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Abstract

We provide theory for the computation of convex envelopes of non-convex functionals

including an ℓ2-term and use these to suggest a method for regularizing a more general

set of problems. The applications are particularly aimed at compressed sensing and

low-rank recovery problems, but the theory relies on results which potentially could be

useful also for other types of non-convex problems. For optimization problems where

the ℓ2-term contains a singular matrix, we prove that the regularizations never move

the global minima. This result in turn relies on a theorem concerning the structure of

convex envelopes, which is interesting in its own right. It says that at any point where

the convex envelope does not touch the non-convex functional, we necessarily have a

direction in which the convex envelope is affine.

Keywords Fenchel conjugate · Convex envelope · Regularization ·
Non-convex/non-smooth optimization · Proximal hull

Mathematics Subject Classification 49M20 · 65K10 · 90C26

1 Introduction

The present work is the extension of a chain of ideas with its roots in compressed

sensing. ℓ1 − ℓ2-minimization tricks have a long history and got renewed attention

with the work of Donoho, Candés and Tao among others [1–3]. In the same spirit, the

nuclear norm minimization strategy was investigated by Fazel and coworkers [4,5],

and in both cases, it was shown that these methods yield perfect reconstructions in the

case of no noise. However, in realistic scenarios, these results often do not apply and

additionally there is of course noise, in which case the methods come with a (sometimes
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severe) bias. Moreover, they are slow since one needs to find an appropriate value of

involved penalty parameters.

Due to such issues, there is a wealth of non-convex variations to replace ℓ1/nuclear

norm in the area of compressed sensing, we refer to [6] for a survey. Two fairly recent

contributions in this vein are the work by Carl Olsson and coworkers [7] as well as

by Gilles Aubert and coworkers [8]. The former paper deals with non-convex matrix

minimization problems with subspace constraints, the latter with sparse reconstruc-

tions, and in particular, the latter shows that the concrete regularizer considered there

has the desirable property of not moving global minima. In this paper, we find a uni-

fying framework and show that all these penalties are particular cases of the so-called

proximal hull or quadratic envelope. We systematically study this as a regularizer, and

in particular, we lift the result of Aubert et al. to a general context. In order to do so,

we provide new results on the structure of lower semi-continuous (abbreviated l.s.c.)

convex envelopes which are interesting in their own right. More precisely, we show

that whenever a l.s.c. convex envelope is not in touch with the function that generates

it, then it necessarily has a direction in which it is affine linear.

2 Outline andMotivation

We develop methods to compute the lower semi-continuous convex envelope of func-

tionals of the form

f (x) + 1

2
‖x − d‖2

2, (1)

and show that this is of the form Q( f )(x)+ 1
2
‖x−d‖2

2, where Q( f ) is the proximal hull

or “quadratic envelope”, as we shall call it. Here, x can be in any separable Hilbert

space, but f needs to be such that the global minimization of (1) is computable.

The practical applications of Q( f ) pertain to optimization of (1) with additional

constraints, as well as unconstrained optimization of

f (x) + 1

2
‖Ax − d‖2

2, (2)

where A is a linear operator.

To introduce the main ideas behind this work, we consider two concrete problems.

A multitude of applications can be posed mathematically as finding the lowest rank

matrix X satisfying some equation A(X) = d, where A is a linear operator and d is a

measurement (see, e.g., [5,9]). Usually, the measurement d is not perfect, so in practice,

one wishes to find the minimum rank given some accepted error: ‖A(X) − d‖ ≤ ρ.

The dual formulation of this problem is

arg min
X

[

λrank(X) + ‖A(X) − d‖2
]

, (3)

where λ is a parameter. However, the functional rank(X) is non-convex and highly

discontinuous, so the problem can not be solved as stated (in general). It can be solved
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for the case A = I , but the problem is still hard when combined with additional priors,

see, e.g., Section 1.1 in [7] for an overview and applications in signal processing and

imaging.

Due to the problematic nature of rank(X), it has become popular to replace rank(X)

with the nuclear norm of X . However, rank(X) and the nuclear norm are quite far apart

and the method leads to a bias in the solution, which led the authors of [7] to suggest

working instead with the convex envelope of rank(X) + 1
2
‖X − D‖2

F for which they

obtained an explicit expression. They also provided the convex envelope when rank(X)

is replaced by the indicator functional of the set {X : rank(X) ≤ K }, in order to treat

problems where a matrix of a fixed rank is sought, and this convex envelope was

further studied in [10].

Independently, convex envelopes were used in [8] to suggest a regularizer to func-

tionals of the type

‖x‖0 + 1

2
‖Ax − d‖2

2, x ∈ R
n, (4)

which is usually dealt with by replacing ‖x‖0 by λ‖x‖1. The main contribution of

their work is to show that their regularizer does not move global minima. A common

misconception is that the same holds for ℓ1-methods, which is true only if there is no

noise [11]. In the presence of noise, the estimates for ℓ1-methods are rather poor and

[8] are the first framework which allows for regularization without moving minima in

a more realistic scenario.

This paper presents a unified approach to this circle of ideas by connecting them

with the “quadratic envelope” Q( f ). We also extend the findings of [8] to any problem

of the form (2) as long as Q( f ) is computable. An expanded version of this article is

found in [12], which contains a long list of instances where Q( f ) is computable.

In particular, Q( f ) is computable for ιK ; the indicator functional for

{x ∈ C
n : ‖x‖0 ≤ K }.

