the same as that in Assumption GA2.
The closed loop system is now composed of system (1.1), ESO(f) (4.1), ADRC(f)

(4.2):

(4.3) Closed-loop(f):

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

ẋi = Anix
i +Bni

(

fi(x, ξ, wi) +

m
∑

k=1

aikuk

)

,

˙̂xi = Ani+1x̂
i +

⎛

⎜

⎜

⎝

εni−1gi1(e
i
1)

...
1

ε
gini+1(e

i
1)

⎞

⎟

⎟

⎠

+

(

Bni

0

)

(f̃(x̃) + u∗
i ),

ui =

m
∑

k=1

b∗iku
∗
k,

u∗
i = −f̃(x̃) + φi(x̃

i − zi) + zi(ni+1) − x̂i
(ni+1).

Assumption A4. All partial derivatives of f̃i, f̄i are bounded by a constant L̃i.
Theorem 4.1. Let xi

j(t, ε)(1 ≤ j ≤ ni, 1 ≤ i ≤ m) and x̂i
j(t, ε)(1 ≤ j ≤

ni +1, 1 ≤ i ≤ m) be the solutions of the closed-loop system (4.3), xi
ni+1 = f̄(ξ, wi) +

∑m
k=1 aik(wi)ui − u∗

i be the extended state. Assume Assumptions A1–A4, GA2–GA3
are satisfied. In addition, we assume that (3.1) in Assumption GA2 is replaced by

(4.4) min{λi
13} −

m
∑

i=1

βi
1L̃i −

√
m

m
∑

i,k,l=1

βi
1 sup
t∈[0,∞)

|aik(wi(t))− bik|b∗klΛl
nl+1 > 0.

Then there is a constant ε0 > 0 such that for any ε ∈ (0, ε0), there exists a tε > 0
such that for all t > tε,

(4.5) |xi
j(t, ε)− x̂i

j(t, ε)| ≤ Γ1ε
ni+2−j , 1 ≤ j ≤ ni + 1, 1 ≤ i ≤ m
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and

(4.6) |xi
j(t, ε)− zij(t, ε)| ≤ Γ2ε, i = 1, 2, . . . , n,

where Γ1,Γ2 are ε and the initial value independent constants (again they depend on
the bound of ‖zi‖ and ‖(w, ẇ)‖).

Proof. The error equation in this case is

(4.7)

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

η̇i = Aniη
i +Bni [φi(x̃

i − zi) + eini+1 + f̃i(x) − f̃i(x̃)],

εėi = Ani+1e
i +

(

Bni

0

)

(f̃i(x) − f̃i(x̃)) + ε�iBni+1 −

⎛

⎜

⎝

gi1(e
i
1)

...
gini+1(e

i
1),

⎞

⎟

⎠
,

where
(4.8)

�i =
d

dt

∣

∣

∣

∣

along (4.3)

[

f̄(ξ, wi) +

m
∑

k=1

aik(wi)uk − u∗
i

]

=
d

dt

∣

∣

∣

∣

along (4.3)

[

f̄(ξ, wi) +

m
∑

k,l=1

(aik(wi)− bik)b
∗
kl(φl(x̃

l − zl) + zlnl+1 − x̂l
nl+1)

]

.

A direct computation shows that

(4.9)

�i = LF0(ξ)f̄i(ξ, wi) + ẇi
∂f̄i
∂wi

(ξ, wi)

+

m
∑

k,l=1

(aik(wi)− bik)b
∗
kl

⎧

⎨

⎩

nl
∑

j=1

(

x̃l
j+1 − zlj+1 − εnl−jglj(e

l
1)
) ∂φl

∂yj
(x̃l − zl)

⎫

⎬

⎭

+
m
∑

k,l=1

(aik(wi)− bik)b
∗
kl

{

żlnl+1 −
1

ε
glnl+1(e

l
1)

}

+

m
∑

k,l=1

ȧi,k(wi)ẇib
∗
kl

(

φl(x̃
l − zl) + zlnl+1 − x̂l

nl+1

)

.

