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ON CONVEX FUNCTIONS AND THE FINITE ELEMENT METHOD*

NESTOR E. AGUILERAT AND PEDRO MORINT

Abstract. Many problems of theoretical and practical interest involve finding a convex or
concave function. For instance, optimization problems such as finding the projection on the con-
vex functions in HF (2), or some problems in economics. In the continuous setting and assuming
smoothness, the convexity constraints may be given locally by asking the Hessian matrix to be
positive semidefinite, but in making discrete approximations two difficulties arise: the continuous
solutions may be not smooth, and an adequate discrete version of the Hessian must be given. In
this paper we propose a finite element description of the Hessian, and prove convergence under very
general conditions, even when the continuous solution is not smooth, working on any dimension, and
requiring a linear number of constraints in the number of nodes. Using semidefinite programming
codes, we show concrete examples of approximations to optimization problems.
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1. Introduction. Convex and concave functions appear naturally in many disci-
plines of science such as physics, biology, medicine, or economics, and they constitute
an important part of mathematics, naturally putting forth the question of how these
functions can be approximated numerically.

Particularly interesting instances are optimization problems where the feasible
solutions are a family of convex functions. For example, let H*(Q2) denote the usual
Sobolev space of L2(f2) functions having all weak derivatives of order up to k in
L?(€), and suppose 2 C R? is a convex domain. We may be interested in finding the
projection of a given f € H() onto the set C of convex functions in H*(2),

(L1) min 6~ ]

Or, given f € H~1(Q), we may be interested in minimizing the Dirichlet func-
tional,

(1.2) Tj() =5 [ leradu(a)? do -+ (f.u),

over the set of convex functions u defined in € with fQ udzr = 0.

Often the convexity requirement in applications comes from a reasonable shape
assumption on the model, which could be replaced by or added to other shape con-
straints such as radial symmetry, harmonicity, or upper and lower bounds. This is
the case, for instance, of Newton’s problem of minimal resistance [4, 5, 13, 14].
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More surprisingly perhaps, the convexity may be a consequence of the model, as in
some mechanism design problems in economics. For example, Rochet and Choné [18]
and Manelli and Vincent [15] (among others) study what we will call the monopolist
problem, in which the functional to be maximized is the seller’s expected revenue,

(1.3) rilgé{/Q(grad u(x) - x — u(x) — c|grad u|2)f(x) dz,

where @ = [0,1]% is the d-dimensional unit cube, ¢ is a nonnegative constant, f is a
probability density function on @, and C is the set of convex functions u satisfying
u(0) =0 and 0 < gradu < 1 (componentwise). In this problem, the convexity restric-
tion comes from the requirement of incentive compatibility. We refer the interested
reader to [15] and the references therein for further details on the model.

From a theoretical point of view, Carlier and Lachand-Robert [6] obtained the C*
regularity of a variant of the monopolist problem (1.3), under some restrictions on the
domain €2 and the density f. They obtained also C! regularity for convex minimizers
of functionals similar to that in (1.2), with the condition [, udz = 0 substituted for
u = ug in Of).

The work of Carlier et al. [7] includes the problem of finding

min/ lu— f* da subject to u € L*(Q), u convex, u < f,
Q

for given f € L2(Q), i.e., a L?>norm projection. As these authors point out, this
problem is equivalent to that of finding the convex envelope f** of f. Thus, minimizing
over convex functions and finding the convex hull of the epigraph of a function are
two quite related tasks.

Being a central problem in computational geometry, there are a number of well-
established codes for finding the convex hull of a set of points in R? which are
very efficient in low dimensions. Hence, it is natural to try to use these codes to
approximate convex functions, an approach which Lachand-Robert and Oudet [12]
applied to several problems.

There is a large amount of literature on convex functions in a continuous setting,
well represented by the book by Rockafellar [19]. Also, the discrete mathematics
community has produced quite a few definitions for convexity of functions defined on
lattices (see, e.g., the article by Murota and Shioura [17] and the references therein).
But in either case, the definitions are usually of a nonlocal nature.

One of the main difficulties in obtaining discrete approximations to convex func-
tions in dimensions higher than one, lies in giving a local and finite description of
them. Though this could be done for smooth functions of continuous variables by
asking the Hessian matrix to be positive semidefinite at all points, we know of no
similar characterizations for finite element functions on meshes.

This article builds on our previous work [1], where we gave a theoretical frame-
work for approximating convex functions using a finite difference discretization of the
Hessian matrix and semidefinite programs.

Let us recall that a semidefinite program is an optimization problem of the form

min c- x

(1.4) subject to
r1A1 4+ Ay — Ag = 0,
reR™,
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where ¢ € R™, Ag, A1, ..., A, are symmetric m X m matrices, and A = 0 indicates
that the symmetric matrix A is positive semidefinite. By letting the matrices A; be
diagonal, we see that the program (1.4) is a generalization of linear programming (and
includes it strictly). Thus, in a semidefinite program the constraints can be a mixture
of linear inequalities and positive semidefinite requirements. We refer the reader to the
article by Vandenberghe and Boyd [21] for further properties of semidefinite programs.