As a proof of concept, we compare performance of (4) with ‖x‖0 replaced by λ‖x‖1,

with Q(card) and with Q(ιK ) (where card(x) = ‖x‖0). We use a 100 × 200 matrix

A and minimize the regularized version of (4) for d of the form Ax0 + ǫ, where x0

has cardinality 10 and ǫ takes on various levels of noise. As noted in [13], the best

one can hope for is then to recover the so-called oracle solution xS , (obtained if an

oracle a priori revealed the correct support). As Fig. 1 shows, both Q(card) and Q(ι10)

outperform ℓ1 and find the oracle solution for fairly large levels of noise. Also, Q(ι10)

beats Q(card), which is no surprise since it contains additional information about the

problem built into it and demonstrates the versatility of the new Q-transform. The

article [6] contains much more information about this particular case.

We now outline the main contributions of this paper in greater detail. Consider any

functional of the form

f (x) + γ

2
‖x − d‖2

V (5)

where γ > 0 is a parameter, V is an arbitrary separable Hilbert space and f a non-

negative functional on V . In Sect. 3, we introduce the transform Qγ and show that the

l.s.c. convex envelope of the functional in (5) is
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Fig. 1 Reguarlizing (17) by Q(card) and Q(ι10) finds the oracle solution up to noise levels of around

‖ǫ‖ = 3 and 4 (roughly 30% of ‖d‖), whereas ℓ1-regularization only finds this solution with no noise

Qγ ( f )(x) + γ

2
‖x − d‖2

V . (6)

In order for Qγ ( f ) to be computable, the global minimization of (5) needs to be

solvable, and hence, the problem of minimizing (5) in itself is not an instance where

the Qγ -transform is useful. However, it is useful for finding global minimizers of (5)

in combination with additional prior restrictions. To illustrate, consider the problem

arg min
x∈H

[

f (x) + 1

2
‖x − d‖2

]

, (7)

where H is a closed and convex subset of V , and suppose we are unable to find a

closed form solution. Upon replacing (7) with

arg min
x∈H

[

Qγ ( f )(x) + 1

2
‖x − d‖2

]

, (8)

for some fixed γ ≤ 1, we obtain a convex problem which can be solved. However,

even for γ = 1, it is possible that (7) and (8) have different solutions, despite the

functional in (8) being the l.s.c. convex envelope of the one in (7). The rationale

behind replacing (7) by (8) is pragmatical; since the latter is convex, the solution may

be found using convex optimization routines. This may seem ad hoc, but we remind

the reader that replacing, e.g., ‖x‖0 by ‖x‖1 or rank(X) by the nuclear norm ‖X‖1

has had a substantial impact, and that for these concrete cases the modification Qγ ( f )

is much closer to the original functional f , (which leads to a better performance as

an estimator, see the numerical sections of [6,7]). A reason for this is that Qγ ( f ) has

the desirable feature that Qγ ( f )(x) = f (x) often holds, and since (8) is a convex

problem below the original problem (7), it is easy to see that a minimum x̂ to (8) is the

solution to (7) whenever Qγ ( f )(x̂) = f (x̂). This is highlighted in Fig. 2 where the
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Fig. 2 Illustration of a non-convex optimization problem with linear constraints. The left panel shows a

non-convex functional along with its level sets. The gray line represents the subspace we are interested in,

and the blue curve represents the values of the functional restricted to the subspace. The right panel shows

the same setup, but here the convex envelope is shown as well in orange/yellow. The values of the convex

envelope over the subspace are shown in the red curve. In this case, the minima of blue and red function

coincide

two problems have the same solution. More information and examples on this type of

problems are found in Part II of [12].

In Sect. 5, we consider regularization of functionals like (3) and (4), or more gen-

erally

f (x) + 1

2
‖Ax − d‖2

W (9)

for arbitrary non-negative f , where A : V → W is a linear operator between separable

Hilbert spaces. We assume that V is such that Qγ ( f ) is computable and that the convex

envelope of (9) is untractable. We propose to use as regularizer the function Qγ ( f ),

i.e., we will study the relationship between minimizers of (9) and those of

Qγ ( f )(x) + 1

2
‖Ax − d‖2

W . (10)

Since it often holds that Qγ ( f )(x) = f (x), we again see that a global minimizer of

(10) for which this is the case must also be a global minimizer of (9), in view of the

inequality Qγ ( f ) ≤ f (shown in Sect. 3). The parameter γ now becomes a useful tool

as it tunes the curvature of Qγ ( f ), and we pause to illustrate its role by considering

a toy problem in one variable; see Fig. 3. We let |x |0 be the function equalling 1 on

R\{0} and zero at x = 0. In red, we see the functional |x |0 + 1
2
|x − 1|2 (which is a

particular case of both (3) and (4) in one dimension, the matrix A is here the number

1), in blue its convex envelope and in pink the ℓ1 convex relaxation |x | + 1
2
|x − 1|2.

Clearly, the global minimum of the red and blue coincides, but the global minimum

of the ℓ1-relaxation is different. For (10), we have two options, either |A|2 > γ or

|A|2 < γ . The regularizer (10) is illustrated in black for these two cases in Fig. 3.

The circles represent global minima of the respective functions. In the case |A|2 > γ ,

we see that (10) is a convex minorant of (9) whose global minima (for this choice of

parameters) is equal to that of (10). In the case |A|2 < γ , (10) is no longer convex but

the local minima of (10) are also minima of (9), and (10) has fewer local minima. In
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Fig. 3 The black curve shows two regularizations of the red curve, for different levels of γ

particular, the global minima coincide. The main point of the paper is loosely that the

general behavior is the same.