It follows that

(4.10)

|�i| ≤ Θi
0 +Θi

1‖e‖+Θj
2‖η‖+

Θi

ε
‖e‖,

Θi =
√
m

m
∑

k,l=1

sup
t∈[0,∞)

|aik(wi(t))− bik|b∗klΛl
nl+1

for some ε-independent positive constants Θi
0,Θ

i
1,Θ

i
2.
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Find the derivative of V along the solution of (4.7) to get

(4.11)

dV

dt

∣

∣

∣

∣

along (4.7)

=

m
∑

i=1

{

1

ε

[

ni
∑

j=1

(eij+1 − gij(e
i
1))

∂V i
1

∂eij
(ei)− gini+1(e

i
1)

∂V i
1

∂en+1
(ei)

+ (f̃i(x)− f̃i(x̃))
∂V i

1

∂V i
ni

(ei)

]

+ �i
∂V i

1

∂eini+1

(ei) +

ni−1
∑

j=1

ηij+1

∂V i
2

∂ηij
(ηi)

+

{

φi(η
i) + eini+1 + [φi(x̂

i − zi)− φi(x
i − zi)]

+ (f̃i(x) − f̃i(x̃))

}

∂V i
2

∂xi
ni

(ηi)

}

.

By Assumptions A2 and A3, we get

(4.12)

dV

dt

∣

∣

∣

∣

along (4.7)

≤
m
∑

i=1

{

− 1

ε
W i

1(e
i) +

L̃iβ
i
1

ε
‖e‖2

+ βi
1‖ei‖

(

Θi
0 +Θi

1‖e‖+Θi
2‖η‖+

Θi

ε
‖e‖

)

− W i
2(η

i) + βi
2(Li + L̃i + 1)‖e‖‖ηi‖

}

.

This together with Assumptions A2 and A3 again gives
(4.13)

dV

dt

∣

∣

∣

∣

along (4.7)

≤
m
∑

i=1

{

− λi
13

ε
‖ei‖2 + L̃iβ

i
1

ε
‖e‖2

+ βi
1‖ei‖

(

Θi
0 +Θi

1‖e‖+Θi
2‖η‖+

Θi

ε
‖e‖

)

−λi
23‖ηi‖2 + βi

2(Li + L̃i + 1)‖e‖‖ηi‖
}

≤ −
(

1

ε

(

min{λi
13} −

m
∑

i=1

βi
1Θ

i −
m
∑

i=1

βi
1L̃i

)

−
m
∑

i=1

βi
1Θ

i
1

)

‖e‖2

+

(

m
∑

i=1

βi
1Θ

i
0

)

‖e‖ −min{λi
23}‖η‖2 +

m
∑

i=1

βi
2(Li + L̃i + 1)‖e‖‖η‖.

For simplicity, we introduce the following symbols to represent the parameters in
(4.13):

(4.14)

$1 = min{λi
13} −

m
∑

i=1

βi
1Θ

i −
m
∑

i=1

βi
1L̃i, $2 =

m
∑

i=1

βi
1Θ

i
1,

$3 =
m
∑

i=1

βi
1Θ

i
0, $4 =

m
∑

i=1

βi
2(Li + L̃i + 1), λ = min{λi

23},

and rewrite inequality (4.13) as follows:

(4.15)
dV

dt

∣

∣

∣

∣

along (4.7)

≤ −
(

$1
ε

− $2

)

‖e‖2 + $3‖e‖ − λ‖η‖2 + $4‖e‖‖η‖.
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It is seen that (4.15) and (3.15) are quite similar. In fact if set Πi = $i, then
(4.15) is just (3.15). So the boundedness of the solution to (4.7) can be obtained
following the corresponding part of the proof of Theorem 3.1 that for any ε ∈ (0, ε0),
there is a τε > 0 such that ‖(e, η)‖ ≤ R̄ for all t ∈ (Tε,∞). This together with (4.9)
yields that |�i| ≤ M̄i + (Θi/ε)‖e‖ for all t ∈ (Tε,∞), where M̄i is an R̄-dependent
positive constant.

Finding the derivative of V1 along the solution of (4.7) with respect to t gives, for
all t > τε, that
(4.16)

dV1

dt

∣

∣

∣

∣

along (4.7)

=
1

ε

m
∑

i=1

{ ni
∑

j=1

(

eij+1 − gij(e
i
1)
) ∂V i

1

∂eij

(

ei
)

+ (f̃(x)− f̃(x̃))
∂V i

1

∂eini

(ei)

+
(

ε∆̄i − gini+1

(

ei1
)) ∂V i

1

∂eini+1

(

ei
)

}

≤ −Π1

ε
‖ei‖2 +

m
∑

i=1

M̄iβ
i
1‖ei‖

≤ − Π1

εmax{λi
12}

V1(e) +

m
∑

i=1

M̄iβ
i
1

√

min{λi
11}

√

V1(e).

