
Discrete Comput Geom 9:293-321 (1993) 

G "  i try 
© 1993 Springer-Verlag New York Inc, 

On Convex Body Chasing* 

Joel F r i edman  ~ and Na than  Linial 2 

1 Department of Computer Science, Princeton University, 
Princeton, NJ 08544, USA 

2 Department of Computer Science, Hebrew University, 
Givat Ram, Jerusalem 91904, Israel 

Abstract. A player moving in the plane is given a sequence of instructions of the 

following type: at step i a planar convex set Fi is specified, and the player has to 

move to a point in Fi. The player is charged for the distance traveled. We provide 

a strategy for the player which is competitive, i.e., for any sequence Fi the cost to 

the player is within a constant (multiplicative) factor of the "off-line" cost (i.e., the 

least possible cost when all Fi are known in advance). We conjecture that similar 

strategies can be developed for this game in any Euclidean space and perhaps even 

in all metric spaces. The analogous statement where convex sets are replaced by more 

general families of sets in a metric space includes many on-line/off-line problems such 

as the k-server problem; we make some remarks on these more general problems. 

1. Introduction 

Consider a fixed metric space, (S, p), and a family of subsets of S, ~ .  A chasing 
problem instance consists of a point  Po ~ S and a sequence F 1 . . . . .  F ,  of elements 

of ~ .  A solution to the instance is a sequence pl . . . . .  p, of points  of S such that 

Pl ~ Fi; for such a solut ion we define its cost to be 

~P(Pi-  1, Pi)- 
i = t  
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The problem at hand is to find a solution whose cost is as small as possible. As 

usual, this problem has an off-line version, where we know the F~ in advance, and 

an on-line version, where the F~ are given one at a time and p~ must be chosen 

before knowing F~+~; we seek to find a competitive on-line algorithm, i.e., one for 

which the cost is never more than a fixed constant times the cost of any (off-line) 

solution. A family ~ is said to be chaseable if there exists an on-line algorithm 

competitive with the off-line algorithm. 

We wish to study what families are chaseable, and what geometric properties 

guarantee that a family is chaseable or not. At this level of generality these 

questions are probably difficult, and contain many on-line/off-line questions (as 

in [1]-[11]). 

For example, this problem contains the k-server problem of [9]. More generally, 

we can form a k-server version of the set-chasing problem for k > 1, but clearly 

this is again a set-chasing problem for a family of subsets in the kth cartesian 

product of the original metric space. In fact, one motivation for the set-chasing 

problem is to put the chaseability of families such as those arising from k-server 

problems into a simple geometric framework. 

From the geometric point of view, it seems natural to first consider set chasing 

in R d. The main goal of this paper is to prove that the collection of convex sets 

in R 2 is chaseable. We more generally pose: 

Conjecture 1.1. For any d, the family of closed convex sets, in the metric space R d, 

is chaseable. 

Question 1.2. For  which metric spaces is it true that the family of closed convex 

sets is chaseable? Same question for the family of unions of < n closed convex 

sets, with n fixed. 

In the above, by a convex set in a metric space we mean a subset T which for 

any x, y ~ T contains all points z with p(x, y) = p(x, z) + p(z, y). We remark that 

the condition of the second part of Question 1.2 also generalizes the k-server 

condition. We cannot really hope that the family of closed convex sets in every 

metric space is chaseable, for this would imply that there is a universal competitive- 

ness ratio for all metric spaces (by gluing collections of metric spaces with bad 

ratios together); for example, the competitiveness ratio of convex set chasing in 

R" cannot be better than x/n on the problem instance Po = 0, and F~ = {x~ = + 1} 

(with ___ chosen according to which is further from the on-line player). Hence 

convex sets in R °~ are not chaseable. One can ask for geometric properties on a 

metric space which imply chaseability of convex sets, such as a Helly-type property, 

etc. For  example, the analysis of the "move-to-front" rule for maintaining a linear 

list in [11] shows that the family of convex sets in the symmetric group, S, 

(with metric given by the number of transpositions), is chaseable, in fact with 

competitiveness ratio 1 using the greedy algorithm. More generally geometric 

constraints on the family of subsets may be written down so that the greedy 
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algori thm is competit ive,  1 but they do not give very general conditions. Quest ion 

1.2 is even interesting with "convex bodies"  replaced by points;  this is equivalent  

to the " layered graph t raversa l"  p rob lem of [ t0 ] ,  for which Fiat  et  al. [6] have 

recently given upper  and lower bounds  exponential  in n for the competi t iveness 

ratio for on-line algorithms. 

Our  approach  to chasing convex sets in R 2 is first to notice that  it suffices to 

be able to chase half-planes. Instead of  chasing half-planes, we begin with the 

easier p rob lem of chasing lines. The  line-chasing problem already points out  

failures in two natural  algorithms, and our  half-plane-chasing algori thm, in some 

sense, builds on the ideas used for line chasing. It might  seem that  half-plane 

chasing is no harder  than line chasing, at first; indeed, we can always assume that  

p~ ¢ Fi+~ for the on-line player, and certainly there is no advantage  in moving  to 

the interior of Fi+ 1, so the on-line player is essentially always chasing lines, i.e., 

boundaries of half-planes. However ,  the off-line player  need not move to this 

boundary  when he lies in the requested half-plane, and so his cost could be 

substantially less than in the "cor responding"  line-chasing problem. 

Hencefor th  the "ang le"  of  a line in the plane means  the measure  of  the angle 

it makes  with the x-axis. 

So we turn to the problem of line chasing. We begin by describing two natural  

algorithms which fail. We are given an initial point  p e R z and a sequence of lines, 

11 . . . . .  l N. Consider  the following algori thm, which we call the greedy a lgor i thm: 

to satisfy the request l~, we move  to the point  on l~ closest to the current  position. 

To see that  this is not  competit ive,  fix a large number  B > 0. Consider  the point  

p = (1, 0), and for a small e > 0 take N = LB/eJ and let l~ be the line which passes 

through the origin of  angle ei. As e --* 0 the limiting pa th  taken by the greedy 

algorithm is to follow the circle of radius 1 abou t  the origin, for a total  cost of B. 

For a sufficiently small e the greedy path 's  cost comes arbitrari ly close to B. On  

the other  hand,  moving  to the origin and staying there has cost 1. Since B can be 

taken to be arbi trar i ly large, the greedy algori thm is not  competit ive.  

We remark  that  the same thing happens  if we take p as before, 1 i for odd i to 

be the line through the origin of  angle e, and Ii for i even to be the x-axis. This 

situation is the previous one modified by taking mir ror  images each time. 

Another  natural  algori thm, which would take care of  the above  situation, would 

be the " m o v e - t o - o p t i m a l "  strategy: each requiest l~ is satisfied by comput ing  where 

the off-line opt imal  for the requests (P0; l~ . . . . .  ll) would be at the end (i.e., after 

the l i request), and to move  to this location. To  see that  this s trategy is not  

competitive, consider the following requests: P0 = (0, 1); 11 is the x-axis; for i > 2, 

l~ is the line intersecting 

Q~--- 1~-1 c~ {(x, y ) l x  = ( - 1 )  ~} 

1 For example, say that a family, ~.~, of subsets is linear if for all F e ~ and p ~ F there is a closest 
point to p in F, say f = Greedy(F, p) with the property that p(f', p) > p(f, f ' )  + p(f, p) for all f '  e F. 
Then any linear family is chaseable via the greedy algorithm with competitiveness ratio l (i.e., is 
optimal). The same holds if p(f, p) is replaced by Op(f, p) for any fixed 0 > 0, or if we allow Greedy(F, p) 
to be any point within a fixed constant factor of p's distance to F (and the "greedy" algorithm moves 
to Greedy(F, p)) with different competitiveness ratios. 
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Fig. 1. " M o v e  to opt imal"  is not competitive. 

and which is perpendicular to the line from Po to Q~ (see Fig. 1). It is easy to see 

that if 0~ is the angle of l~, then 

02 = 45  ° > 04 > 06 > " '"  ) 0 > " ' "  > 05 > 03 > - 4 5  ° 

and that [01[ ~ 0 as i ~ oo. Furthermore, the move-to-optimal strategy is to satisfy 

Ii by moving to Qi for i > 2, and so the cost of this strategy is more than 1/fl times 

the optimal off-line strategy of moving down the y-axis, for any/3 >_ lim sup[ 0g]. 