In Sect. 5.1, we generalize the situation in Fig. 3 (left) and assume that γ satisfies

A∗ A � γ I , i.e., that

‖Ax‖2 ≥ γ ‖x‖2. (11)

For such choice of γ , we prove that the functional (10) is a convex functional below

(9) and hence minimization of (10) will produce a minimizer which, although not

necessarily equal to the minimizer of the original problem, potentially is closer than

that obtained by other convex relaxation methods.

For the problem (4), A is usually a matrix with a large kernel which rules out the

above approach. In Sect. 5.2, we consider the case

‖A‖2 ≤ γ, (12)

generalizing the situation in the right picture of Fig. 3. We can then show that (10) is

a continuous (but not convex) functional with the following desirable properties:

(i) Equation (10) lies between (9) and its l.s.c. convex envelope,

(ii) any local minimizer of (10) is a local minimizer of (9),

(iii) the global minimizers of (10) and (9) coincide.

These findings in turn rely on general results about l.s.c. convex envelopes which we

provide in Sect. 4. The computation of the l.s.c. convex envelope of f (x)+ γ
2
‖x‖2 can

be thought of as stretching a plastic foil from below onto the graph of f (x) + γ
2
‖x‖2

(see Fig. 2). Consider a point x where the plastic foil is not in contact with the graph,

i.e., where Qγ ( f )(x) < f (x). It is intuitively obvious that the plastic foil, i.e., the

graph of Qγ ( f )(x) + γ
2
‖x‖2 has some direction in which it is affine linear and thus

Qγ ( f ) should have some direction in which the curvature is −γ . This is surprisingly

difficult to show and despite the wealth of results on l.s.c. convex envelopes it is not

found in any standard reference on the topic. The statement is shown in the Ph.D. thesis

[14] for the finite- dimensional case. Here, we provide a proof based on an extension

of Milman’s theorem due to Arne Brøndsted [15] in a short note from 1966.
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original functional f

quadratic minorants

quadratic envelope

Fig. 4 Illustration of a non-convex function f (red) and its quadratic envelope Q2( f ) (black). The black

graph lies slightly below for illustration only

The final Sect. 6 is more practical in nature. Critical points of (10) can be found using

the forward–backward splitting method (FBS), given that Qγ ( f ) is “semi-algebraic”,

as was shown in [16]. To simplify verification of when Qγ ( f ) is semi-algebraic, we

show in Sect. 6 that this is true as long as f itself is semi-algebraic. Further tools to

compute Qγ ( f ) as well as related proximal operators are found in [12].

3 The Quadratic Envelope

Let V be a separable Hilbert space over R or C, such as C
n or the set matrices of

a certain size equipped with the Frobenius norm. All Hilbert spaces over C are also

Hilbert spaces over R with the scalar product 〈x, y〉R = Re 〈x, y〉, and hence, it is no

restriction to assume that V is a real Hilbert space wherever needed. Even if V is a

Hilbert space over C, we will implicitly assume that the scalar product is 〈x, y〉R.

Given any functional f : V → R ∪ {∞} and parameter γ > 0, we introduce the

“quadratic envelope” Qγ as the supremum of all minimizers of the form α− γ
2
‖x −y‖2

for α ∈ R and y ∈ V;

Qγ ( f )(x) = sup
α∈R,y∈V

{

α − γ

2
‖x − y‖2 : α − γ

2
‖ · −y‖2 ≤ f

}

. (13)

The quadratic envelope has appeared previously, e.g., in [17] under the name “prox-

imal hull”, denoted hγ −1 (Example 1.44), but it seems that the term is not widespread

(see the discussion in Sect. 7), and it seems that its connection with convex envelopes

has not been noted, or at least not systematically studied. We prefer the term quadratic

envelope since it is more suggestive and prefer the notation Qγ since it would be

messy to always have to invert γ which in this context has a concrete meaning; the

parameter γ basically tunes the maximum negative curvature of Qγ ( f ), as we shall
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see in Sect. 4 (Corollary 4.2). When γ = 1, we simply write Q as opposed to Qγ . In

this section, we first provide some tools to compute Qγ and then prove the connection

with l.s.c. convex envelopes and end with some auxiliary results.

The Legendre transform (or Fenchel conjugate) is defined as g∗(y) := supx 〈x, y〉−
g(x). We remind the reader that g∗ is l.s.c convex and that g∗∗ equals the l.s.c. convex

envelope of g by the Fenchel–Moreau theorem (see, e.g. Proposition 13.11 and 13.39

in [18]). We now introduce the transform Sγ defined as follows:

Sγ ( f )(y) :=
(

f (·) + γ

2
‖ · ‖2

)∗
(γ y)− γ

2
‖y‖2 = sup

x
− f (x)− γ

2
‖x − y‖2 . (14)

Sγ is simply the negative of the Moreau envelope computed with constant γ −1. If

we set qγ (x, y) = − γ
2
‖x − y‖2 then, in the terminology of [17] Sec. 11.L, Sγ ( f )

is the qγ -conjugate of f and Qγ ( f ) the qγ -envelope of f (reinforcing our choice

of terminology “quadratic envelope” for Qγ ). We introduce the symbol Sγ mainly

since we believe the notation −eγ −1( f ) or qγ f (c.f. [17]) or −γ −1
f (c.f. [18]) would

be confusing for our present purposes. Its connection to the quadratic envelope is

described by the following proposition (Fig. 4);

Proposition 3.1 Let γ > 0 and let f be a [0,∞]-valued l.s.c. functional on a separable

Hilbert space V . We have Qγ = Sγ ◦ Sγ := S2
γ , i.e.,

Qγ ( f )(x) = sup
y

(

inf
w

f (w) + γ

2
‖w − y‖2

)

− γ

2
‖x − y‖2 (15)

Proof The argument is a replica of Example 1.44 of [17] but is included for complete-

ness. We have α − γ
2
‖ · −y‖2 ≤ f iff α ≤ f + γ

2
‖ · −y‖2, so the maximal α for fixed

y is given by α = −Sγ ( f )(y). Thus, Qγ ( f )(x) = supy∈V −Sγ ( f )(y) − γ
2
‖x − y‖2

as desired. ⊓⊔

The next proposition contains some basic observations about the behavior of Sγ

and Qγ .