It follows that

(4.17)
d

dt

√

V1(e)

∣

∣

∣

∣

along (4.7)

≤ − Θ1

2εmax{λi
12}

√

V1(e) +

m
∑

i=1

M̃iβ
i
1

2
√

min{λi
11}

∀ t > τε.

Finding the derivative of V2 along the solution of (4.7) with respect to t gives
(4.18)

dV2

dt

∣

∣

∣

∣

along (4.7)

=
m
∑

i=1

{

ni−1
∑

j=1

ηij+1

∂V i
2

∂ηij
(ηi) +

{

ϕi(η
i) + eini+1 + (f̃i(x)− f̃(x̃))

+ [ϕi(x̂
i − zi)− ϕi(x

i − zi)]

}

∂V i
2

∂xi
ni

(ηi)

}

≤
m
∑

i=1

{

−W i
2(η

i) + βi
2(Li + L̃i + 1)‖ei‖‖ηi‖

}

≤
m
∑

i=1

{

−W i
2(η

i) + βi
2(Li + L̃i + 1)Γ1ε‖ηi‖

}

∀ t > tε.

By Assumption A3, we have

(4.19)

dV2

dt

∣

∣

∣

∣

along (4.7)

≤ −min
{

λi
23/λ

i
22

}

V2(η)

+

m
∑

i=1

βi
2(Li + L̃i + 1)Γ1ε

√

min{λi
21}

√

V2(η) ∀ t > tε.
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It follows that

(4.20)

d

dt

√

V2(η)

∣

∣

∣

∣

along (4.7)

≤ −min
{

λi
23/λ

i
22

}

2

√

V2(η)

+

m
∑

i=1

βi
2(Li + L̃i + 1)Γ1ε

2
√

min{λi
21}

∀ t > tε.

It is seen that (4.17) and (4.20) are very similar to (3.22) and (3.28), respectively.
Using similar arguments, we obtain Theorem 4.1. The details are omitted.

5. Examples and numerical simulations.

5.1. Nonlinear ADRC for total disturbance.

Example 5.1. Consider the following MIMO system:

(5.1)

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

ẋ1
1 = x1

2, ẋ1
2 = f1(x, ζ, w1) + a11u1 + a12u2,

ẋ2
1 = x2

2, ẋ2
2 = f2(x, ζ, w2) + a21u1 + a22u2,

ζ̇ = x1
2 + x2

1 + sin ζ + sin t,

y1 = x1
1, y2 = x2

1,

where y1, y2 are the outputs, and u1, u2 are inputs, and

(5.2)

⎧

⎪

⎨

⎪

⎩

f1(x
1
1, x

1
2, x

2
1, x

2
2, ζ, w1) = x1

1 + x2
1 + ζ + sin(x1

2 + x2
2)w1,

f2(x
1
1, x

1
2, x

2
1, x

2
2, ζ, w2) = x1

2 + x2
2 + ζ + cos(x1

1 + x2
1)w2,

a11 = 1 + 1
10 sin t, a12 = 1 + 1

10 cos t, a21 = 1 + 1
102

−t, a22 = −1,

are unknown functions.
Suppose that external disturbances w1, w2, and the reference signals v1, v2 are as

follows:

(5.3) w1 = 1 + sin t, w2 = 2−t cos t, v1 = sin t, v2 = cos t.

Let φ1 = φ2 = φ : R2 → R be defined by φ(r1, r2) = −9r1 − 6r2. The objective
is to design an observer based feedback control so that xi

1 − zi1 and xi
2 − zi2 converge

to zero as time goes to infinity in the way of the following global asymptotic stable
system converging to zero,

(5.4)

{

ẋ∗
1 = x∗

2,

ẋ∗
2 = φi(x

∗
1, x

∗
2),

where zi1, z
i
2, z

i
3 are the states of the tracking differentiator (TD) to estimate the

derivatives of vi. For simplicity, we use the same TD for v1 and v2 as follows:

(5.5)

⎧

⎪

⎨

⎪

⎩

żi1 = zi2,

żi2 = zi3,

żi3 = −ρ3(zi1 − vi)− 3ρ2zi2 − 3ρzi3, i = 1, 2.

Since most of the functions in (5.1) are unknown, the ESO design relies on very
little information of the system, and the total disturbance should be estimated. This
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is quite different to the problem in [18] where only the uncertain constant nominal
value of control is estimated. Here we need the approximate values bij of aij :

(5.6) b11 = b12 = b13 = 1, b22 = −1.

b∗ij is found to be

(5.7)

(

b∗11 b∗12
b∗21 b∗22

)

=

(

1 1
1 −1

)−1

=

(

1
2

1
2

1
2 − 1

2

)

.