Since 0i ~ 0, the move-to-optimal strategy is not competitive. 

We conclude this section by describing in rough terms our algorithm. For 

certain periods of time we follow a locally greedy strategy. If the off-line player is 

near us, then his cost will be close to ours. Occasionally we decide that a far away 

off-line player could be gaining a lot in terms of cost, an amount that is 

proportional to his distance. We then declare the " round"  to be over and make 

an updating move, i.e., a move in between requests, to move closer to the region 

where the off-line player could be gaining on us. The crucial point is to decide 

when to update, and then to guarantee that our updating move will ensure that 

the following locally greedy moves will not be too costly, no matter where the 

off-line player is. 

A question that these strategies lead to is can a "simple" strategy for these 

chasing problems be given, one that involves no updating move and that perhaps 

involves only local calculations of the optimal off-line costs at nearby points? If 

so this might lead to much simpler analysis for certain algorithms such as ours 

for convex body chasing in R z. 

As a matter of technical convenience, it is often simpler to deal with continuous 

versions of discrete problems. Here we describe our algorithms in terms of 
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cont inuous or piecewise-continuous versions of  the prob lem (with a very restricted 

set of discontinuities, so as not to include the discrete p rob lem trivially!). Fo r  

another  example  where the cont inuous version is simpler (for somewhat  different 

reasons) see [3]. 

In Section 2 we given a simple algori thm and analysis for line chasing in the 

plane, and give some variants  of  the algori thm which are also competit ive.  In 

Section 3 we solve the half-plane-chasing problem in the plane. In Section 4 we 

make some general remarks  about  set-chasing problems,  and in part icular  explain 

that convex body  chasing in the plane follows f rom Section 3. 

2. Line Chasing 

In this section we discuss the prob lem of line chasing. For  this problem we give 

a simple a lgor i thm and analysis, and the technqies used here are built upon  for 

the half-plane-chasing algori thm. 

2. I. Continuous Version 

Consider the following cont inuous  version of line chasing: we are given an initial 

point Po¢ R2, and a family of  lines in R 2, l,, where t e [0, T]  for some Z In addition, 

P0 ¢ In, and the lines vary cont inuously and piecewise differentiably in t; by the 

latter we mean that  we can write the lines as 

I t = {(X, y)la(t)x + b(t)y + c(t) = O} 

with a, b, c cont inuous  and  piecewise differentiable functions 2 of  t with a, b never 

vanishing simultaneously.  A solution to the prob lem is a Lipschitz cont inuous  

path 3 p:[O, T]  - - .R  2 with p(t)¢It for all t. The  cost o f p  is its length, i.e., 

f~lp '( t ){  = TV(p), dt 

where TV denotes the total  variation. More  generally, we allow p to be piecewise 

Lipschitz continuous,  in which case the cost is interpreted as the total  var ia t ion 

of p, i.e., 

TV(p) = ~. ] p(s + O) - p(s - 0)] + f T I p'(t) l tit, 
s~D do 

z For simplicity the reader can assume that the functions are piecewise linear; this suffices to deal 
with the reductions from the discrete problem. 

For the piecewise-linear version, it suffices to define a solution as a piecewise-linear path, allowing 
a discrete set of discontinuities or jumps (for ease of discussion). The cost is the length of the path, 
i.e., sum of the lengths of the linear parts plus the lengths of the jumps. 
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where D is the set of discontinuities of p. We also refer to these discontinuities as 

"jumps." 

To avoid ambiguity, we refer to the original chasing problem as the discrete 

version of the problem. 

Lemma 2.1. Line chasing in the plane is reducible to continuous line chasing; i.e., 

given a line-chasing problem, the on-line player can form a continuous line-chasing 

instance given on-line whose optimal cost is, within a multiplicative factor of x ~ ,  

that of the discrete problem. 

Proof. Consider an instance of discrete line chasing, p, l~, 12 . . . . .  1N. For simplicity 

we assume that the problem instance contains an initial line l 0 which contains p; 

l o may be chosen arbitrarily by the on-line player. We may assume successive lines 

li, li÷ 1 are distinct. For  each i = 0, 1 . . . . .  N -- 1 we define l~ for t ~ (i, i + 1) in the 

following natural way: if I i and li+ 1 are parallel, It sweeps through the parallel 

lines between l~ and l~+ 1 at a constant speed; if I~ and l~+~ intersect in a point, I, 

I t pivots through the lines through I between li and l~÷~ at a constant angular 

speed, between meaning through the smaller angle (and either angle if they are 

perpendicular). 

Clearly a solution p:l-0, T] ~ R z of the continuous problem gives a solution, 

by restriction to { 1, 2 . . . . .  N}, to the discrete problem whose (discrete) cost is no 

more than the continuous cost. On the other hand, given a solution to the discrete 

problem, Pl . . . . .  Pr, we form a solution to the continuous problem in the natural 

way: if the line segment from p~ to Pi+l lies in the region swept out by I t with 

t e [i, i + 1], we take p(t) in that range to follow that segment; if not, then we move 

along l i until we intersect li+ 1 (which defines p(t) for t < i + 1) and then "jump" 

to pi÷ t (yielding a discontinuity). The continuous cost of the jumping steps is easily 

seen to be no more that x//2 times the cost of the discrete cost, and the continuous 

cost of the nonjumping steps is the same as the discrete cost. Hence a discrete 

solution yields a continuous solution whose total cost is no more that x/~ times 

the discrete cost. [] 

A useful simplification in the continuous line-chasing problem is to assume that 

the lines rotate counterclockwise with increasing t. Given a problem instance, 1,, 

with t either continuous or discrete, fix an s e (0, T), let R~ be the reflection of the 

plane through t~, and consider the new problem instance given by lines l~ defined by 

It for t ~ [0, s], 

It = Rs(lt) for t ~ (s, T]. 

We call the new problem instance the reflection of I t at s; it is merely the old 

problem with a reflection introduced at time s. A solution to the old problem gives 

a solution to the new one (or the same cost), and vice versa, by reflecting everything 

after time s (as in the above equation for 1). This gives an equivalence of the two 

problems. 
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Given a continuous line-chasing problem It, let O(t) denote the angle of I,, chosen 

in a way to make it continuous in t. If O(t) is piecewise monotone in t on [0, T], 

i.e., if it "changes direction" a finite number of times on [0, T], then applying a 

finite number of reflections as above we get an equivalent problem for which the 

new O(t) is a monotone increasing function in t. In particular this can be applied 

to the continuous problems derived from discrete problems. 

Although not needed for discrete line chasing, it is true that any continuous 

line-chasing problem is equivalent to a problem whose 0 is monotone increasing, 

by taking a limit of problems which are reflections of piecewise differentiable 

approximations to the original problem. A limit of reflections of the original 

problem may also be taken directly, as follows. Let $1 c S 2 c ..- be an increasing 

sequence of finite subsets of [0, T] with the property that for all i the number of 

points in S i÷ t between any two consecutive points of Si is even (consecutive with 

respect to < on R). Then it is easy to see that the limit of reflecting any problem 

by the S~ exists. We can clearly take S~ to contain enough points so that the total 

variation in O(t) is no more than 1/i between consecutive points. The limit of this 

problem has 0 monotone increasing. 