In this article we carry over the framework in [1] into the approximation with finite
elements. We do so through a very natural and straightforward definition of a finite
element (FE) Hessian and a corresponding definition of FE-convex functions.! The
main goal of this article is to provide a solid theoretical foundation of this approach
and to illustrate its applicability to a broad range of models.

In contrast to finite differences, it is now very easy to adaptively refine the meshes
and reduce drastically the computational effort, especially taking into account the
fact that the time needed by the semidefinite programs is more than quadratic on the
number of nodes.

Although not linear, our approach seems very natural and has many advantages.
Being of a local nature, the number of constraints grows only linearly with the num-
ber of nodes, and it works for any dimension of the underlying space. It is worth
mentioning that Carlier et al. [8] proposed an alternative strategy based also in a
weak expression of the convexity constraint, but this expression is still nonlocal, and
therefore quite distinct from the one proposed here.

The rest of this paper is organized as follows.

In section 2 we introduce the FE-Hessian and FE-convex functions, discussing
several related issues. We give examples and counterexamples showing how FE-convex
functions relate to usual convex functions and the finite element version given by
Carlier et al. [7].

In section 3 we prove the main results of the paper. We show that, under ap-
propriate assumptions and norm, every convex function, even if not smooth, can be
approximated by a sequence of FE-convex functions, and that the limit of every con-
vergent sequence of FE-convex functions (when the space discretization parameter
goes to zero) is a convex function. We also show some compactness results, such as
that a (norm) bounded sequence of FE-convex functions has a convergent subsequence
(to a convex function).

In section 4 we show how the previous results may be used to approximate many
optimization problems, providing a general framework for the numerical treatment
of optimization problems over convex functions, and prove some theoretical results
supporting the potential applicability to a broad range of concrete problems. We
do not focus here on a specific problem, and thus our convergence results will not
provide convergence rates, since these depend on the regularity properties of the
exact solutions, and other features of the particular problem at hand.

In section 5 we discuss the actual numerical implementation, and give concrete
examples of the monopolist problem (1.3) and the Dirichlet integral (1.2).

We conclude by summing up and commenting on the results we found.

2. Discrete Hessians and discrete convexity. There are two main issues
when defining the set of discrete approximants to be used:
1. it must be rich enough to approximate every convex function, and
2. it must be not too large, to avoid convergence to nonconvex functions.

1We denote them with the prefix “FE” to distinguish them from other definitions, such as those
in [1, 7, 17].



3142 NESTOR E. AGUILERA AND PEDRO MORIN

(a) Regular diagonal mesh. (b) Interpolant of (z; + x2)2.

Fic. 2.1. Interpolant of a convex quadratic function on a regular mesh.

The first point is very natural and necessary to be able to approximate the solution
of the problem. The second point looks artificial at first sight, but if it did not hold,
a sequence of functions in this kind of set could converge to a nonconvex function.

On one hand, as noted by Choné in his Ph.D. thesis [9], the affine Lagrange
interpolant of a convex function need not be convex. Consider for instance a regular
diagonal mesh as shown to the left in Figure 2.1, and suppose Q = (—1,1) x (—1,1).
The interpolant on this mesh of the quadratic convex function (x; + x2)?, shown to
the right of that figure, is clearly not convex.

On the other hand, if we consider a convergent sequence of convex piecewise linear
functions on a sequence of meshes like those of Figure 2.1, with mesh size tending to
zero, then the limit will satisfy

2
0“u <o
0x10x2 —

This is a consequence of proposition 1 in [7], which was first proved in [9]. It clearly
indicates that not all convex functions can be approximated by discrete functions
that are convex in the usual sense, and the definition of the discrete approximants to
convex functions needs to be more involved.

In order to proceed, we briefly review some concepts and set some notation. If 2
is a bounded open convex set in R? (d > 2), u € C%(Q), and = = (z1,...,74) € Q,
the Hessian Hu(x) € R¥? is defined as the matrix whose ij entry is the second order
partial derivative of v in the directions x; and x;,

(Hu(z));; = diju(z).

As is well known, u € C?(Q) is convex if and only if Hu is positive semidefinite
everywhere in €2, in symbols

Hu(z) >0 forall z € Q.

When u is not smooth enough, we may nevertheless consider the Hessian in the
distribution sense. In other words, we may define Hu as a matrix of distributions
such that for every ¢ € C§°(Q), (Hu, ¢) is the matrix of numbers

(2.1) (Hu, @) = (u, Hp).
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In 1977, Dudley [10] proved that if « is a distribution on § such that
(22) (Hu,p) =0 for all p € C5°(Q), ¢ >0,

then u belongs to the (Lebesgue) equivalence class of a continuous convex function in
Q). Conversely, if u is a convex continuous function then (2.2) holds (in the distribution
sense).