By Theorem 3.1, we design the nonlinear ESO for system (5.1) as

(5.8)

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

˙̂x1
1 = x̂1

2 +
6

ε
(y1 − x̂1

1)− εΦ

(

y1 − x̂1
1

ε2

)

,

˙̂x1
2 = x̂1

3 +
11

ε2
(y1 − x̂1

1) + u∗
1,

˙̂x1
3 =

6

ε3
(y1 − x̂1

1),
⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

˙̂x2
1 = x̂2

2 +
6

ε
(y2 − x̂2

1),

˙̂x2
2 = x̂2

3 +
11

ε2
(y2 − x̂2

1) + u∗
2,

˙̂x2
3 =

6

ε3
(y2 − x̂2

1),

u∗
1 = φ1

(

x̂1
1 − z11 , x̂

1
2 − z12

)

+ z13 − x̂1
3,

u∗
2 = φ2

(

x̂2
1 − z21 , x̂

2
2 − z22

)

+ z23 − x̂2
3,

where Φ : R → R is given by

(5.9) Φ(r) =

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

−1

4
, r ∈

(

−∞,−π

2

)

,

1

4
sin r, r ∈

(

−π

2
,
π

2

)

,

1

4
, r ∈

(π

2
,−∞

)

.

The ADRC for this example is the observer based feedback given by

(5.10) u1 =
1

2
(u∗

1 + u∗
2) , u2 =

1

2
(u∗

1 − u∗
2) .

We take the initial values and parameters as follows:

x(0) = (0.5, 0.5, 1, 1), x̂(0) = (0, 0, 0, 0, 0, 0), z(0) = (1, 1, 1, 1, 1, 1), ρ = 50,
ε = 0.05, h = 0.001,

where h is the integral step. Using the Euler method, the numerical results for system
(5.1)–(5.3) under (5.5), (5.4), (5.8), and (5.10) are plotted in Figure 5.1.

Figures 5.1(a), 5.1(b), 5.1(d), and 5.1(e) indicate that for every i, j = 1, 2, x̂i
j

tracks xi
j , z

i
j tracks (vi)

(j−1), and xi
j tracks (vi)

(j−1) very satisfactorily. In addition,

from Figures 5.1(c) and 5.1(f), we see that x̂i
3 tracks satisfactorily the extended state

or total disturbance xi
3 = fi + ai1u1 + ai2u2 − u∗

i .
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Fig. 5.1. Numerical results of ADRC for system (5.1), (5.5), (5.8), and (5.10) with total
disturbance (for interpretation of the references to color of the figure’s legend in this section, we
refer to the PDF version of this article).

The peaking phenomena of the system states x1
2, x

2
2 plotted in Figures 5.1(b) and

5.1(e) with the blue curve, and the extended states x1
3, x

2
3 in Figures 5.1(c) and 5.1(f)

with the green curve are observed.
To overcome the peaking problem, we use the saturated feedback control in The-

orem 3.1 by replacing u∗
1, u

∗
2 with

(5.11)
u∗
1 = sat20

(

φ1

(

x̂1
1 − z11 , x̂

1
2 − z12

)

)

+ z13 − sat20(x̂
1
3),

u∗
2 = sat20

(

φ2

(

x̂2
1 − z21 , x̂

2
2 − z22

)

)

+ z23 − sat20(x̂
2
3).

For simplicity, we use the exact values of (vi)
(j−1) instead of zij . Under the same pa-

rameters as that in Figure 5.1, the numerical results under control (5.11) are plotted in

D
o
w

n
lo

ad
ed

 0
4
/2

3
/1

3
 t

o
 1

4
6
.1

4
1
.1

.9
2
. 
R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r 

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
:/

/w
w

w
.s

ia
m

.o
rg

/j
o
u
rn

al
s/

o
js

a.
p
h
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

NONLINEAR ACTIVE DISTURBANCE REJECTION CONTROL 1749
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(e) x2
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Fig. 5.2. Numerical results of ADRC for system (5.1), (5.5), (5.8), and (5.11) with total
disturbance using saturated feedback control (for interpretation of the references to color of the
figure’s legend in this section, we refer to the PDF version of this article).

Figure 5.2. It is seen that the peak values of the states x1
2, x

2
2 plotted in Figures 5.2(b)

and 5.2(e) with the blue curve, and the extended state x1
3, x

2
3 plotted in Figures 5.2(c)

and 5.2(f) with the green curve are reduced significantly.