For the algorithm described below, we assume that 0 is monotone increasing 

and that its derivative exists and is nonzero (i.e., positive) everywhere. This allows 

us to reparametrize t so as to assume O'(t) = 1 for all t. Rotating coordinates we 

can further assume that 0(0) = 0, so that O(t) = t for all t, i.e., It makes an angle 

of t with the x-axis. We call a problem with such 0 an instance of angular line 

chasing. The argument that solving such a problem is sufficiently general to solve 

all continuous line chasing can be handled by approximation or by modifying the 

algorithm, and is given in the Section 2.4. 

Finally, notice that for the discrete line-chasing problem we can assume that l~ 

and li+ 1 are never parallel; if T is the translation taking l~+ 1 to l~, then the new 

problem, l 1 . . . . .  l~, T(li÷2), T(li+3) . . . . .  with an added cost to all players of the 

distance from li to l~÷~, is the same as the original problem (and charging an 

extra positive cost to everyone does not worsen the competitiveness ratio). A 

similar remark holds for the continuous problem over any interval where O'(t) = O. 

Hence the reader interested only in the discrete problem and piecewise-linear 

version can automatically assume 0' is strictly positive and can skip the aforemen- 

tioned approximation argument. 

2.2. Greedy Coordinates 

At this point we assume that the sequence of requests is a continuous family of 

lines, 10, such that at time 0 the angle the line makes with the x-axis is 0. In 

addition, we assume that the instantaneous point of intersection 

I(0)= lim lo, nlo2 
01,02~0 

exists and is a finite point for each value of 0. Again, this assumption is justified 
later. 
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For each 0, the points in l o can be parameterized by a single coordinate, x = xo, 

which is a function from lo to R; we write x(O; t) for the point on l o with x o 

coordinate t. There are two natural systems of coordinates to choose, one in which 

the I(0) is the origin, the other being the parallel transport coordinates. The latter 

give a simple description of a locally greedy strategy and are constructed as follows. 

Definition 2.2. Parallel transport  coordinates with respect to Io are coordinates x o 

for which the trajectory x(O; t) for fixed t, as a function of 0, is perpendicular to 

lo for all 0. 

Lemma 2.3. For Lipschi tz  continuous 1 o, parallel transport  coordinates exist  and 

are uniquely determined (given an initial coordinate x o on lo). Such coordinates are 

distance preserving. 

Proof. For any point Q e lo, there is a unique curve q(O) such that q(0)= Q, 

q(O) ~ l o, and q'(O) is perpendicular to l o for all 0; indeed, clearly q is determined 

by the ordinary differential equation 

q'(O) = f(O, q(O)), q(O) = Q, 

where f measures the speed and direction that the line lo moves away from q(O) 

( f  can be viewed as a function on [0, T] x R z by (pulling back f from the) 

orthogonal projection onto lo). We call q(t) the parallel transport of q(0) to l t. If 

R is another point of l o and !"(0) is the corresponding curve as above, then 

(Iq(0) - r(0)12) ' = 2(q - r, q' - r') = 0. 

Hence parallel transport is an isometry. So choose a coordinate Xo: lo ~ R which 

preserves distance. For  q e l o, let xo (q )=  x0(~) where ~ is the inverse parallel 

transport of q back to l o. These are the desired coordinates. [] 

These coordinates are also called greedy coordinates for the reason that keeping 

x(O; p(0)) constant means following the locally greedy strategy, i.e., locally moving 

to the nearest point. 

Now let re(O) denote x(O; I(0)), i.e., the greedy coordinate of I(0). A solution p(0) 

is determined by its greedy coordinate f (O) - x(O; p(0)), and the cost incurred by 

such an f is the total variation of p, which is just 

cgr( f )  = f r  o x / ( f ( O  ) _ m(O))2 + '(f,(O))2 dO; 

the integrand contains the parallel and perpendicular to l o components of p'. In 

the above equation we understand that f is piecewise Lipschitz continuous, and 

i f f  has a discontinuity, then the jump in f is accounted for by the f '  in the above 

equation (integrated from s - 0 to s + 0 at discontinuities s); in other words, wt 

add I f (s + O) - f (s - 0)1 at all discontinuities. 
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We claim that the locally greedy strategy of keeping f constant is essentially 

optimal over fixed amounts  of time (angular motion), More precisely, fix an 

S ~ [O, T -  2n] and let 

O(~t, [3) = inf{C~s+ z '~( f ) l f (S  ) = ct, f ( S  + 2n) = fl}, (2.1) 

where c~ is the cost from time a to time b (i.e., the integral in (2.1) from a to b), 

and the infimum is taken over all piecewise Lipschitz f .  Let 

Let 

C,  = inf{C(ct, fl)lct, fl~ R}. 

CY(~) = ~e~ + 2~(~), 

which is the cost of the locally greedy algorithm which stays at ct, and let a ,  be 

a minimizer of (~ Notice that 

f~ 
+2n 

C(~) = Ira(0) - ~tl dO, 

and so the set of all ct,'s is simply the set of all medians of m, i.e., ~, 's satisfying 

I{Olra(O)~a, } dO = f~01.,(0)> ,~ dO; 

if I(0) is, for example, continuous, then the median is unique. 

Lemma 2.4. For e = 1/(1 + 2n) the fol lowing hold: 

I. For  any  ~, fl we have C(~, fl) _> lfl - ~1- 
2. For  any  ct, ~ we have C(~t, fl) > e(Y(ct). 

3. ~ ,  > ~ ( ~ , ) .  

4. For  any  ~, fl we have C(~, 8) > e~(fl). 

5. For any  ~, a' we have C~'(~) _< dT(~') + 2nl~ - ~'1 and 

~/(~) >_ 2n let - ot'l - C(~'). 

6. For  any  ~ we have (~(ct) >_ nlct - ~ , l .  

7. For  any ~, fl we have ¢(ct, fl) > (ne/2)(lct - ~,1 -4- ]fl - ~,]). 

Proof  For  convenience we omit the sub- and superscripts S and S + 2n from ~. 

Part (7) follows from (2), (4), and (6). Part  (3) follows from (2). Part  (1) follows from 

the observation that  

cg(f) > f ] f'(O)] dO = TV(f),  
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where TV denotes the total variation. This observation and the observation that 

~ ( f )  > f Im(0) - f(O)l dO 

example, to prove (2) note that if cg(f) is less that imply (2) and (4)---for 

e~(~t) = ec#(e), then 

and so 

f l(m-~)-(f --~)l= f lm-- fl<_~ f lm-~l 

f l f  - ctl > (1 - e) Jim - al. 

C 

It follows that i f -  el attains the value ( 1 -  e)M somewhere where M is the 

average value of lm -- el, and hence 

~ ( Z ) _ > T V ( f ) > ( 1 - ~ ) M -  ~ J m - ~ l =  ~ c~(e)=e~(e). 

Part (4) follows similarly. Part (5) follows from integrating the fact that 

[ m  - ct[ + [ m  - -  ct'l > let - -  ct'] > ]m - ~1- I m  - e ' l .  

Finally, (6) follows from adding the equations 

(~(~) > 2~1~ - ~,1 - (~(~,) 

(obtained from (5)) and 

cY(~) >_ cY(~,). [] 

2.3. Aloorithm and Analysis 

We now describe the on-line strategy. From time 0 = 0 until 2rt we take the locally 

greedy solution, i.e., f = 0, and then at 0 = 2~t we compute an ~, of the interval 

[0, 2hi and jump to the point with that x(2z) coordinate. We call this the first 

round. Each successive round lasts 2~ in duration, and our strategy is to follow 

the locally greedy strategy and then jump to the e ,  for that round. 