By allowing some smoothness on u, say u € H'(Q2), we may rewrite (2.1) and
interpret Hu as a matrix of distributions [(Hu);;| satisfying

(2.3) (Hu)ij, @) = (Hu,@)ij = — /Q Oiu(z) 05p(x) dz, for all p € C§°(Q).

In this case, the equality in (2.3) also holds for all ¢ € H(Q), and Dudley’s results
imply that given u € H*(Q), u is a continuous convex function in Q if and only if

(2.4) H,u >0 for every v € HE(Q), v >0,

where for convenience, for u € H*(Q) and v € H}(Q2), we have denoted by H,u the
matrix whose ij entry is

(Hvu)ij = —<8iu,8jv).

It is then natural to define a discrete Hessian in the finite element setting along
these lines. To do so, it will be convenient to use two different families of finite
element basis functions. The first one, {¢!} indexed by r € I!', . will be used for
approximations, and the second one, {¢"} indexed by s € I, will be used as test

est?
functions, and we will assume that
(2.5) e(x) >0 forallz € QandallscIl,.

Vi, and W, will denote the (real) linear spaces spanned by {#”} and {("}, respec-
tively, and again for simplicity we will assume Vj, C HY(Q) and W), C H}(Q). h will
denote, as usual, a discretization parameter, equivalent to the maximum diameter of
the elements of the underlying grid.

For u € V}, and each s € I',, we define the FE-Hessian (of u with respect to ps),
Hu, by

h, —
Hsu = H@?u,

h

T

and in particular, if u = we define

so that
Hf <Zur¢f> = ZuTHThS.

We are now in a position to state the following.
DEFINITION 2.1. A function u € Vj, is FE-convex (with respect to {¢"} and

{el}) if

HM =0 forallsell,,.
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(a) Chevron or alternating. (b) Crisscross. (¢) Union Jack.

Fic. 2.2. Other common patterns for reqular meshes.

If u € V}, is convex in the usual sense, and the conditions (2.5) hold, by Dudley’s
results in the form (2.4), H"u = 0 for all s € I_,. Therefore, convex functions in V},
are FE-convex.

As was shown in the example of Figure 2.1, the interpolant of a continuous con-
vex function need not be convex. However, as we will see next, in that example
the interpolant is FE-convex, and therefore in general FE-convexity does not imply
convexity.

Ezample 2.2. Let us consider a regular diagonal mesh in Q@ = (0,1) x (0,1), as
shown in Figure 2.1, let h be the length of the shorter sides of the triangles, and let
Vi, and W), consist of piecewise linear functions.

A simple calculation shows that, if up € V, and np? € W), is the function which
equals 1 on the interior node with coordinates (a,b) and vanishes in the other mesh
nodes, then

e )

where

= up(a — h,b) + up(a+ h,b) — 2up(a,b),

Q

N~

(2uha b) +un(a—h,b—h)+up(a+h,b+h)

(uh (a,b—h —i—uh(a,b—i—h)—i—uh(a—h,b)—i—uh(a—i—h,b))),

v =up(a,b—h) +up(a,b+ h) —2up(a,b).

If wp, is the Lagrange interpolant of the quadratic function u(zq,z2) = (21 +x2 —
1)2, another simple calculation shows that

Hlwy, = (Hu, ¢") = 0,

so that uy is FE-convex but it is not convex as we know from Figure 2.1.

It is worth noticing that, in general, it is not true that the interpolant of a convex
function is FE-convex, even for some highly regular meshes. In order to illustrate
this, we have sketched some common patterns of regular meshes in Figure 2.2. It can
be readily seen that the Example 2.2 for the diagonal mesh in Figure 2.1(a) can be
carried over to the “chevron” or “alternating” mesh. However, the behavior is quite
different for the “crisscross” and “Union Jack” patterns.
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Ezample 2.3. Consider as in the previous example Q = (0,1) x (0,1), but now a
regular “Union Jack” mesh in Q as shown in Figure 2.2(c). As before, let h be the
length of the shorter sides of the triangles, and let V}, and W}, consist of piecewise
linear functions.

In this mesh, the nodes inside ) can have either 8 or 4 neighbors. If (a,b) is a
mesh node having 8 neighbors and ¢, is the corresponding nodal basis function, for
up € Vi, we now have

H;luhz |:g §:|,

where

o = uh(a’_ hvb) +uh(a’+hab) - 2uh(a’ab)7
1

8= 3 (un(a+h,b+h) 4+ up(a—h,b—h)
—up(a+h,b—h) —up(a —h,b+ h)),

v =up(a,b—h) +up(a, b+ h) — 2up(a,b

).
If uy, is the interpolant of the quadratic function u(xy,x2) = (z1 + 22)?, we see
that

Hhuy, = 12 E ‘2‘} #0,

so that wuy is not FE-convex.

Similar examples can be constructed for the “crisscross” meshes since these are
essentially 45° rotations of “Union Jack” meshes.