Proposition 3.2 Let γ > 0 and let f be a [0,∞]-valued l.s.c. functional on a separable

Hilbert space V . Then, Sγ ( f ) takes values in ] − ∞, 0] and is continuous, whereas

Qγ ( f ) is lower semi-continuous, takes values in [0,∞] and is continuous in the

interior of dom(Qγ ( f )).

Proof The statement of the interchanging signs follows easily by the last line of (14)

which also shows that Sγ ( f ) avoids −∞. By (14), it follows that Sγ ( f ) (and Qγ ( f )

by Proposition 3.1) is the difference of an l.s.c. convex functional and a quadratic

term. With this in mind, the continuity statements follow by the standard properties

of l.s.c. convex functionals (see, e.g., Corollary 8.30 [18]). ⊓⊔

The following result is the key result of this section connecting the Qγ -transform

with l.s.c. convex envelopes.
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Theorem 3.1 Let γ > 0 and let f be a [0,∞]-valued functional on a separable Hilbert

space V . Then,
(

f + γ
2
‖ · −d‖2

)∗
(y) = Sγ ( f )

(

y
γ

+ d
)

+ γ
2

∥

∥

∥

y
γ

+ d

∥

∥

∥

2
− γ

2
‖d‖2 and

(

f + γ

2
‖ · −d‖2

)∗∗
(x) = Qγ ( f )(x) + γ

2
‖x − d‖2.

In particular, Qγ ( f )(x)+ γ
2
‖x −d‖2 is the l.s.c. convex envelope of f (x)+ γ

2
‖x −d‖2

and

0 ≤ Qγ ( f ) ≤ f .

Proof We have

(

f (·) + γ

2
‖ · −d‖2

)∗
(y) = sup

x
〈x, y〉 − f (x) − γ

2
‖x − d‖2

= sup
x

− f (x) − γ

2

∥

∥

∥

∥

x −
(

y

γ
+ d

)
∥

∥

∥

∥

2

+ γ

2

∥

∥

∥

∥

y

γ
+ d

∥

∥

∥

∥

2

− γ

2
‖d‖2

from which the first identity follows. Similarly,

(

f (·) + γ

2
‖ · −d‖2

)∗∗
(x) =

(

Sγ ( f )

( ·
γ

+ d

)

+ γ

2

∥

∥

∥

∥

·
γ

+ d

∥

∥

∥

∥

2

− γ

2
‖d‖2

)∗

(x)

= sup
y

〈x, y〉 −Sγ ( f )

(

y

γ
+d

)

−γ

2

∥

∥

∥

∥

y

γ
+ d

∥

∥

∥

∥

2

+ γ

2
‖d‖2

= sup
y

−Sγ ( f )

(

y

γ
+ d

)

− γ

2

∥

∥

∥

∥

y

γ
+ d − x

∥

∥

∥

∥

2

+ γ

2
‖x − d‖2 = S2

γ ( f )(x) + γ

2
‖x − d‖2.

The statement about the convex envelope follows by the Fenchel–Moreau theorem

and Proposition 3.1, which also gives Qγ ( f )(x) + γ
2
‖x − d‖2 ≤ f (x) + γ

2
‖x − d‖2.

This implies the latter part of the inequality 0 ≤ Qγ ( f ) ≤ f , whereas the former has

already been noticed in Proposition 3.2. ⊓⊔

We end this section with some observations about the behavior of Qγ ( f ) as a

function of γ .

Proposition 3.3 Let f be an l.s.c. [0,∞]-valued functional. Then, Qγ ( f )(x) is

increasing as a function of γ . Moreover,

lim
γ→∞

Qγ ( f )(x) = f (x) (16)
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whereas the limit as γ ց 0 equals a convex minimizer of f above the l.s.c. convex

envelope of f .

We remark that (16) is shown in [17], whereas nothing is said about the case γ ց 0.

In fact, limγց0 Qγ ( f ) usually equals the l.s.c. convex envelope of f , but this is not

necessarily the case in general, which is a surprise at least for the author. To see this,

consider P = {x ∈ R
2 : x1 > 0, x2 = √

x1}, Q = {x ∈ R
2 : x1 > 0, 0 < x2 ≤√

x1} ∪ {0} and f = ιP , where ιP is the indicator functional of P . It is easy to see

that the l.s.c. convex envelope of ιP equals ιcl(Q) (where cl denotes closure), whereas

some thinking reveals that limγց0 Qγ ( f ) = ιQ . However, if V is finite dimensional

and limγց0 Qγ ( f ) is everywhere finite, then it is automatically continuous (Corollary

8.30 in [18]), and hence it must equal the l.s.c. convex envelope of f .

Proof If γ1 > γ2, then Qγ2( f )(x) + γ1

2
‖x‖2 equals the l.s.c. convex functional

Qγ2( f )(x) + γ2

2
‖x‖2 plus the term

γ1−γ2

2
‖x‖2 so it is l.s.c. and convex. In view

of Qγ2( f ) ≤ f , it also lies below f + γ1

2
‖x‖2, and so, we conclude that

Qγ2( f )(x) + γ1

2
‖x‖2 ≤

(

f + γ1

2
‖x‖2

)∗∗ = Qγ1( f )(x) + γ1

2
‖x‖2.