We wish to explain and analyze our algorithm in a style which will help to 

understand our half-plane-chasing algorithm. If at some point the off-line player, 

F, stops moving, and the It start rotating around F, then the ct,'s for all later 
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rounds are precisely at F's position; furthermore, any competitive player must 

eventually move closer and closer to F. In general, whenever there is a "cost-free" 

region, the on-line player, N, must move toward it, at least when this region 

persists. In particular, we introduce a potential function which incorporates N's 

distance to F; let c2 > cl > 1 be two constants to be specified later, and set 

• (t; N, F) = c2CF(t) -- ci IF(t) - N(t)l - Cs(t), 

where CN(t), CF(t) and N(t), F(t) denote the total cost and position of N, F up to 

time t. Our  analysis shows that this potential function is nondecreasing over rounds, 
i.e., is at least as large at the end of any round than at its beginning. This then 

implies that CN < c2 CF at the end of any round. The point is that if F does no 

work during a round, then N's jump at the end of the round decreases the distance 

to F and hence increases the potential function; furthermore, F cannot gratuitously 

lower the potential function by, say, jumping away from N after N's jump, for the 

resulting increase in distance is compensated by the increase in C F, provided that 

c 2 _~ c 1 . 

Theorem 2.5. The above on-line strategy for line chasing is competitive. 

Proof. It suffices to show that for appropriate constants c~, c 2 > 0 the above 

potential function never decreases from start to end of a round; indeed, if so then, 

since ~(0) = 0, at the end of any round * > 0 and so CN _< c2 CF. 

Let Fo, F~ be F's position at the start and end of the round, and similarly for 

N. Using Lemma 2.4 we see that the increase in CF over the round is at least 

(9(F° 'F~)>max(  ! l F ° - a * r + l F ~ - a * l ) r c e -  2 , C , ) .  (2.2) 

The change in CN is the cost of the locally greedy path plus the jump, namely, 

(~(No) + I No - 0c, t 

since N 1 = a . ,  which is 

< (~(0t,) + (2n + 1)lNo - 7,1 --< K(d~, + INo - a , t )  (2.3) 

for some constant K, by (5) and (3) of the lemma. Finally, the distance between 

N and F decreases by at least 

I N o -  Fol - I~. - Fll  >- I N o -  ct, I - IFo - g.I - IFl -- ct, I. (2.4) 

Using the right-hand sides of (2.2)-(2.4), we see that if c 1 >_ K and 

c2 > 2 max(K, cl/e), 
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then the potential function's value at the end of the round is at least that at the 

beginning. [] 

A more careful analysis (considering separately the cases where 0 ,  is < or _> 

the other argument of max in (2.2)) shows that the constant yielded above for c 2 

is 9 + 5n + (2/r 0. A similar analysis where the rounds last for L radians instead 

of 2~ gives a constant of 9 + 5L + (4/L), for a minimum of 9 + 4~/5. For  discrete 

problems reduced to continuous ones, we include the , ~  factor from the reduction 

for a total competitiveness ratio of 9v/2 + 5~q-0 = 28.53 . . . .  

2.4. Variants and the General Aloorithm 

We begin by describing a few modifications of the algorithm, more precisely of 

the updating step, that also give competitive results. More generally, we want to 

know if there is a "simple local strategy" with no updating step, e.g., some 

combination of local optimal and local greedy. Here we show that the previous 

algorithm is robust in that many variants of it are also competitive; perhaps these 

could lead to a simple strategy with no updates. 

As a first variant notice that instead of moving to a median we can move to 

an approximate median, i.e., a point where the mass of m on either side is at least 

some fraction of the total mass. More precisely, we can fix a constant fle (0, ½) 

and move to any point a such that 

I' dO 
fl < .,{oi.,(o)<_~,~ < I - ft. 

2n 

It is easy to see that 

for some e depending on fl; it follows that Lemma 2.4 holds as well for ~t, replaced 

by ~ (only with different constants which depend on fl). Hence this algorithm is 

also competitive. 

The next modification we describe is that of lazily following the optimal. By 

this we mean that we pick a 7 e (0, 1), and instead of moving to the median we 

move only a fraction 7 of the distance to the median. Of course, Lemma 2.4 does 

not hold with ~, replaced by the lazy step, but the analysis of the potential function, 

@, goes through as before. The only real modification is that in the left-hand side 

of (2.4), i.e., the distance change estimate, the 1~, - Fl l  term, is replaced by 

JN t - Fll  < ]N~ -- a,] + la,  - F~] = (1 - 7)lNo - ~,l + 1~, - F~]; 

hence the change in distance is 

-> 7 1 N o -  ~,t - IFo - ot, I - IF1 - ~,l.  
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In the lazy algorithm VF'S cost is the same and CN's cost is no greater than in the 

original algorithm, and so the analysis goes through as before provided that 

ci >- C/~. 
In addition to these two variants, we can form a hybrid algorithm which lazily 

moves to an approximate median. Clearly this also yields a competitive algorithm, 

combining Lemma 2.4 modified for the approximate median with the analysis of 

the potential function modified for the lazy step. 

We finish by remarking that the algorithm given in the previous subsection, 

and the modifications of it given above, work for problem instances where the 

angle is monotone increasing but not necessarily strictly increasing (or with 

positive time derivative), and where it may not be the case that l(O) exists for all 

0. Indeed, for the more general instance we can still define the locally greedy 

coordinates and therefore algorithm, and define a median of m, ct,, in terms of 

these coordinates. Such a strategy gives rise to a solution, N(t). We give an easy 

approximation argument to show that N(t) is competitive with the same competi- 

tiveness ratio. 

Namely, for any ~ we can form a perturbed problem instance, I~, which satisfies 

the assumptions of the previous section and which differs from I, by an e- 

approximation; by this we mean that for all t,/[ = A~(t)l, where A ~ is a family of 

rigid motions which, as 2 x 2 matrices, differ in each coordinate from the identity 

matrix followed by the zero translation by functions of less than e norm in H 1' ~. 

If the %'s are always unique, then N(t) is the limit of the locally greedy strategies 

for l[, N~(t) with e ~ 0; if not, then N(t) is the limit of  some N~ solution given by 

a/3 approximate median solution with fl = fl(e) "~ ½ as e --, 0. In either case, it is 

easy to see that the cost of the limit is the limit of the costs; on the other hand, 

any off-line strategy F(t) for I, has a perturbed strategy, namely A'(t)F(t), for 1 t, 

having the cost of the limit being the limit of the costs. Therefore the competitive 

ratio of the on-line algorithm is preserved in the more general situation. 

3. Half-Plane Chasing 

3. l. Preliminaries for ttalf-Plane Chasing 

Our strategy for half-plane chasing, like that for line chasing, is locally greedy 

followed by an update at  the end of each "round." What  makes half-plane chasing 

harder than line chasing is the fact that, for line chasing, if during the entire round 

F is answering requests "for free," i.e., without even moving, then F's position is 

limited to one point; for half-plane chasing the "free" region can be much larger 

(even unbounded). Consequently, the updating move in our half-plane-chasing 

algorithms is more complicated. 

Before we describe the algorithm, we describe the "free" regions which arise, 

and for each we give an updating move designed to reduce our distance to any 

point in the region. We take time coordinates so that the round begins and ends 

at times t = O, 1; we use N(1), N(1 +) respectively to distinguish between N's 

position before and after the update. 
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In the first situation the cost-free region, R, is a half-plane intersected with a 

disk. Specifically, set up coordinates normalized by the condition that N(0) = (0, 1) 
and Ht  is the half-plane of points with x-coordinate >_ 1. Our algorithm ensures 

that N(1) is not far from U = (1, 0), and our updating move is to U. We (i.e., the 
algorithm) discover that the cost-free region, R, is contained in a disk of radius C 

about the origin for some bounded C. So let 

Rc = {(x,y)~R21x >_ 1, x 2 + y2 ~ C} 

and let 

q/~ = {Pe  R211P -- Cl _ te  - N ( 0 ) t -  6}. (3.1) 

This region is bounded by one half of a hyperbola, which as 6 --) 0 tends to the 

line x = ½ (see Fig. 2). 