We conclude from these examples that our concept of FE-convex functions neither
contains nor is contained in that of [7]. However, as we show in the next section, these
concepts have many common features.

3. Limits of FE-convex functions. Having defined FE-convexity through a
discrete Hessian, we would like to see how these concepts may be used to approximate
convex functions.

The first decision we have to make is in what sense the approximation will be
done. By the very definition of the FE-Hessian in (2.3), it is natural to consider the
approximation in the H' sense, and this is what we will do, but of course other spaces
could be used. In particular, even when working with approximations in H*(2), we
will make use of the spaces W*P(Q) consisting of the functions having at least k weak
derivatives in LP(Q).

On the other hand, it will be convenient to work with a sequence of finer and finer
meshes, M"» with h, | 0 as n — co. However, so as not to clutter the notation, we
will drop the index n, and we will also assume 0 < h < 1.

We are confronted now with several tasks:

1. Suppose (up)n is a sequence, h | 0, of FE-convex functions uj, € Vj, and
suppose that, as h | 0, uj, has a H!(Q) weak limit u € H(Q2). Is u convex?

2. Given a bounded sequence (up), with u, FE-convex in V3. Is there a con-
vergent subsequence?

3. Recalling Choné’s observations and the example in Figure 2.1, can any convex
function in H'(£2) be approximated as much as desired (in that space) by FE-
convex functions (for appropriate V;, and W},)?
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The first two issues will be covered by Theorem 3.3 and Corollary 3.4. The last
issue will be covered by Theorem 3.6, but it is somewhat different in flavor from the
previous results, since we will need some properties of the approximating spaces Vj.
These will depend on the choice of the finite element families, which can vary widely.

Since it is not our purpose in this paper to present the results under the most gen-
eral conditions, for simplicity we will restrict our attention to C° Lagrange elements,
hoping that the interested reader will be able to adapt the proof of Theorem 3.6 to
other families.

We start by observing that if € is any convex domain, then the convex functions
in H'(Q) may be approximated by smooth convex functions.

LEMMA 3.1. Suppose 2 is a bounded convex open subset of R®. If u is a convex
function in HY(Q), for any ¢ > 0 there exists a conver v € C®(Q) such that

Hu — UHHl(Q) < €.

Proof. Let ¢ € C§°, ¢ > 0, with support inside {z € R? : |z| < 1} and [¢dz = 1,
and for 0 > 0 consider the mollifier

us(e) = w ps(a) = 55 [ ulw) o0 2 - )

which is well defined in
Qs = {z € Q: dist(z, 9Q) > d},

where dist(z, A) is the distance from z to the set A.

As is well known, us € C*°({s), and since u is convex and u; is an average with
nonnegative weights, us is convex in Q5. For §' > 0 fixed, us converges to u in H!(Qs/)
as 0 | 0, and moreover us € C*® (ﬁy) if § < ¢&’. Thus the result is true for Qs for
every &' > 0.

Given its geometry, it is easy to obtain the result for {2 by using suitable dilations.
For instance, pick xo € € and consider for 1 < X < 2, the set Q* = {zo + A (z — x¢) :
x € 2}, and for u defined on  consider u* defined on Q* by u* (zo+\ (x—x¢)) = u(x).
Then Q* is convex, ||u* — Ul 1) — 0 as A | 1, and if u is convex in €2 then u is

convex in Q.
Thus, fixing first A > 1 so that |ju* — ull 1 () < €/2, then 6" > 0 so that QN5 D

€, and finally § > 0 so that ||u* — (uA)5||H1((QA)5l) < /2, we have

[[u— (UA)JHHl(Q) < lu— u)\HHl(Q) + [ut — (U’)\)JHHI(Q)

<e/2+ ||ut - (UA)[SHHI((QX)W) <,

and the proof is concluded. d

From now on we will assume that we have a sequence of meshes M", with h | 0,
each consisting of a family 7" of nonoverlapping closed d-dimensional simplices such
that for each h, Q = Urper» T. This implies that € is the interior of a polyhedron
(intersection of finitely many half-spaces). Recalling that we are thinking of a hierar-
chical sequence of meshes and we require the nonnegativity condition (2.5), we now
make some additional assumptions on the meshes and discrete spaces we will work
with, following Chapter 4 of the book by Brenner and Scott [3].

ASSUMPTIONS 3.2. We will denote by |A| the Lebesgue measure of A, and indicate
by a ~ b that for some positive constants Cy1 and Cy (independent of h and u) we have
Cia <b < (Cha.
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1. Forall0<h<h', Vi C Vi, C HYQ) and Wy, C W), C HL(Q).
2. There exists a linear operator I" with values in V;, (the interpolant), an
integer m > 2, and a constant C' independent of u and h, such that

la =Tl 1 gy < OB [ll o -

= Tl gy < CH [l -

In particular, \J, Vi, is dense in H'(S2).
3. Condition (2.5) holds, i.e.,

OM(x) >0 forallz€Q, allh >0, and all s € I ,.