The first claim follows. To see (16), let α < f (x) be arbitrary. Since f is l.s.c., the

set {y : f (y) > α} is open and, as f ≥ 0, it follows that for any γ large enough we

have α − γ
2
‖ · −x‖2 ≤ f . For such γ , we thus have α ≤ Qγ ( f )(x) ≤ f (x) by (13)

and Theorem 3.1, so (16) follows.

Concerning the limit as γ ց 0 set g(x) = limγց0 Qγ ( f )(x), which exist by the

first part of this proposition. Now note that

g(x) = lim
γց0

Qγ ( f )(x) = lim
γց0

Qγ ( f )(x)+γ

2
‖x‖2= lim

γց0

(

f + γ

2
‖ · ‖2

)∗∗
(x) ≥ f ∗∗.

We also see that g is the limit of a decreasing sequence of convex functions, hence it

is also convex (Proposition 8.16 [18]). Finally, g ≤ f by Theorem 3.1. ⊓⊔

4 Finer Properties of Convex and Quadratic Envelopes

In this section, we prove a result about the structure of l.s.c. convex envelopes

which seems relatively unknown. For this, we need the concept of weak lower semi-

continuity, which is nothing but semi-continuity with respect to the weak topology of

the underlying separable Hilbert space V . We remind the reader that for convex proper

functionals there is no difference (Theorem 9.1 [18]) between weakly l.s.c. functionals

and the standard l.s.c. functionals. Also, if V is finite dimensional and the topology

is Hausdorff, the two topologies are the same so there is no difference in this case

either. However, we wish to underline that the difficulty in proving the coming results

is present also in the finite-dimensional setting.
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We begin with a neat fact concerning weakly l.s.c. convex envelopes, which does

not seem to have made its way into the modern literature on the subject. It is a refor-

mulation of Arne Brøndsted’s extension of Milman’s theorem [15]. To state it, we

remind the reader that a functional g is coercive if and only if its (lower) level sets are

bounded, (see, e.g., Proposition 11.11 [18]). Note that l.s.c. convex envelopes of the

type Qγ ( f )(x) + γ
2
‖x − d‖2 (for non-negative f ) always are coercive, by virtue of

Proposition 3.2 and the quadratic term. A function f on R is called affine if it is of the

form f (t) = at + b with a, b ∈ R.

Theorem 4.1 Let g be a weakly l.s.c. functional on a separable Hilbert space V such

that g∗∗ is coercive. Given any x ∈ V such that g(x) �= g∗∗(x) there exists a unit

vector ν and t0 > 0 such that the function h(t) = g∗∗(x0 + tν) is affine on ] − t0, t0[.

To prove Theorem 4.1, we recall some concepts from [15]. Given a convex function

f , a point x is called extremal if and only if (x, f (x)) is extremal for the epigraph

of f , denoted [ f ]. Equivalently, x is extremal if and only if x ∈ dom f and f is

not affine on any relatively open segment containing x . Moreover, fext denotes the

functional which equals f (x) for all extremal points x and ∞ else.

To illustrate, consider the convex functional g : R
2 →] − ∞,∞] given by

g(x,±1) = −
√

1 − x2 for (x, y) in [−1, 1] × {±1}, and which equals ∞ elsewhere.

Then, g∗∗(x, y) = −
√

1 − x2 on [−1, 1]2 and g∗∗ = ∞ elsewhere. The extremal

points then equal [−1, 1] × {±1}, which should not be confused with the exposed

points which are ] − 1, 1[×{±1} (see, e.g., Ch. 25 of [19]). Note that on the other two

edges {±1}×] − 1, 1[, the graph of g∗∗ is indeed affine, but that at these points, g∗∗

is not sub-differentiable. Also note that (g∗∗)ext = g for this particular function. The

result we need from [15] reads as follows.

Theorem 4.2 Let g be a weakly l.s.c. functional on a separable Hilbert space V such

that g∗∗ is coercive, then

[(g∗∗)ext ] ⊂ [g].

Proof In the setting of [15], we let E be the separable Hilbert space V with the weak

topology. Since, convex functionals are l.s.c. with respect to the weak topology if and

only if they are with respect to the norm topology, it follows that the l.s.c convex

envelope of g equals the weakly l.s.c. convex envelope. In the notation of Theorem 1

of [15], we can then take f = g∗∗ and the theorem states that [ fext ] ⊂ [gcl ], where

gcl is the greatest l.s.c. minorant of g. Since, g is assumed to be l.s.c. we have g = gcl ,

and the desired inclusion follows. It remains to check that the conditions of Theorem

1 are fulfilled, which is that “g is inf-compact in some direction” (with respect to the

weak topology, referring to the terminology of [15]). For this, it suffices to check that

g∗∗ is inf-compact, i.e., that all level sets are compact. The level sets of g∗∗ are closed

and convex, and since g∗∗ is assumed coercive they are also bounded. It follows that

such level sets are compact in the weak topology and the proof is complete. ⊓⊔

Based on this, we can now easily prove Theorem 4.1.

123



Journal of Optimization Theory and Applications (2019) 183:66–84 77

Proof of Theorem 4.1 Since g ≥ g∗∗, Theorem 4.2 clearly implies that g(x) = g∗∗(x)

for all extremal points x for g∗∗. Consequently, if g(x) = g∗∗(x) does not hold, then x

is not extremal for g∗∗, and the existence of ν follows by the definition of an extremal

point for g∗∗. ⊓⊔

Next, we discuss what the theorem implies about minimizers of g versus g∗∗. Denote

by G the set of global minimizers of g, and by G∗∗ the set of global minimizers of

g∗∗.