Lemma 3.1. For any C > 0 there is a 6 > 0 such that Rc c ql,. There is also a 

# > 0 such that the same holds with R c replaced by a translation and rotation of 

Rc of, respectively, distance and angle < #. 

The latter statement is to give us leeway when we make approximations in our 

statements. 

Proof. A simple calculation. [] 

In the other situation R will be a wedge of angle bounded away from 180 ° and 

whose vertex is "not far below the origin." Specifically, take coordinates so that 

. . . . . . . .  

boundary of ~/8 

EO) 

l 

. . . . .  

/ iii::iiiiii~/ 
: : y  . . . . . .  R 

toU 

Fig. 2. ~/~ containing R o 
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i 
! • 

Fig. 3. ~a(u) containing Rd, ~. 

N(0) and HI are as before. R will be a wedge of the form 

Ra. ~ = {(x, y)eR2l  x _> 1, y -  d > - e ( x -  1)} 

(see Fig. 3). Note that Rd. ~ ~ Rd,,e, if e' _< e and d' < d. By the vertex being "not  

far below the origin" we mean that we have a lower bound for d. In this situation 

our updating move will be to move to a point U = (1, u) with u positive and small. 

Let ~¢~ = ~/~(u) be as in (3.1). 

Lemma 3.2. For any e > 0 and d there are u, ~ > 0 such that Rd,  ~ ~ ~Ia(U). There 

is also a # > 0 such that the same holds with Ra.~ replaced by a translation and 

rotation of  Rd, ~ of, respectively, distance and angle < #. 

Proof. Again, an easy calculation. [ ]  

In what follows, distance almost always means distance with respect to the 

original metric; when confusion can occur between this distance and distance in 

terms of the coordinates just described (e.g., N(0) = (0, 0)), we use the adjectives 

original and coordinate to distinguish the two. In fact, the original distance will 

always be w times the coordinate distance, where w is a quantity to be defined 

later which is always proportional to N's work during the round. 

3.2. Restricted Half-Plane Chasing 

In this section we analyze a restricted version of continuous half-plane chasing, 

which illustrates many points of the general algorithm. The requests are a family 



308 J. Friedman and N. Linial 

of half-planes, H t for t e R, t > 0, given by 

H t = {(x, y)la(t)x + b(t)y + c(t) >_ 0}, 

with a, b, c Lipschitz cont inuous  functions of t with a, b never vanishing 

simultaneously.  We also assume that  the half-planes always move  away from the 

on-line player. 

It  is interesting to note that,  unlike line chasing, insisting that  the half-planes 

are Lipschitz cont inuous  already makes  the p rob lem too restrictive to subsume 

discrete plane chasing clearly, unlike the situation in L e m m a  2 .1- - for  example, it 

is not  clear how to replace the discrete requests Hi = {x > 1} and Hi+ ~ = {x < 1} 

by a sequence of cont inuous  ones " in te rpo la t ing"  the two (e.g., if we rotate 

clockwise, that  will des t roy the cost ratio of  paths which move  in the counter- 

clockwise direction above  the pivot  point). 

Let I t denote  the bounda ry  of H t, and let ~o(t) be the angle of  l,. For  a round 

beginning at t ime to, we look at the first time, tt, that  o9 differs f rom og(to) by 

= 3 0 0 ,  4 and declare the round  over  then. Fo r  the dura t ion  of the round  we follow 

the boundary ,  lt, by the locally greedy a lgor i thm described in Section 2. We then 

make  an updat ing  move  described below. Essentially, we see if 09(0 remains roughly 

the same for most  of  the round,  where time is normal ized according to N's  cost. 

If  so we call the round  concentrated; in this case the "for  free" region can be 

limited to a wedge of an angle bounded  away from 180 °. In the other  case we call 

the round  spread out, and the " for  free" region can limited to a bounded  portion 

of  a half-plane. Our  updat ing  move  is taken according to whether  the round is 

concentra ted  or spread out. 

Before describing the updat ing  move,  notice that  if W = N(t 0 - N(to) is the 

displacement  of  N following the locally greedy strategy, and if w = I W I, then N's 

cost  for the locally greedy mot ion  is no more  than w/cos 7; indeed, N'(t)'s 

componen t  in the direction perpendicular  to lt0 is at least IN'(t)l cos ~, and so W's 

componen t  in this direction is at least cos ~ times S [N'(t)l = N's  cost for the 

mot ion.  N's  updat ing  step is also bounded  by O(w), and hence N 's  total  cost for 

the round  as well. 

F r o m  now on we assume, for simplicity, that  t o = 0 and t~ = 1. We normalize 

t ime with respect to N 's  cost, so that  C'N(t) = IN'(t)l is constant  for t~(0 ,  1) (this 

constant  is between w cos ~t and w). Aside f rom this we keep the same notation 

as in the previous section. 

We say the round  (or work)  is concentrated if there is an o9o for which 

a~(t) ~ [09 o, o90 + 4 °] for at least half of  the time. If not  we say the work  is spread 

out, and the updat ing  move  consists of  moving  to the image of the orthogonal 

projection of N(0) on to  lv 

If  the work  is concentrated,  set up coordinates  as in the last subsection, i.e., 

N(0) = (0,0) and l~ is the line x = 1. Fo r  some z e [ 0 ,  1] we must  have that 

4 We sometimes use ~t in what follows, even though it remains 30 ° in this subsection, since it will 
be modified in the next section and we wish to point out which equations are modified accordingly. 
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oY 

fix) 

(0,0)=Nf U=(I,u) 
. . . . . . . . . . . . . . . . . . . . . . . . . . . .  ~ X  

x . /  \ N(I) near (1,0) 

~ _ .  Angle at least 

Fig. 4. Determination of U. 

leo(z)l ~ ~; fix one such z, for which we can assume that og(z) is negative. Our 

updating move is to move to the point U = (1, u), with u a small positive constant 

to be determined later. See Fig. 4. 

Theorem 3.3. The above "locally greedy with update" algorithm is competitive, for 

an appropriate choice of u. 

Proof As in line chasing, we introduce the same potential function, O, and it 

suffices to show that, for appropriate cl, c 2 > 0, ~ ' s  value at the end of each round 

is at least that at the beginning. 

Henceforth we let CF, CN denote the cost to F and N of the entire round. As 

mentioned before, N's updating move never costs more than O(w)---when the work 

is spread out, then the distance of N(1) to the orthogonal projection of N(0) onto 

any line through N(1) is no greater than w. When the work is concentrated, 

N(1) = (1, r/) in the above coordinates, with Ir/[ _< sin ~ = ½, and so the coordinate 

metric is proportional to w times the original metric; the updating step costs 

t~/-  ul in these coordinates, which is O(w) assuming that, say lul < 1. Under this 

assumption, then, CN < O(w). 

For the analysis we can make certain simplifying assumptions. First, if CF 

during the round is _> pw for a fixed constant p > 0, then we are done, provided 
that 

c 1 + 1  
c2 > - - - - -  + cl. (3.2) 

Indeed, setting d(t) = IN(t) - F(t)l and Ad = d(1) - d(0), then since 

}Adl <_ CN + CF 
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we have 

c2CF -- c l A d  - CN >-- CN(/~(c2 -- cO -- (cl + 1)). 

Hence we may assume that CF < #w; in particular the poistion of F throughout 

the round remains in a ball of radius/tw bout, say, F(0). 