5.2. Output regulation: ADRC vs. IMP. The internal model principle
(IMP) deals with the general output regulation problem of the following:

(5.12)

⎧

⎪

⎨

⎪

⎩

ẋ = Ax+Bu+ Pw,

ẇ = Sw,

e = Cx−Qw,

where x is the state, w the external signal, B the control matrix, C the observation
matrix. The control purpose is to design the error feedback so that the error e → 0
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as t → ∞, and at the same time, all internal systems are stable. The following
Proposition 5.1 comes from [4].

Proposition 5.1. Suppose that (A,B) is stabilizable and the pair

(5.13) (C,−Q),

(

A P
0 S

)

is detectable. Then the output regulation is solvable if and only if the linear matrix
equations

(5.14)
M̃1S = AM̃1 + P + BM̃2,

0 = CM̃1 −Q,

have solutions M̃1 and M̃2.
It is well known that when the output regulation problem (5.12) is solvable, then

the observer based feedback u is given by

(5.15) u = K̃(x̂ − M̃1ŵ) + M̃2ŵ,

where (x̂, ŵ) is the observer for (x,w):

(5.16)

(

˙̂x
˙̂w

)

=

(

A P
0 S

)(

x̂
ŵ

)

+

(

Ñ1

Ñ2

)

(Cx̂−Qŵ − e) +

(

B
0

)

u.

The closed loop system, with error states x̃ = x̂− x and w̃ = ŵ − w, is

(5.17)

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

ẋ = (A+BK̃)x+ Pw −BKM̃1w +BM̃2w +BKx̃+B(M̃2 −KM̃1)w̃,
(

˙̃x
˙̃w

)

=

(

A+ Ñ1C P − Ñ1Q

Ñ2C S − Ñ2Q

)(

x̃
w̃

)

,

ẇ = Sw,

where K̃ is chosen so that A+BK̃ is Hurwitz, M̃1, M̃2 satisfy matrix equations (5.14),
and the matrices Ñ1, Ñ2 are chosen so that the internal systems are stable, in other
words

(5.18)

(

A+ Ñ1C P − Ñ1Q

Ñ2C S − Ñ2Q

)

is Hurwitz which is equivalent to that (5.13) is detectable. It should be pointed out
that if w is unbounded, the control (5.15) may be unbounded.

We show that ADRC can be used to solve the output regulation for a class of
MIMO systems in a very different way. Consider the following system:

(5.19)

{

ẋ = Ax+Bu+ Pw,

e = y −Qw, y = Cx,

where x ∈ R
l, y, u, w ∈ R

m, A is an l× l matrix, B is l×m, and P is l×m. Notice that
as opposed to (5.12), here we do not need the known dynamic of the disturbance w.

Definition 5.2. We say that the output regulation problem (5.19) is solvable by
ADRC if there is an output feedback control so that for any given σ > 0, there exists
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a t0 > 0 such that ‖e‖ ≤ σ for all t ≥ t0. Meanwhile, all internal systems including
control are bounded.

In order to apply ADRC to solve the regulation problem (5.19), we need TD to
recover all derivatives of each Qiw up to ri + 1, where Qi denotes the ith row of Q,
and the ESO to estimate the state and the external disturbance by the output y.
Among them TD is actually an independent link of ADRC.

For simplicity and comparison with IMP, where all loops are linear, here we also
use linear TD for all 1 ≤ i ≤ m, a special case of (1.3) as follows:
(5.20)

LTD: żi(t) = Ari+2z
i(t) +Bri+2ρ

ri+2

(

di1(z
i
1 −Qiw), di2

zi2
ρ
, . . . , di(ri+2)

zii(ri+2)

ρri+1

)

.

The ESO we used here is also linear; that is a special case of (1.5):

(5.21) LESO: ˙̂xi = Ari+2x̂
i +

(

Bri+1

0

)

u∗
i +

⎛

⎜

⎝

ki1

ε (cix− x̂i
1))

...
ki(ri+2)

εri+2 (cix− x̂i
1)

⎞

⎟

⎠
.

In addition, the ADRC (control u∗) also takes the linear form of the following:

(5.22) u∗
i = −x̂i

ri+2 + ziri+2 +

ri+1
∑

j=1

hij

(

x̂i
j − zij

)

,

where constants dij , kij , hij are to be specified in Proposition 5.3 below.
Proposition 5.3. Assume that the following matrices are Hurwitz:

(5.23)

Di =

(

0 Iri+1

di1 · · · di(ri+2)

)

, Ki =

⎛

⎜

⎝

−ki1 1 · · · 0
...