4. Given hg and sg € Iﬁfst, for every h < hqg there exist coefficients as > 0 such
that

Psog = Z g Pg.

sell

test

5. Given ¢ € C§°(Q), ¢ > 0, there exists a sequence (wp)p converging to ¢ in
HY(Q) such that

wp, = Z ai}gpSEWh,

h
s€lity

with a > 0 for all h in the sequence and s € I} ,.
In particular, \J, Wy, is dense in Hj ().
6. For all h,

|T| ~ h¢ for all T € T",

/ oltde ~h? and |gradp®| < C/h forallseIl,.
Q

These conditions will be satisfied for quasi-uniform families, taking C° Lagrange
elements with polynomials of degree less than m for the trial space V},, and piecewise
linear elements for the test space W;. The assumptions also hold if W}, is chosen
as the finite element space of continuous piecewise polynomial functions of any fixed
degree. Assumption 3.2.5 is guaranteed because W}, will always contain the piecewise
linear finite element functions. The only detail to take into account is the choice of
the basis functions in order to fulfill Assumption 3.2.3. If the degree is bigger than
one, we cannot use as gp’; the canonical nodal basis functions of W, because some
of them change sign. The construction is still possible though (see section 5.1 for
details).

The following is one of the main results of the paper.

THEOREM 3.3. Let (uy),, be a sequence converging weakly in H' () tow as h | 0,
such that for each h, up € Vi and

HMuy =0 for all s € I,

Then u is convex.
Proof. By Assumption 3.2.4, for arbitrary but fixed hy and sg € It’g;t, and any
h < ho we may find coefficients a” > 0 so that ¢,y =Y, a” ps.
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Therefore, since Huy, = 0 for every s € I,

setting w = g, we obtain
Hhay, = Z a Hhuy, =0 for h < hy.

B
Given that uy, converges weakly in H'(Q) to u, we now have

Hyu = lim H!uy, =0,
—0

and finally, by Assumption 3.2.5, H,u > 0 for all nonnegative ¢ € C3°(Q2), and the
theorem follows by Dudley’s results (2.2). ad

Since the unit ball in H!(£2) is weakly compact, we have the following.

COROLLARY 3.4. Let (up), be a bounded sequence in H'(2) such that for every
h the function up € Vi, is FE-convex. Then there exists a subsequence that converges
weakly in HY(Q) to some functionu € H(Q), and this function is necessarily convex.

This theorem and its corollary answer the first two issues raised at the beginning
of this section. In order to proceed further, and answer the last one, we will need the
following result by Hoffman and Wielandt [11].

THEOREM 3.5. There exists a positive constant cq, depending only on the dimen-
sion d, such that if A = [a;;] and B = [bi;] are symmetric d x d matrices, and A and
w are their minimum eigenvalues, then

A = pl < ca max fai; —bij|-

The following is the second main result and responds to the third issue raised at
the beginning of this section.

THEOREM 3.6. If m > 2, given u € HY(Q), u convex, and ¢ > 0, there exist
h >0 and up, € Vi, such that

= unllprsey < €
and

H?(uh) =0 forallsce If

est*

Proof. By Lemma 3.1, it will be enough to assume that u is a C*°(Q) convex
function.

In what follows we will denote by C, C’, or C”, positive constants which may
vary from one occurrence to another, even in the same line, which may depend on u
(which we consider fixed from now on), €2, the dimension d, and the regularity degree
m, but are independent of h. For instance, we write

||u||Hm(Q) =C.

Let us consider the auxiliary function

which is a convex C*°(R?) function. The regular Hessian of g, Hyg, is

Hg = I; = identity matrix in R?*9,
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and therefore, for any w € H}(Q),

ng:<Hg,w):/Idwdx: </wdx> 14,
Q Q

3.1 Hhg = ohdx | I, forall handall s e Il',.
s o s test

and in particular,

For § and h positive and small, let
v =u-+dg and up = Iho,

where Z" denotes the interpolant considered in Assumption 3.2.2. We notice that
since the third derivatives of g vanish, h is bounded and m > 2,
||9||Hm(Q) = ||9||H2(Q) =G,
[0l gm0y < Mfellgm ) + 019l gm ) < C,
”IthHl(Q) <C ”gHHm(Q) =G,
and
[lu— uhHHl(Q) = lu—T"u - 5Ihg||H1(Q) < u— Ihu”Hl(Q) + ||5Zhg||H1(Q)
< Ch™ Hull gm gy + C 6 < C (h+9).
Thus, if h + ¢ is small enough (depending on ¢), we obtain the first inequality of
the theorem.
In order to see that H uy, = 0, we first look at the eigenvalues of H'v for s € I ;.