Corollary 4.1 Let g be a weakly l.s.c. functional on a separable Hilbert space V such

that g∗∗ is coercive. Then, G∗∗ is a closed bounded convex set containing G. Letting

G∗∗
ext denote the extremal points of G∗∗, we also have that G∗∗

ext ⊂ G. Finally, the

closed convex hull of G∗∗
ext equals G∗∗.

Proof The convexity of G∗∗ and the inclusion G ⊂ G∗∗ are immediate. The bound-

edness of G∗∗ follows since g∗∗ is coercive. Let x be in the closure of G∗∗, and let

c be the value of the global minimum. Then, g∗∗(x) ≤ c follows by l.s.c., and the

reverse inequality is obvious from the fact that c is a global minimum. It follows that

x ∈ G∗∗, and hence G∗∗ is closed.

The existence of points in G∗∗
ext , and the statement concerning the closed convex

hull, are now immediate consequences of the Krein-Milman theorem and the fact that

bounded closed convex sets are weakly compact in separable Hilbert spaces (Theorem

3.33, [18]). It remains to prove that G∗∗
ext ⊂ G. Let x0 ∈ G∗∗

ext and suppose x0 /∈ G.

Then, Theorem 4.1 implies the existence of a direction ν on which g∗∗ is constant

near x0, contradicting that x0 is an extremal point. ⊓⊔

We end by noting that Theorem 4.1 implies that γ tunes the maximum negative

curvature in the Qγ -transform, as discussed in the introduction.

Corollary 4.2 Let f be a weakly l.s.c. [0,∞]-valued functional on a separable Hilbert

space V . For each x0 ∈ V with f (x0) > Qγ ( f )(x0), there exists a unit vector ν such

that

Qγ ( f )(x0 + tν) = a + bt − γ

2
t2

for t near 0 and some a, b ∈ R.

Proof Set g(x) = f (x) + γ
2
‖x‖2. By Theorem 3.1, we have Qγ ( f )(x) + γ

2
‖x‖2 =

g∗∗(x), by which it is immediate that g∗∗ is coercive, (since Qγ ( f ) ≥ 0 by Proposi-

tion 3.2). It also follows that g(x0) > g∗∗(x0), and hence, Theorem 4.1 implies that

a unit vector ν exists such that t �→ Qγ ( f )(x0 + tν) equals an affine function minus
γ
2
‖(x0 + tν‖2 in a neighborhood of t = 0. ⊓⊔
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5 The Quadratic Envelope as a Regularizer

We now let A : V → W be a bounded linear operator, where V,W are possibly

different (separable) Hilbert spaces, and consider functionals of the type

J (x) = f (x) + 1

2
‖Ax − d‖2

W , x ∈ V. (17)

Our aim is to develop strategies to deal with the general problem of minimizing (17),

in the case when f is an [0,∞]-valued functional such that Qγ ( f ) is computable and

focus on computing (explicit) approximations of the l.s.c convex envelope of J . The

theory is split in two cases, either we approximate the convex envelope from below by

a convex functional, or we approximate it from above with a non-convex functional

having a number of desirable properties, most notably the fact that local minimizers

do not change. More precisely, we will study the relationship between the original

functional (17) and the modified functional

Jγ (x) = Qγ ( f )(x) + 1

2
‖Ax − d‖2

W , x ∈ V, (18)

under the assumption that either γ I � A∗ A or γ I � A∗ A (c.f. (11)–(12) and recall

Fig. 3). Note that γ I � A∗ A if and only if γ ≥ ‖A‖2.

5.1 Case A
∗
A � I

Let f be a [0,∞]-valued functional and A : V → W a bounded linear operator. The

main result of this section states that Jγ is a convex minorant of the l.s.c. convex

envelope J ∗∗.

Theorem 5.1 For γ > 0 such that A∗ A � γ I , Jγ is convex and Jγ ≤ J ∗∗.

Moreover, if A∗ A ≻ γ I then it is strongly convex, in which case it has a unique

minimizer. Finally, a minimizer x̂ of Jγ is a minimizer of J whenever f (x̂) =
Qγ ( f )(x̂).

Proof Upon expanding ‖Ax − d‖2 = ‖Ax‖2 − 2 〈Ax, d〉 + ‖d‖2 and noting that the

latter two terms are affine linear, it is easily seen that it suffices to prove the first part

of the statement for d = 0. By Theorem 3.1, it is clear that Jγ is l.s.c. and that

Jγ ≤ J , and thus Jγ ≤ J ∗∗ follows immediately upon showing that Jγ is

convex. Define

〈x, y〉U = 〈Ax, Ay〉W − γ 〈x, y〉V

and note that this is a semi-inner product, as long as A∗ A � γ I . It is also an inner

product if the inequality is strict. In either case, ‖x‖2
U

:= 〈x, x〉U is convex. It follows

that

Qγ ( f )(x) + 1

2
‖Ax‖2

W =
(

Qγ ( f )(x) + γ

2
‖x‖2

V

)

+ 1

2
‖x‖2

U ,
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which by Theorem 3.1 implies that Jγ equals the l.s.c. convex envelope of f (x) +
γ
2

‖x‖2
V

plus the term 1
2

‖x‖2
U

. We conclude that Jγ is a convex functional, which

is strongly convex when A∗ A ≻ γ I . In the latter case, the existence of a unique

minimizer follows by Corollary 11.15 in [18], (supercoercivity of Jγ is obvious by

the term 1
2

‖x‖2
U

). Finally, let d be fixed and let x̂ be a minimizer of Jγ . Suppose that

f (x̂) = Qγ ( f )(x̂), and let y ∈ V be arbitrary. Then

J (y) ≥ Jγ (y) ≥ Jγ (x̂) = J (x̂),

showing that x̂ is a global minimizer of J . ⊓⊔

5.2 Case A
∗
A � I

Let f be a [0,∞]−valued functional, and A : V → W a bounded linear operator.