...
. . .

...
−ki(ri+2) 0 · · · 0

⎞

⎟

⎠
,

Hi =

(

0 Iri
hi1 · · · hi(ri+1)

)

.

The disturbance is assumed to satisfy ‖(w, ẇ)‖ < ∞, and there exists a matrix P f

such that P = BP f . Suppose that the triple (A,B,C) is decoupling with relative
degree {r1, r2, . . . , rm}, that is equivalent to the following matrix, is invertible:

(5.24) E =

⎛

⎜

⎜

⎜

⎝

c1A
r1B

c2A
r2B
...

cmArmB

⎞

⎟

⎟

⎟

⎠

,

where ci denotes the ith row of C. The output regulation can be solved by ADRC
under control u = E−1u∗ if one of the following two conditions is satisfied:

(I) n = r1 + r2 + · · ·+ rm = l and the following matrix T1 is invertible:

(5.25) T1 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

c1A
...

c1A
ri

...
cmArm

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

n×l

.
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(II) n < l and there exists an (l− n)× l matrix T0 such that the following matrix
T2 is invertible:

(5.26) T2 =

(

T1

T0

)

l×l

,

and T0AT
−1
2 = (Ã(l−n)×n, Ā(l−n)×(l−n)), where Ā is Hurwitz and T0B = 0.

Proof. By assumption, the triple (A,B,C) has relative degree {r1, . . . , rm}, so

(5.27) ciA
kB = 0 ∀ 0 ≤ k ≤ ri − 1, ciA

riB 
= 0.

Let

(5.28) x̄i
j = ciA

j−1x, j = 1, . . . , ri + 1, i = 1, 2, . . . ,m.

For i = 1, 2, . . . ,m, finding the derivative of x̄i
j , we get

(5.29)

⎧

⎪

⎨

⎪

⎩

˙̄xi
j = ciA

jx+ ciA
j−1Bu+ ciA

j−1BP fw = ciA
jx = x̄i

j+1,

j = 1, 2, . . . , ri,

˙̄xi
ri+1 = ciA

ri+1x+ ciA
riBu+ ciA

riPw.

(I) r1 + r2 + · · ·+ rm +m = l. In this case, under the coordinate transformation
x̄ = T1x, system (5.19) is transformed into

(5.30)

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

˙̄xi
1 = x̄i

2,

˙̄xi
2 = x̄i

3,

...

˙̄xi
ri+1 = ciA

ri+1T−1
1 x̄+ ciA

riBu+ ciA
riPw.

It is obvious that (5.30) has the form of (1.1) without zero dynamic.
(II) n < l. In this case, let x̄ = T1x and ξ = T0x. Then

(5.31)

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

˙̄xi
1 = x̄i

2,

˙̄xi
2 = x̄i

3,

...

˙̄xi
ri+1 = ciA

ri+1T−1
2

(

x̄
ξ

)

+ ciA
riBu+ ciA

riPw,

ξ̇ = T0AT
−1
2

(

x̄
ξ

)

= Āξ + Ãx̄,

which is also has the form (1.1).
Now consider the zero dynamics in (5.31): ξ̇ = Āξ + Ãx̄. Since Ā is Hurwitz,

there exists a solution P̂ to the Lyapunov equation below:

P̂ Ā+ P̄⊤P̂ = −I,

where I denotes the identity matrix. We claim that the zero dynamics is input-to-
state stable. Actually, let Lyapunov function V0 : Rl−n → R be V0(ξ) = 〈P̂ ξ, ξ〉, and
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let χ(x̄, w) = 2λmax(ĀÃ)‖x̄‖2, where λmax(P̂ Ã) denotes the maximum eigenvalue of
(P̂ Ã)(P̂ Ã)⊤.

Finding the derivative of V0 along the zero dynamics gives

dV0(ξ)

dt
= ξ⊤Ā⊤P̂ ξ + x̄⊤Ã⊤P̂ ξ + ξ⊤P̂ Āξ + ξ⊤P̂ Ãx̄

≤ −‖ξ‖2 + 2

√

λmax(P̂ Ã)‖ξ‖‖x̄‖
≤ − 1

2‖ξ‖2 + χ(x̄).