If ¢ € RY, using that u is convex and smooth, (3.1), and the bounds in Assump-
tion 3.2.6, we obtain

(H!'v )¢ = ((Hu, @) Q) -¢4+6 ((Hg, ) ¢)-¢ > 0+4[¢)? /Q ol dx > C§|¢|* he,

and therefore the eigenvalues of H"v are bounded below by
(3.2) Cohe,
In order to compare the entries of H"v and H!uy, we use Assumptions 3.2.6
and 3.2.2 to obtain
(i — 120) | = (22200~ 120, | = |- [ 0@ =)0,k s
Q

3.3
(3:3) <7 = vl ey 1 ooy

< Clhm_l”’U”Wm,oo(Q) hd—l _ Clhm+d_2.

Thus we may use Theorem 3.5 and the bounds (3.2) and (3.3) to obtain that the
eigenvalues of H"uj, are bounded below by

thd _ Clhm+d—2 _ C//hd ((5 _ hm—2)'

The theorem follows now by taking § > Ch™~2 if m > 2, and at the same time
0 + h small. 0
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Fia. 3.1. Exzample showing that convergence cannot be guaranteed when using piecewise linear
functions. Meshes (top) and L?-projection into FE-conver piecewise linear functions (bottom). The
level curves of the projected function—uwhich is already convexr and should be the limit of the discrete
ones—are straight lines, which are not reproduced by the approximants. The meshes have 256, 1024,
and 4096 elements.

The condition m > 2 in Theorem 3.6 implies that the functions in V}, will have
to be piecewise polynomials of degree at least 2, meaning that the result may not
hold for linear finite elements. This does not seem quite satisfactory, and we need to
elaborate on the necessity of this condition.

As we have seen in Example 2.2, for meshes such as those of Figure 2.1(a) or
Figure 2.2(a), if we use piecewise linear functions for the space Vi, (m = 2), the
discrete Hessian becomes a finite difference scheme (except for a factor of h?) which
is exact for quadratic functions. The results presented in [1] can be adapted to show
that in this case Theorem 3.6 also holds for m = 2.

On the other hand, as we have seen in Example 2.3, the discrete Hessian with
piecewise linear functions for very regular meshes such as those in Figure 2.2(b) or
2.2(c) is not exact for quadratic functions, which means that we may not be able
to get good approximations. In the following example we report numerical evidence
supporting the necessity of assuming m > 2 in Theorem 3.6.

Ezample 3.7. We compute the L?((0,1) x (0, 1)) projection of the smooth convex
function

u(z1,29) = (22 — 0.52; — 0.25)%

onto the set of continuous piecewise linear functions that are FE-convex over criss-
cross meshes, as those obtained using longest-edge or newest-vertex bisection. Since
u is convex, the projections uy should converge to u as b — 0, but this is not the case
in this example.

In Figure 3.1 we can observe a sequence of meshes and the level curves of the
L2-projection of u into the set of FE-convex piecewise linear functions on each mesh.
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The level curves of the exact function u, which is convex, are straight lines parallel
to the line 9 = 0.5x;. Nevertheless, the level curves of the approximants converge
to ellipses which do not straighten up by refinement. This is a clear indication that
(up) does not converge to u as h — 0. We remark that the same behavior is observed
when projecting in H', L, and L', and even when imposing boundary values.

Summing up: although there is some sort of super-convergence for some meshes,
for general meshes—even highly regular—FE-convex piecewise linear functions may
not suffice to approximate convex functions.

4. Approximating functionals. We are now in position to apply finite element
approximations to a wide class of optimization problems on convex functions.
Let us describe this technique by assuming, for instance, that the functional

J(v)z/QF(x,v(a:),gradv(x))da:

is defined and continuous on H*(2), and we are interested in the optimization problem
(4.1) inf {J(v) : v € C},

where C is a family of convex functions, C C H!(1).
Using Theorem 3.6, it may be not too difficult to define for each A > 0 a family
C;, C V3, and a functional Jj, defined on Cp,, such that:
1. HMp(z) =0 for all v, € Cp, and s € I,
2. for any v € C and any € > 0, there exists h > 0 and v, € Cj such that
|Jn(vp) — J(v)| < e.
Under the previous conditions, it is easy to prove that (cf. [1])

(4.2) inf{J(v):veC}= }11% inf {Jy(vp) : v, € Cp}.

As a concrete example, suppose that C is the set of all convex functions in H*(£2)
with a given mean value, or some prescribed boundary values, f € H'(Q), and the
continuous problem consists in finding u € C such that

e = £l = min ([0 = o

i.e., minimizing J(v) := |Jv — inIl over C.

In order to compute an approximation of u, we may thus consider Cj, as the set
of discrete functions v;, € Vi, with Hlvy, = 0 for all s € I, which also satisfy the
integral or boundary constraints.

Assuming exact integration we can set Jp,(vp) = J(vy), or otherwise, Jy(v;,) may
result from some fixed quadrature rule on the elements of the mesh. In both cases it
is easy to see that the previous assumptions hold, and thus the discrete minimizers
up, € Cp, provide a convergent (sub)sequence to the exact solution w.
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5. Numerical experiments.