Again, we are interested in the relationship between J and Jγ , defined in (17) and

(18), respectively. The main result of this section is that Jγ does not move minima

for γ in the stated range. We begin by noting the following inequalities, the first one

being reverse of the one proved in Theorem 5.1.

Proposition 5.1 For γ such that ‖A‖2 ≤ γ we have J ∗∗ ≤ Jγ ≤ J .

Proof The right inequality is immediate since Qγ ( f ) ≤ f by Theorem 3.1. As in

Theorem 5.1, we moreover see that it suffices to prove the left inequality for d = 0.

To this end, set h(x) = J ∗∗(x) − 1
2
‖Ax‖2. Since J ∗∗ ≤ f + 1

2
‖Ax‖2, we have

h ≤ f , and moreover

h(x) + γ

2
‖x‖2 = J ∗∗ +

(

γ

2
‖x‖2 − 1

2
‖Ax‖2

)

.

The right hand side is convex and l.s.c. by which we conclude that

h(x) + γ

2
‖x‖2 ≤

(

f + γ

2
‖·‖2

)∗∗
(x) = Qγ ( f )(x) + γ

2
‖x‖2 ,

(where the last identity follows by Theorem 3.1), which gives h(x) ≤ Qγ ( f )(x). In

other words, J ∗∗(x) ≤ Qγ ( f )(x) + 1
2
‖Ax‖2, which is the desired inequality (for

d = 0). ⊓⊔

We now come to the main theorem of this section, inspired by Theorems 4.5 and

4.8 in [8]. We say that x is a local minimizer of J if there exists a neighborhood U

of x in V such that J (y) ≥ J (x) for all y ∈ U , and we say that x is a strict local

minimizer of J if the inequality is strict for y �= x .

Theorem 5.2 Suppose that ‖A‖2 < γ . If x is a local minimizer (resp. strict local

minimizer) of Jγ , then it is also a local minimizer (resp. strict local minimizer) of

J , and Jγ (x) = J (x). In addition, the global minimizers coincide.
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Proof Let x be a local minimizer of Jγ . If Qγ ( f )(x) = f (x) does not hold, then

Corollary 4.2 implies that there exists a unit vector ν such that

d2

dt2
Jγ (x + tν)(0)

= d2

dt2

(

Qγ ( f )(x + tν) + 1

2
‖A(x + tν) − d‖2

V

)

(0) = ‖Aν‖2 − γ < 0.

(19)

We thus conclude that Qγ ( f )(x) = f (x) holds, which immediately gives that

Jγ (x) = J (x). In view of Proposition 5.1, it follows that x is a local minimizer

also for J . The same argument applies to strict local minimizers.

We now prove that the global minimizers coincide. Note that global minimizers

of J are global minimizers of Jγ , in view of Proposition 5.1 and the fact that

J (x) = J ∗∗(x) for all global minimizers x . From this, we also see that the global

minimum of J and Jγ coincides, let us denote this value by c. Conversely, suppose

that x is a global minimizer of Jγ (i.e., Jγ (x) = c). Then, it is a local minimizer of

J by the first part, which automatically is global for J since we otherwise would

have J (y) < c for some other value y. The proof is complete. ⊓⊔

The situation when γ = ‖A‖2 is a bit more involved, so we content ourselves with

the following statement concerning the global minimizers.

Theorem 5.3 Set γ = ‖A‖2, let G be the global minimizers of J , and Gγ the global

minimizers of Jγ . Then, G ⊂ Gγ , and each connected component of Gγ contains

points of G.

Proof The statement G ⊂ Gγ follows as in the above proof, as well as the fact

that the global minimum of J and Jγ coincide; we denote it by c. If x ∈ Gγ

and J (x) > c, then it follows by (19) that there exists a unit vector ν such that
d2

dt2 Jγ (x + tν) ≤ 0 in a neighborhood of t = 0. Strict inequality contradicts the

assumption of global minima, so we deduce that γ ‖ν‖2 = ‖Aν‖2. Introducing the

semi-norm ‖x‖2
U

= γ ‖x‖2
V

− ‖Ax‖2
W

, this means that ‖ν‖U = 0, i.e., that ν lies in

the kernel of the semi-norm ‖ · ‖U , (which is a linear subspace by bilinearity of the

semi-norm). Let P be the affine hyperplane P = x + ker ‖ · ‖U , and set S = P ∩ Gγ .

For y ∈ ker ‖ · ‖U , we have

Jγ (x + y) =
(

Qγ ( f )(x + y) + γ

2
‖x + y‖2

V

)

−1

2
‖x‖2

U − 〈A(x + y), d〉W + 1

2
‖d‖2

W , (20)

so Theorem 3.1 implies that Jγ is convex on P . In particular, S is convex. Since Jγ

is l.s.c., S is also closed. Moreover, S is bounded due to the quadratic term ‖x + y‖2
V

in (20). S is therefore weakly closed, and hence it equals the closed convex hull of its

extremal points by the Krein-Milman theorem. If x now is one of these extremal points,
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then we can argue as in the beginning of this proof and conclude that Jγ (x) = J (x),

since the existence of a ν with the properties stated initially would contradict that x is

an extremal point of S. ⊓⊔

6 The Quadratic Envelope and Semi-algebraicity

We briefly treat semi-algebraicity of Qγ ( f ), since it was shown in [16] that this is

connected with the convergence of the forward–backward splitting method, applied

to functionals of the type (18). We remind the reader that a function on a finite-

dimensional space is semi-algebraic if its graph is a semi-algebraic set [20].