So, the zero dynamics is input-to-state stable.
Since all dynamics functions in (5.30) or (5.31) are linear, they are C1 and globally

Lipschitz continuous. All conditions for dynamics required in Theorem 3.1 are satisfied
for systems (5.30) and (5.31). Meanwhile, since matrixes Di,Ki, Hi are Hurwitz, all
assumptions for LESO (5.21) and feedback control in Theorem 3.1 are satisfied for
systems (5.30) and (5.31). It then follows directly from Theorem 3.1 that for any
σ > 0, there exists ρ0 > 0, ε0 > 0, and ε-dependent tε > 0, such that for every ρ > ρ0,
ε ∈ (0, ε0), ‖e‖ < σ for systems (5.30) and (5.31). Moreover, since all TD, ESO, and
ADRC are convergent, all internal systems of systems (5.30) and (5.31) are bounded.
The result then follows by the equivalence between systems (5.30), (5.31), and system
(5.19) in the two different cases, respectively.

Remark 5.1. In order to alleviate the peak value near the initial time, by The-
orem 2.1, if the bound of all (ri + 2)th order derivatives of vi = Qiw and the initial
value of the system are known, we can use the saturation function in (2.4) to saturate
as ζij = satMi

0
(zij), and u∗ in (5.22) is modified as u∗ = −satM1(x̂

i
ni+1)+satM2(φi(x̃

i−
ζi)) + ζini+1, where M i

0 is larger than the bound of all (ri + 2)th order derivatives of
vi = Qiw, and M1,M2 are chosen according to (2.1).

Remark 5.2. We can compare the IMP over ADRC for the class of linear systems
discussed in Proposition 5.1 as follows: (a) the IMP requires known dynamic S of
exosystem, but ADRC does not; (b) in the design of the IMP, when the orders
of internal and exosystem are high, it is very difficult to choose the corresponding
matrices in (5.18), while ADRC does not need these and is relatively easy to design;
(c) the IMP pursues disturbance injection while the ADRC pursues disturbance
attenuation; (d) generally, two approaches deal with different classes of systems.

In order to have a more direct comparison of IMP and ADRC, we use a concrete
example of the following that can be dealt with by two approaches.

Example 5.2. Consider the following MIMO system:

(5.32)

⎧

⎪

⎨

⎪

⎩

ẋ = Ax+Bu+ Pw, y = Cx,

ẇ = Sw,

e = y −Qw,

where

(5.33)

A =

⎛

⎝

0 1 0
1 1 1
1 −1 1

⎞

⎠ , B =

⎛

⎝

0 0
1 1
1 −1

⎞

⎠ , C =

(

1 0 0
0 0 1

)

,

P =

⎛

⎝

0 0
1 0
0 1

⎞

⎠ , Q =

(

0 0
0 1

)

, S =

(

0 1
−1 0

)

.
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Fig. 5.3. Numerical results of IMP (5.17) for Example (5.2) (for interpretation of the references
to color of the figure’s legend in this section, we refer to the PDF version of this article).

A direct verification shows that the following matrix K̃ makes A+BK̃ Hurwitz:

(5.34) K̃ =

(

−5/2 −4 −2
5/2 4 2

)

.

Solving the matrix equations (5.18), we get the solutions as follows:

(5.35) M̃1 =

⎛

⎝

0 0
0 0
0 1

⎞

⎠ , M̃2 =

(

−1 −3/2
0 1/2

)

.

Furthermore, we find that the matrices N1, N2 below make the matrix in (5.18) Hur-
witz:

(5.36) Ñ1 =

⎛

⎝

−7 0
−22 0
−53/5 0

⎞

⎠ , Ñ2 =

(

−12/5 0
4/5 0

)

.

Choose

x(0) = (0, 0, 0), x̃(0) = (0.1, 0.5, 0.5), w(0) = (0, 1), w̃1(0) = (1, 0), h = 0.001,

where h is the integral step. The numerical results for system (5.17) with specified
matrices in (5.33), (5.34), (5.35), (5.36) are plotted in Figure 5.3. These are the whole
process of applying IMP to system (5.32).

Now let us look at the design of ADRC for system (5.32). First, the TD given
below is used to recover the derivatives of Q1w and Q2w, where Q = (Q1, Q2)

⊤:

(5.37)

⎧

⎪

⎨

⎪

⎩

ż11 = ż12 ,

ż12 = ż13 ,

ż13 = −ρ3(z11 −Q1w) − 3ρ2z12 − 3ρz13 ,
{

ż21 = z22 ,

ż22 = −2ρ2(z21 −Q2w)− ρz22 .