5.1. Implementation issues. The numerical examples were implemented using
the finite element toolbox ALBERTA [20] for assembling the optimization problem, and
CSDP [2] for solving the corresponding semidefinite programs. The experiments were
run on a Linux system desktop PC with a 2.8 GHz Intel Pentium IV processor and
2GB of RAM.

In our experiments we used Lagrange finite elements of polynomial degree 2 for
both V;, and W}, over simplicial meshes, but the right choice might depend on the
precise problem at hand.

Regarding the implementation in ALBERTA, we had to introduce some modified
basis functions when using quadratic finite elements as test functions in Wj,. The
canonical nodal basis functions associated with the vertices of the elements change
sign, and the theory requires that the test functions be nonnegative. To do this, we
considered the usual piecewise linear nodal basis functions for the vertices, whereas for
the nodes that correspond to the midpoints of the edges we used the usual quadratic
bubbles, which are obtained as the product of the two linear basis functions that
correspond to the vertices of the edge.

As a solver for semidefinite programs we chose CSDP, but any other implemen-
tation can be used. We tried also SDPT3 at the NEOS server?, which uses sparse
Cholesky for the Schur complement, and reduces approximately five times the comput-
ing time, for big problems. However, CSDP runs locally without requiring MATLAB
and is thus easier to use in combination with ALBERTA or any other finite element
code.

In the initial experiments we observed some oscillations at the boundary, but
they ceased to appear when we incorporated into the test space the basis functions
corresponding to the boundary nodes, enlarging W}, so that it is no longer a subset
of H}(). In this case, formula (2.3) was transformed into

(5.1) ((Hu)ij, ) = (Hu, p)ij = — /Q Oiu(z) 05p(x) dz + - Oiu(z) p(x)v; dS,

where v; denotes the jth component of the outward unit normal to 9€2. This slight
modification still leads to the same theoretical results of the previous sections. In
order to keep the presentation clearer, we decided to present them assuming zero
boundary values for the test functions.

5.2. Statement of the discrete problems. In the examples that follow, we
always considered the minimization of functionals of the form

J(u) = / (algrad(u — v1)|* + Blu — va|* +~ - gradu + fu) da,
Q

where «, (3, v, v1, v2, and f are given functions on 2. Appropriate choices of these
functions lead to functionals whose minima are the L?(2)- or the H'(Q)-projection
of a function, or the solutions to problems (1.2) or (1.3). The approximate functional
Jn(vp) results from applying some fixed quadrature rule on the elements of the mesh.

2http://www-neos.mcs.anl.gov /neos/solvers /sdp:sdpt3/SPARSE_SDPA.html
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In order to model this problem as a semidefinite program on each given mesh, we
used a fixed quadrature rule (exact for polynomials of degree < 4) over the elements
of the mesh and approximated the functional by

~Som oo 5 (e - o)

j=1
+ Bli) (u(ws) — va(2:))? + (i) - gradu(;) + f(z)u(z) |

where x;, w;, 1 = 1,2,..., N are the quadrature points and weights, respectively. The
minimization of J;, was then modeled by adding (d 4+ 1)N auxiliary variables ¢;;, s;,
1=1,2,...,N,j=1,2,...,d, as

N

d
minimize Zwl th + B(x;)si + v(x;) - grad u(z;) + f(x;)u(z;)
i=1 j=1

subject to
ou (91)1 2
Iy /S8 <
(a0 - Gw) <t

(u(wi) — va(2:))* < s

fori=1,2,...,N, and j = 1,2,...,d, plus the convexity constraints. In turn, the
constraints involving squares are modeled, respectively, by

ou vy
1 (@) — 57— (=
o)~ |
O () — 2% () t )
Ox; " Oxy " d
and
1 u(z;) — va ()
u(x;) — va(x;) S; =0

5.3. Adaptivity. In order to take full advantage of the flexibility of finite ele-
ments, we included some adaptivity into our algorithms, which was implemented as
a loop of the form [16]

SOLVE — ESTIMATE — MARK — REFINE.

The step SOLVE consisted of solving the resulting semidefinite programs using CSDP.
Having computed the discrete solution uy,, the step ESTIMATE consisted in estimating
the error distribution over the triangulation 7" in the following way: we defined for
each T € T" the quantity nr = h;/2||[grad un]||2(o1), Where [grad u]|g denotes the
jump of gradwuy, over the interelement sides S and is defined as zero at boundary
sides. This quantity nr is the dominating part of the residual-type a posteriori error
estimator for Poisson’s problem, and we used it as a heuristic indicator of the error.
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Fia. 5.1. Contour lines and meshes obtained with the adaptive version of the algorithm. We
show the meshes of iterations 0, 2, and 4, with 16 (41), 140 (299), and 388 (799) elements (DOFs),
respectively.