Secondly, consider the angle, O(t), which the line F(t)N(t)  makes with l,, 

measured between 0 and 90 °. We say that N's work has small 0 if O(t) ~ [0, 1 °] for 

at least two-thirds of the time. We claim that we are done if this is not so, provided 

that 

K 
C 2 >___ C t ~> - - - -  (3.3) 

COS ~X 

for some constant K. Indeed, when O(t) > 0, it is necessarily the case that F(t) lies 

in the interior of H t and is therefore not moving, and also d'(t) = -IN'(t)lsin O(t) 

(see Fig. 5). So N is gaining in his distance to F, "paying" a factor of 1/sin 0 for 

this gain. When 0 -- 0 and both N and F are moving, the distance can increase, 

but only at a cost to F; more precisely d'(t) < C'v(t), since greedy coordinates are 

an isometry and so d'(t) is precisely _+ the parallel to 1 r component of F'(t). So if 

N does not have small 0, then 

Ad < -~lN' l s in  I ° + CF, 

[ N'[ being constant and proportional to w (by a factor between 1 and cos ~z). Hence 

the potential function does not decrease if (3.3) holds. 

We now finish the analysis under the assumptions that C r _< #w and N has 

small 0. 
First consider the case of spread-out work. We claim that d(0) (and d(1) for 

that matter) are bounded by w C  where C is an absolute constant assuming that 

that p < 1. Indeed, there exist sl, Sz e [0, 1] such that og(st) and to(sz) differ by at 

) 

I ~ F(O 

O(t) 

Fig .  5. N m o v e s  c loser  for  0 > O. 
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k 
:i~. J At least 2 ° 
F ~  

bi~s 1) ~ N(s2) 

t J \ ~ ttetlce this distance 
\ 

F(s I ) ~ 
F(s 2 ) 

Fig. 6. Spread-out work implies F close to N. 

least 4 ° while both 0(s~)'s are < 1 ° since 0 is small more than two-thirds of the 

time and yet co stays in any interval of 4 ° for no more than half of the time. This 

gives the picture in Fig. 6, of the quadrilateral with vertices F(s~), N(s~), with 

IF(sx)- F(s2)j and I N ( s t ) -  N(sz) l of distance bounded by O(w), and with the 

difference in angle of the opposite sides F(s~)N(s~), i = 1, 2, being at least 2°; this 

clearly implies I F(si) - N(sz)l is bounded by O(w). 
At this point we can apply Lemma 3.1. In terms of the coordinates set there 

we know that N(1)=  (l ,q) with I'/I-< sin~ = ½ and the unit length of the 

coordinates is proportional to w. The lemma implies that 

Ad ~ IN( l+ )  - F(1)I - IN(0) - F(1)l + IF(l) - F(0)t __< - 6 z w  + pw 

for some constant 6 l depending only on /x. Hence the potential function is 

nondecreasing if 

1 
(3.4) 61> P and cl > 6x _ p .  

In the case of concentrated work, we apply Lemma 3.2. Again, in terms of the 

coordinates there, N(1)= (1, q) with [r/I < sin ~ = ½ and the coordinate unit is 

proportional to w. The line/(z), z as before, passes through N(z) = (x,, y~, )with 

Ix~l _< 1 and lY, I < ½. Therefore l~ intersects the line 11 at the point (1, fl) with fl 

bounded by O(1/sin ~t). F's position at all times lies within O(law) of the wedge 

R = H, n Hi ,  and so Lemma 3.2 implies the existence of an appropriate u and 6 2 

for which we know the potential function is nondecreasing if 

1 
6 2 > #  and c 1 _ > 6 2 _ p .  (3.5) 

Notice that u and 6 2 depend only on/ t .  
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We now conclude by choosing the constants. Begin by choosing a small positive 

value for p and calculate the two 6i's of (3.4) and (3.5); the latter ~ and u depend 

on/a. Now choose another # smaller than both fii's; the same 6~'s and u work for 

the smaller p. Then choose cl and then c 2 so that (3.5), (3.4), (3.2), and (3.3) hold. 

For  any such ci, c2 the resulting potential function is nondecreasing, and so our 

algorithm is competitive with competitiveness ratio c2. [] 

3.3. Piecewise-Continuous Half-Plane Chasing 

In this section we describe how to modify the previous algorithm in the case of 

"piecewise-continuous" half-plane chasing. A half-plane chasing problem is piece- 

wise continuous if it is a continuous half-plane-chasing problem except that we 

allow a discrete set of discontinuities, S c T. Oobviously this problem includes 

the discrete problem, namely when / / t  is piecewise constant in t. 

We remark that, to find a competitive algorithm for this problem, it suffices to 

do so under the restrictions that 

(i) the half-planes always move away from N, 

(ii) for all t ~ [0, T-I, N(t) ~ I t ± o, and 

(iii) at the discontinuities s, H~_ 0 and Hs+ o intersect in a wedge of angle < v 

for some small, fixed, positive v, i.e., that H~ ± o are almost opposite. 

Indeed, consider a general instance where (i)-(iii) do not necessarily hold. At any 

time when (i) ceases to hold we ignore all further requests until N must move. 

Next, assuming that (i) holds, at any point, s, of discontinuity where (ii) does not 

hold, we translate Hs÷ o so that l~+ o contains N(s), and then insert an interval of 

time between s and s + 0 where Ht moves continuously from H~ to H~+o. Finally, 

assuming that (i) and (ii) hold, at all remaining points of discontinuity, s, if H,-0 

and H,+o are not almost opposite in the above sense, we can insert an interval 

of time where H, rotates from H~-o to H~+ o through an angle of measure 

< 180 ° - v; this change may introduce additional violations of (i), which we 

correct as before. The changes we have made so that (i) and (ii) hold introduce no 

extra cost; the changes to ensure (iii) introduce a multiplicative factor in the cost 

of at most 2 sin((Tt - v)/2)/sin v--indeed, if H~_ o and H~_ o are not almost opposite 

and a player (namely F) on l,_ 0 - H,+ 0 wants to move to a point on l,+o - H,-o,  

he is forced to move along two sides of a triangle making an angle v instead of 

traversing the third side; the sum of the two sides divided by the third is easily 

seen to be at most 2 sin((rc - v)/2)/sin v, i.e., in the case of an isoceles triangle. As 

at the end of Section 2.1, we have described how to handle a finite number of 

violations of the desired conditions; the general case follows either by an approx- 

imation argument or by a limiting argument similar to the ones given before. 

We may now assume that the problem instance satisfies (i)-(iii), with v > 0 to 

be fixed later. A round beginning at time to ends at time t I which is the smallest 

t > t o when either of the following happen: (1) Ito(t) - ~O(tol becomes _> ~ = 10°, 

or (2) the amount of "backward motion" becomes at least ~k times the "forward 

motion," where ~k < 1 is a constant to be specified later. More precisely, a 



On Convex Body Chasing 313 

half-plane H t with t e [t 0, t l ]  is called forward (backward) moving if its intersection 

with Hto+O is a wedge of measure >90  ° (<90°); accordingly, at points where H t 

is continuous, N or N(t) is said to be movin O forward (backward). Furthermore, 

measure the amount  of forward and backward motion in terms of time, normalized 

according to N's  cost (so that IN'(t)l is constant). Of  course, when a round ends 

because of case (1), there are two qualitatively different possibilities, namely H,, 

can be forward or backward. 

We now describe the updating steps. As before, normalize time so that the 

round begins and ends at t = 0, t (and, of course, I N'(t)l constant). We always set 

coordinates so that N(0) = (0, 0) and 11 is the line x = 1; here, of course, we have 

the added possibility that HI  = {x < 1 }, i.e., that Ht  could be backward. As before, 

the coordinate unit will always be propotional to w = IN(0) - N(1)I. 

First take the case that the round ends with H~ forward, and therefore ~(1) 

differs from to(0) by something between ~ and ~ + v. Since the amount of backward 

motion is small, the angle of W = N(1) - N(0) is less than ~' in absolute value, 

with ~' = ~ + v + O(q,) for ~, small. We now fix c(, v, ~, by choosing any positive 

values of v, ~k so that ~' = 15 ° and qJ < ½. We define "concentrated round," 

"spread-out round," and "small 0" with respect to time, as before, and the case 

analysis goes through the same. Again, we first argue that we can assume 

CF(1) < #W for a small constant # and that 0 is small for two-thirds of the time. 