The ESO is designed below by injection of two outputs c1x, c2x, (c1, c2)
⊤ = C into
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Fig. 5.4. Numerical results of ADRC for Example (5.2) (for interpretation of the references to
color of the figure’s legend in this section, we refer to the PDF version of this article).

system (5.32):

(5.38)

⎧

⎪

⎨

⎪

⎩

˙̂x1
1 = x̂1

2 +
6
ε (c1x− x̂1

1),

˙̂x1
2 = x̂1

3 +
11
ε2 (c1x− x̂1

1) + u1 + u2,

˙̂x1
3 = 6

ε3 (c1x− x̂1
1),

{

˙̂x2
1 = x̂2

2 +
2
ε (c2x− x̂2

1) + u1 − u2,

˙̂x2
2 = 1

ε2 (c2x− x̂2
1).

The observer based feedback controls are designed by

(5.39)

⎧

⎪

⎨

⎪

⎩

u∗
1 = −9(x̂1

1 − z11)− 6(x̂1
2 − z12) + z13 − x̂1

3,

u∗
2 = −4(x̂2

1 − z21) + z22 − x̂2
2,

u1 =
u∗
1+u∗

2

2 , u2 =
u∗
1−u∗

2

2 .

The numerical results by ADRC (5.37), (5.38), (5.39) for system (5.32) are plotted
in Figure 5.4 with initial values x(0) = (0.5, 0.5, 0.5), x̂1(0) = (0, 0, 0), x̂2(0) = (0, 0),
z1(0) = (1, 1, 1), z2(0) = (1, 1), ρ = 50, ε = 0.005, and the integral step h = 0.001.

Figures 5.3 and 5.4 witness the validity of both IMP and ADRC for the regulation
problem Example 5.2. It is seen from Figures 5.3 and 5.4 that Figure 5.4 has the
advantages of fast tracking and less overstriking.

Finally, we indicate the possible disadvantage of the peaking problem produced by
the high gain in the ESO, which may lead to high energy in control. This phenomenon
can be avoided effectively by saturated control as stated in Remark 5.1.

6. Concluding remarks. In this paper we established both the semiglobal con-
vergence and global convergence of the nonlinear ADRC for a kind of MIMO system
with large uncertainty. The key idea of ADRC is to use the ESO to estimate, in
real time, both the state and the total disturbance (or extended state) which may
arise from unknown system dynamics, external disturbance, and control parameters
mismatch, and then cancel all the uncertainties in the feedback loop (Theorems 2.1,
3.1, and 4.1). As a result of this online estimation, the ADRC is expected to need
less energy in control in comparison to other control strategies such as robust control,
sliding mode control, and internal model principle. The nonlinear ADRC discussed
in this paper extends the applicability of ADRC; it particularly covers as a special
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case the linear ESO for the stabilization of a nonlinear SISO with uncertainty used
in [5] where the semi-global (local) convergence depends on the bound of the initial
values. It also covers the ESO used in [18] for the stabilization of nonlinear SISO
by estimating constant nominal value of control. For more discussions of the linear
ADRC, we refer to [21].

The efficiency of ADRC in dealing with large uncertainly is demonstrated by
simulations. Furthermore, for a class of linear MIMO systems, we compared the IMP
and ADRC both analytically and numerically. We noted that the ADRC permits
large uncertainty and does not require the dynamics of the exosystem in the control
design. In some cases, simulation results suggest that the ADRC even leads to faster
tracking and exhibits lower overstriking in the same time.

Roughly speaking, our results on the ADRC require that the unknown system
functions are continuous differentiable for semiglobal convergence (Theorem 2.1), or
Lipschitz continuous for global convergence (Theorem 3.1), and the external distur-
bances and their first order derivatives are bounded. However, these conditions are
sufficient conditions. In practice, the ADRC may deal with more complicated distur-
bances. For these who use the ADRC to solve the engineering problems, our results
suggest both theoretically and numerically that the ADRC is very effective for these
uncertain systems with continuous differentiable or Lipschitz continuous unknown
system functions, and the bounded disturbance with bounded first order derivatives.
Moreover, if the bound of the initial state is known, the saturated feedback can avoid
the peaking phenomenon very effectively. Otherwise, the high gain in the ESO should
be small in the beginning and then increase gradually afterwards.

Finally, we indicate a potential application of the ADRC to more complicated
systems like

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

ẋ1 = f1(x1, x2),
...

ẋn = fn(x, ξ, w) + b(x, ξ, w)u,

ξ̇ = F (x, ξ, w),
y = x1,

or the MIMO system composed by the subsystems that are similar with above system.
Our preliminary study shows that if fi, i = 1, . . . , n−1 are known and fn is unknown,
we can design a modified ESO and the associated ADRC to deal with the above
system. This would be forthcoming work.
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