Further studies are necessary in order to develop rigorous upper and lower bounds
for the error in this type of problems, an open question which is out of the scope of
this article; we introduced a heuristic error estimator here just to show the power of
finite elements and the great improvement in performance that adaptivity can provide.
The step MARK consisted of marking (selecting for refinement) all the elements whose
indicators satisfied n7 > 0.79max, Where Nmax := maxpe7n nr. The step REFINE was
implemented using the standard routines of ALBERTA, which perform newest-vertex
bisection, guaranteeing a uniform shape-regularity constant.

5.4. Examples.

Example 5.1. In this example we apply our algorithm to solve the monopolist
problem (1.3), for d = 2, f = 1, and ¢ = 0. In this case the exact solution is known
to be

u(zy1,22) = max {0,217 — a, 29 — a,x1 + 3 — b},

where a = 2/3 and b = (4 — /2)/3, and allows us to compute the true error. The
method is applied using quadratic elements both in the trial and test spaces. In
Figure 5.1 we show a sequence of solutions using adaptive meshes, and in Table 5.1
we can observe the error. In Figure 5.2 we show the final mesh, approximate and
exact solution, after 6 iterations. In order to illustrate the performance of the adaptive
method, we also include in Table 5.1 the errors and CPU-times obtained with uniform
meshes. The reported CPU-times correspond to the time taken by CSDP to find the
minimum of the functional on the given mesh. To be fair in the comparison, we should
look at the cumulative sum of the CPU-times, since the whole adaptive process is
necessary in order to arrive at the graded meshes.

Example 5.2. In this example we apply our algorithm to minimize the functional
defined in (1.2) over the set of convex functions in {v € H'(Q) : [,v =0} (cf. [6]).
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TABLE 5.1
Errors and CPU-time (in seconds) for the adaptive (a) and uniform-refinement (b) solutions
of the monopolist problem.

Elements | DOFs | CPU-time | LZ2-error | L°-error
16 41 0.00 0.06371 0.11168

54 123 1.00 0.01597 0.06214

140 299 11.00 0.00935 0.02589

248 519 25.00 0.01075 0.01553

388 799 59.00 0.01023 0.01633

542 1117 94.00 0.01085 0.01529

802 1641 211.00 0.00192 0.00846

(a)

Elements | DOFs | CPU-time | LZ2-error | L-error

16 41 1 0.06371 0.11168

64 145 2 0.01644 0.06250

256 545 22 0.01202 0.02347

1024 2113 343 0.01091 0.01780

4096 8321 7211 0.01270 0.03508
(b)

Fic. 5.2. Final mesh, approzimate, and exact solution after siz iterations. The mesh has 802
elements and 1641 degrees of freedom were used with quadratic elements. The code CSDP took 211
seconds to minimize the functional, and the L2-error between the approzimate and exact solution is
0.00192. To obtain a similar error with uniform meshes, more than 4096 elements and 8321 DOF's
are needed, which forces CSDP to work more than 7000 seconds (see Table 5.1).

We consider Q = {(z1,22) € R? : 2 + 23 < 1} and

1 ifa? 4+ (e +1)2 < 1/4,
fl@y,me) = —1 ifa?+ (22— 1)% < 1/4,

0  otherwise. 0

In Figure 5.3 we show the outcome of our method using adaptivity. We can
observe that the solution tries to satisfy Au = f in places where f > 0, and it
continues to be convex outside that region, minimizing |Au — f|. The solution u
satisfies Au = f in the lower part of the domain (around the point (0,—1)), and the
natural homogeneous Neumann boundary condition du/0v = 0 on the boundary. This
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Fic. 5.3. Minimizer of the functional (1.2). Top: initial and final mesh, and contour curves
of the solution. Bottom: surface plot of the solution as viewed from (0,—10,0) (left), (—10,—10,0)
(middle), and (—10,0,0) (right).

can be seen by the fact that the level curves are perpendicular to the boundary in that
part of 092. In the upper part of the domain the solution is just linear (ruled surface),
which is a consequence of the fact that the Laplacian of u has to be nonnegative and
as close to —1 as possible, keeping u convex over the whole domain.

The adaptive method correctly captures the region where u is flat, representing
the solution with a minimal number of elements.

6. Conclusions. We have proposed a novel way of imposing convexity on finite
element functions, and proved that this new definition solves the two issues necessary
for the approximation of optimization problems over convex functions:

e Every convex function can be approximated; and
e if a sequence of FE-convex functions is convergent, then the limit is convex.

Another interesting—and puzzling—issue is the fact that, in general, except for
some particular very regular meshes, the discrete functions need to have an approx-
imation order higher than the one provided by linears. Our proof requires this as-
sumption, and we found numerical evidence that this is necessary, but a better expla-
nation/understanding of this issue is still pending.

Numerical experiments show a competitive performance, especially through the
use of adaptivity, which, in turn, is easy to implement for finite elements. Our pre-
liminary computations using a heuristic error indicator are promising, but a lot needs
to be done in this direction, namely, to find a posteriori error indicators which are re-
liable and efficient, and once this is established, to prove convergence and optimality.
These are difficult open questions that will be the subject of future research.
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