When the work is spread out we use Lemma 3.1; when the work is concentrated, 

we use Lemma 3.2. The only essential difference here is that ~ is replaced by ct'. 

The second case is when the round ends in case (1) but with Ha backward. Set 

coordinates with N(0) = (0, 0) and It being the line x = 1. Let t ~ [0, 1] be any 

value such that N(t) and N(0) lie on the opposite sides of 11 and such that N is 

moving forward at time t; we can take, for example, t to be the last time that l, 

is moving forward (see Fig. 75). Without loss of generality we can assume that the 

t ( I )  

N(I] ~ N(t) 

Fig. 7. t is last forward moving time, 

5 The figures in this subsection will be drawn as if ct and v were a lot bigger than they actually are 

(for ease of illustration). 
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Y 

(O,O)=N(O) 

t(l) 

N(1) 

Fig. 8. F is restricted to the wedge R. 

angle of  1 o is < 90 ° (i.e., ~ [90 - ~ - v, 90 - ~]) or  equaivalently that the angle of 

I t is > 90 °. Hence th roughout  the round F must  remain within O(w#) in the region 

R = H, n H 1 (see Fig. 8), which is a wedge of  angle < 2~ + v and whose vertex is 

above a bounded  distance "below perpendicular," in the sense of Lemma 3.2, 

where It here plays the role of 11 in the lemma. Hence we can apply Lemma 3.2, 

with 11 replaced by I t, and make the updat ing step indicated there, i.e., move to 

the point  on It which is slightly higher than the image of the projection of N(0). 

In the last case, that  of  backward  work being propor t ional  to forward work, we 

limit the "free" region as follows. Set coordinates as before. Let s o be a point where 

, ' \ , /  

. . . . .  

Fig. 9. A wedge which points up. 
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~Y s 

~o.0~'~(0) 

Fig. 10. F not in S incurs too much cost. 

H changes direction from forward to backward, and let s 1 be the next point where 

H changes from backward to forward. The intersection of H~_ o and H~,_ o is a 

wedge of angle < v + ct that either "points up" or "points down" in the sense that 

it contains points either of arbitrarily large positive or negative y-coordinate (see 

Fig. 9). If, say, the wedge points up, and if F(so) has the y-coordinate smaller than 

both those of N(so) and N(sl), then it is easy to see that F must incur a cost at 

least proportional to CN(Sl) -- CN(so), and similarly for wedges that point down. 

Without loss of generality we can assume that at least half of the time (during all 

the backward motion) the wedges point up (see Fig. 10). Then CF < #CN, with/1 

small implies that F must lie in the region, S, of points with the y-coordinate 

bounded below (by a function of/~ and a'). Intersecting this with 11 gives a wedge 

of angle = 90 ° whose vertex is bounded below with respect to 11. Hence we can 

apply Lemma 3.2 and take the appropriate updating step. 

The final step of selecting ~t, the constants in the updating step, and those for 

the potential function is as before. 

4. General Remarks and Consequences 

4.1. Intersections and Convex Bodies 

As in the introduction, let f f  be a family of subsets of S in a metric space (S, p). 

Let J ( ~ )  denote the family of finite intersections of f f  and let ~ denote the set 

of limit points of decreasing sequences of J(Y-) in the Hausdorff metric; by this 

we mean that p is extended to subsets of S via 

p(A, B) = sup inf p(a, b) + sup inf p(a, b), 
a ~ A  bEB b e B  a e A  

and by a limit point of decreasing sequences of a family f; we mean any closed 
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G c S such that p(G, Gi) --* 0 as i ~ oo for some G i e f# with G~ ~_ G 2 ~ "" .  Under 

certain conditions, if ~- is chaseable, then automatically J ( f f )  will be as well. 

Definition 4.1. ~- is said to have nice intersections if for any positive integer n, 

any F1, F2  . . . . .  f n e o~, and for any 6 > 0 there is an e > 0 such that 

p(x, F1 c~ " " c~ F.) > 6 ::~ max(p(x, F1) . . . . .  p(x, F.)) >_ e. 

Proposition 4.2. I f  ~ is chaseable with multiplicative constant K, then, for every 

la > O, ~ is chaseable with multiplicative constant K + i~, if either (1) the underlying 

metric space is complete, or (2) ~- has nice intersections. 

Proof. Consider a problem instance, Poe S, and requests Ft  . . . .  from ~7. We can 

assume that m = P(Po, FI) is positive; this gives us a lower bound for the total 

cost of the problem. By definition we can find ffl = F~ c~... c~ F] 1 for some n 1 

with F~ ~ ~ ,  Pl  -~ Fl ,  and p(F~, if1) < m#/8. We start by running the ~--chasing 

algorithm on the initial point Po and the request sequence F] . . . . .  F]', F~ . . . . .  F]', 

F] . . . . .  stopping the first time we reach a point Pl which is within mla/8 of/~1; we 

claim this must occur in a finite amount of time, either in case (1) or (2). Indeed, 

the competitiveness of the ~--chasing algorithm implies that the solution it 

generates, qo = Po, q~, q, . . . .  , has finite cost 

Cost({ql}) = ~ I qi - q,- 11, 
i= l  

since all requests can be satisfied by moving to/~1. In case (1), for any positive 

integer k, if qk,, is of distance > 6 from Pl,  the cost of the next round of Fi  . . . . .  F]' 

costs at least e, for any 6 and e as in Definition 4.1. Hence, for sufficiently large k 

all the qk,, must lie within 6 of FI for any 6 > 0, in particular for 6 = m#/8. In 

case (2), since the qi are a Cauchy sequence, their limit q exists; clearly q lies in 

Pl,  and so Pl occurs no later than when one qi lies within ml~/8 if q. 

At this point, from Pl we are free to jump to the nearest point in F 1 and back 

to Pt, for a cost of ml~/2. We continue the algorithm by approximating /~2 to 

within mlt/16, and continuing the ~'-chasing algorithm from Pl on the F{ 

repeatedly. Continuing in this way, we reach points P2, P3 . . . . .  such that the total 

costs of jumping from pi to F i and back is < m#. Let M be the cost of the algorithm 

which does not jump back and forth. The optimal (off-line) solution to the F~ 

problem, with cost C , ,  trivially yields a solution to the J ' -chasing problem 

constructed above, with the same cost. Hence M <_ K C , .  On the other hand, the 

algorithm which jumps from pi to ,e and back yields a solution to the F~ problem 

of cost 

_< M + m# _< (K + ,u)C,, 

since m is a lower bound for C. .  
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Corollary 4.3. I f  the family of  affine half-spaces in R ~ is chaseable, then so is the 

family of convex bodies in R". 

Corollary 4.4. The family of convex bodies in the plane is chaseable. 

4.2. Plane Chasing in R 3, Lazy Line Chasing in R 2, and Function Chasing 

At the time of writing we do not know whether or not convex bodies in R 3 a re  

chaseable. However, we define a "lazy set-chasing" problem and show that chasing 

planes in R 3 is equivalent to the problem of lazy line chasing in R z. 

The problem of lazy set chasing differs from the set-chasing problem in that a 

positive e _< 1 is given as part of the input, and it is not required at time i to move 

to Fg. Instead, the cost of a solution Pl . . . . .  p, (here a solution is any collection 

of points in S) is 

• P(Pi-1, Pl) "4- ep(pi, Fi), 
i= l  

where the second p is the minimal distance of a point in Fi to Pl- 

For a fixed e, or more generally if e is restricted to a range bounded away from 

zero, the lazy set-chasing problem is equivalent, to within a factor of 1 + (2/e), to 

the set-chasing problem. Indeed, if pie F~ the cost of jumping to F~ and back to 

pl is no more than 2/e of the cost of that move. So if we require p~ to be in F;, we 

can do so by adding two jumps per request which gives a total cost of at most 

1 + (2/e) of the original cost. 