Theorem 6.1 If V is finite dimensional and f is semi-algebraic then so are Sγ ( f ) and

Qγ ( f ).

Proof We assume for simplicity that γ = 1. It is a consequence of the Tarski-

Seidenberg theorem that the set of semi-algebraic functions is closed under addition,

(see, e.g., Prop. 2.2.6 in [20]), and similarly, one can prove that the epigraph of a semi-

algebraic function is a semi-algebraic set. If f is semi-algebraic on R
n it follows that

g(x, y) = 〈x, y〉 − ( f (x) + 1
2

‖x‖2) is semi-algebraic on R
2n , and by the argument

following Theorem 2.2 in [16], it follows that the Legendre transform of f + 1
2

‖x‖2 is

semi-algebraic. The first result now follows since this function minus
γ
2

‖y‖2 equals

Sγ ( f )(y) by (14), and the second is immediate by Proposition 3.1. ⊓⊔

7 RelatedWorks

The operations Sγ ( f ) and Qγ ( f ) were introduced around 1970 in greater generality

by Moreau [21] and (seemingly independently) Weiss [22] and were further studied

around 1990 by Poliquin [23] with a focus on smoothness properties. Variations of

Propositions 3.1 and 3.2 date back to these early articles, and are also found, e.g., in

Rockafellar–Wets [17] Section 11.L. The transforms Sγ and Qγ go under names

like “
-conjugate”/“proximal transform” and “
-biconjucate”/“
-convex envelope,”

and arise by the concrete choice 
(x, y) = qγ (x, y) = − γ
2
‖x − y‖2. Following

Rockafellar–Wets [17], Qγ ( f ) should be called “proximal hull” or “qγ −envelope”.

We believe that the “quadratic envelope”, which is closer to the latter, is more sug-

gestive. Functions that satisfy Qγ ( f ) = f have been called, e.g., γ −1-proximal or

quadratically convex.

However they are called, it seems that the connection with convex envelopes á la

Theorem 3.1 has not been investigated, which is the main novelty of this publication

along with the structural result Corollary 4.2 and its applications to regularization in

Sect. 5. Apart from the already mentioned works by Aubert, Blanc-Feraud, Soubies

and Larsson, Olsson, we have not found any similar result in the literature. The fairly

recent survey paper [24] is about the closely related concept of computing Fenchel

conjugates and also mentions proximal hulls, yet it has no overlap with the present

paper. It primarily deals with numeric computation of convex envelopes in cases when

symbolic formulas are not available, and as such it is an interesting alternative to
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the methods developed here. The same goes for the papers [25,26]. The importance

of computing convex envelopes is stressed in [27], where techniques for computing

convex envelopes of so-called convex polyhedral functions are developed. Convex

approximations from below are considered in [28], which should be compared with

the results in Sect. 5.1. An alternative to approximating the convex envelope is to

numerically try to compute the proximal operator of the original functional directly,

which is pursued in [29]. The papers [30,31] deal with Lasry–Lions approximants

in Hilbert space, but do not make the connection with the convex envelopes. For

parameters s < t , the Lasry–Lions approximation of f [32] is defined by

S1/sS1/t ( f )(x) = −
(

inf
y

−
(

inf
w

f (w) + 1

2t
‖w − y‖2

)

+ 1

2s
‖x − y‖2

)

= sup
y

(

inf
w

f (w) + 1

2t
‖w − y‖2

)

− 1

2s
‖x − y‖2 ,

(21)

which for s = t gives Qs−1 . This regularization is also studied in Sect. 6 of the

more recent publication [31], (with the notation C(1) f ), mainly with focus on

differentiability-results. It is also closely connected to the more general “proximal

average,” see, e.g., [33,34] and regularization by “self-dual smoothing” [35]. How-

ever, these techniques have been used mainly for modification of convex functions f ,

whereas Qγ ( f ) = f for any l.s.c. convex function.

8 Conclusions

We have provided theory for computing l.s.c. convex envelopes of certain functionals

and shown a connection with quadratic envelops (a.k.a. proximal hulls), which was

then used to regularize more intricate problems. We showed that, for sufficiently small

values of the parameter γ , this yields convex functionals below the original functional,

which coincide with the original functional on a large part of the underlying Hilbert

space. For γ sufficiently large, on the other hand, we lose convexity, but gain the

desirable feature that the modified functional has the same global minimizers as the

original one and fewer local ones. This in turn was based on results regarding the

structure of l.s.c. convex envelopes. The results are inspired by prior work from Carl

Olsson and Viktor Larsson as well as Emmanuel Soubies, Laure Blanc-Féraud and

Gilles Aubert.

Particular cases of these ideas have already been applied to compressed sensing [6],

computer vision [36], signal processing and frequency estimation [37,38], as well as

structured low-rank approximation [39]. Currently, we are working on more concrete

results regarding low-rank approximation, total variation denoising, as well as an

application to the classical phase retrieval problem. We hope that other researchers

will try these methods on their problems and find that the method is a valuable tool. To

aid with this task, an expanded version of this article is available on arXiv [12] with

many more examples and useful details.
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