On the other hand, if there is no a priori bound on how near e can be to zero, 

then the problem appears to be harder. To give precise examples, it becomes more 

convenient to allow e to depend on i. Henceforth we take this as our definition 

of a lazy set-chasing problem. 

Now we show that plane chasing in R 3 is equivalent to lazy line chasing in R 2. 

For a continuous instance of plane chasing in R 3, locally greedy (=  parallel 

transport) coordinates can be set up for the planes, and the cost function becomes 

~f(f) = f / ~  l(0)) 2 + ]f'(O)] z dO; 

where 0 is the arc length of the unit normal to the plane, p is the extension of [ I 

to sets, l(O) is the line of instantaneous intersection of the planes, and f takes values 

in R 2. To within a factor of x//2 this is equivalent to 

) ~( f )  = max p(f(O), 1(0)) dO, TV(f)  . (4.1) 

Given an instance of continuous plane chasing, which is just to give l(0), we can 
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approximate l by a step function and therefore, by (4.1), get an instance of lazy 

line chasing. Conversely, given an instance of lazy line chasing we can form the 

corresponding step function l, whose value for 0 between el + " " +  e~ and 

et + "-" + e~+ 1 is lt, it is easy to see that we can form a plane-chasing problem 

whose instantaneous intersection is precisely l, and therefore reduce this problem 

to a plane-chasing problem. 

Theorem 4.5. Lazy  line chasing in the R 2 is equivalent to plane chasing in R 3 (to 

within f ixed proportionality constants). 

The argument given in the preceding paragraph is a rough description of the 

proof. To make the above rigorous, as well as to understand better lazy set-chasing 

problems, we introduce a type of"generalized set" or "function" chasing problem. 

To motivate these problems, consider an instance of a lazy set-chasing problem 

with the e~ = e all equal and B = 1/e an integer. It is easy to see that any solution 

Pt, P2 . . . .  is, within a constant factor, no better than the solution p'~, p~ . . . . .  which 

only changes every B moves, i.e., 

p 
Pb = P~ = "'" = Pa-' 1 = Po, P~ = " " =  P 2 B - I  = PB, . . . .  

Denoting Pa, by q~, the total cost of such a solution is just 

where gi is the function 

• 
P(qi- l ,  ql) + gi(ql-1), 

i = 1  

1 B, 

= -  ~, p(q, Fi). gi(q) B j=B,-I~+I 

So given a metric space, (S, p), we consider a family f# of functions from S to 

R>o. We define a function-chasing problem to be an initial point, Po, and a 

sequence of functions, gl . . . . .  with g~ ~ f#, and with the cost of a solution {p~} being 

P(P,-,,  Pi) + g,(P,); 
i = 1  

accordingly we can speak of f# being chaseable or not. 

Definition 4.6. Given a family of functions, f#, from S to R, we define the hull of 

f#, Hull(f#), to be the family of all finite convex linear combinations of elements 

of f#. For  any K > 1 we define the K approximations to f#, f#K, to be the family 

of functions g' for which there is a g e f# such that g(s)/K <_ g'(s) < Kg(s) for all 

s e S. Given a family of subsets, ~ ,  of S, we define the family of functions associated 

with ~,~, ~ ,  to be the family of functions 

{g(s) -- p(s, F)IF ~.~}. 
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Theorem 4.7. For any K > 1, a family f~ is chaseable iff ff x is chaseable. The lazy 

~-chasing problem is equivalent to the Hull(~)function-chasing problem. 

Proof. The first statement is obvious. The second statement follows essentially 

from the previous discussion. Namely, given a set-chasing problem with a sequence 

e~, we can easily reduce to the case that e~ _< 1. Letting 11 be the smallest i with 

e I + ... + e~ > 1, we replace the first 11 requests with the function 

gl(s) = ~ e~p(s, Fi), 
i=1 

which lies in Hull(~)2. If no such 11 exists, then it easy to see that it is competitive 

to stay at Po for all time. We continue by defining I2 as the smallest i with 

el, +1 + . . . .  + ei > 1, and forming 02. Continuing in this way we get a Hull(.~)2- 

chasing problem equivalent to the lazy problem. Reducing a Hull(~)  function- 

chasing problem to a lazy ~ problem is similar. []  

At this point it is clear how to prove rigorously that lazy line chasing in R 2 

and plane chasing in R 3 are both equivalent to chasing the hull of the family of 

functions associated with lines in the plane. 

We finish this subsection with a question on chasing functions. It might be 

hoped that competitive function-chasing algorithms might be simpler than set- 

chasing algorithms, in that some sort of "simple local strategy" might work for 

them. We define a generalized convex set to be a function, g: S ~ R_> o, which is 

Lipschitz continuous with constant 1, i.e., 

Ig(s) - g(t)l _< p(s, t) 

for all s, t, and which is convex, i.e., 

p(s:, s3) p(s2, sO 
g(s2) < - g(sl) + - -  g(s3) 

p(s~, s3) p(s~, s3) 

for all sl, s2, s 3 with p(s 1, s2) + p(S2, S3) = p(S1, $3)" Note that, for example, in R n, 

the family of generalized convex sets is larger than the hull of the family of functions 

associated with convex sets; the latter have certain growth conditions at ~ with 

many symmetries. 

Question 4.8. Is the family of all generalized convex sets in R n chaseable? In what 

metric spaces is the family of all generalized convex sets chaseable? If not, what 

are enough conditions to give chaseability for a lazy problem or family of 

functions? 

The Lipschitz condition for generalized convex sets is certainly necessary; for 

example, consider R~o with initial point Po = 0 and function f l(x) which is 1 at 

x --- 0 and x elsewhere. 
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The problem of chasing the family of all nonnegative functions is precisely the 

metrical task systems of [3]; there upper and lower bounds proportional to n are 

given for the competiveness ratio of on-line algorithms, where n = I SI. We suggest 

that if restrictions such as convexity and Lipschitz continuity are placed on the 

functions, then competitive algorithms can exist even when IS[ is infinite. 

4.3. Line Chasing in R" 

Although we do not know whether or not convex bodies in R 3 can be chased, we 

can say that lines in 113 c a n  be competitively chased. Indeed, we can easily reduce 

a line-chasing problem in three dimensions to one in two dimensions. Namely, 

first we reduce chasing a sequence of lines, {li}, to one in which l~ and l~+l are 

coplanar for a l l / - - fo r  any skew lines ll and 12 we let P be the plane parallel to 

12 containing 11, and let l' be the projection of 12 onto P. Inserting l' as a request 

between 11 and 12 does not change the cost by more than a factor of two, since 

for any p~El~, i = 1, 2, ifp'  is the projection of p2 onto P, then both IP~ - P'I and 

I P' - P21 are clearly < I P t  - P21. Now given a problem instance in which Ii, li+l 
are always coplanar, we can clearly define lines {m~} all lying in 112, isometrics rt~ 

from l~ to m~, inductively on i, which preserves the distance from points in l~ to 

points in l~+ 1. This gives the desired reduction. 

More generally the same technique shows that lines can be competitively chased 

in R n for any n. In general a slightly weaker claim can be made. Namely, let 

be any family of subsets of 11a such that we can competitively chase the subsets, 

~-2a+ 1, of all rigid motions of ~ in R 2d+ 1. Then it easily follows that we can chase 

~ ,  in 11" for all n > 2d + 1. (For line chasing we can replace 2d + 1 by 2d (here 

d = 1), which is why the more general claim is weaker.) 

It follows from the observations here and in the first subsection that if we are 

returning tennis balls at the net projected by a machine, assuming negligible 

gravity, then we can efficienty move to return them. Here the requests are half-lines 

in 113, being that we are not allowed to cross the net and, in particular, hold the 

racket at the barreLof the machine (not a practice recommended by the authors). 

This application, under the guise of the racket game "matkot," was pointed out 

to the authors by A. Wigderson. 
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